高中数学统计案例综合检测试题及答案-word文档

合集下载

高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D. 【考点】关联判断2. 对100只小白鼠进行某种激素试验,其中雄性小白鼠、雌性小白鼠对激素的敏感情况统计得到如下列联表由附表:则下列说法正确的是:( ) A .在犯错误的概率不超过的前提下认为“对激素敏感与性别有关”; B .在犯错误的概率不超过的前提下认为“对激素敏感与性别无关”; C .有以上的把握认为“对激素敏感与性别有关”; D .有以上的把握认为“对激素敏感与性别无关”; 【答案】C 【解析】因为,所以有以上的把握认为“对激素敏感与性别有关”.3. 设A 是由m×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m ,n)为所有这样的数表构成的集合。

对于A ∈S(m,n),记r i (A)为A 的第ⅰ行各数之和(1≤ⅰ≤m ),C j (A)为A 的第j 列各数之和(1≤j≤n ):记K(A)为∣r 1(A)∣,∣R 2(A)∣,…,∣Rm(A)∣,∣C 1(A)∣,∣C 2(A)∣,…,∣Cn(A)∣中的最小值。

对如下数表A ,求K (A )的值;11-0.8(2)设数表A ∈S (2,3)形如求K (A )的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【答案】(1)0.7 (2)1 (3)【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力【解析】(1)因为,所以不妨设.由题意得.又因为,所以,于是,,所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,…任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表,并且,因此,不妨设,且。

高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D.【考点】关联判断2.某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).(1)试预测当广告费支出为12万元时,销售额是多少?(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.【答案】(1);(2).【解析】(1)回归方程必过样本中心点,,将样本中心点代入回归方程,求出,即得回归方程,当广告费支出万元时,代入求得就是销售额;(2)将实际值与观测值对应列出,列举法一一列出任取两组的所有基本事件,至少有一组数据其预测值与实际值之差的绝对值不超过的对立事件为,两组都超过,找到两组都超过的基本事件的个数,.(1)因为点(5,50)在回归直线上,代入回归直线方程求得,所求回归直线方程为: 3分当广告支出为12时,销售额. 5分(2)实际值和预测值对应表为在已有的五组数据中任意抽取两组的基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个, 10分两组数据其预测值与实际值之差的绝对值都超过5的有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为. 12分【考点】1.回归方程;2.古典概型的概率问题.3.一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表是抽样试验结果:在的范围是()A.10转/s以下B.15转/s以下C.20转/s以下D.25转/s以下【答案】B【解析】则a=-b=-0.857 5.∴回归直线方程为=0.728 6x-0.857 5.要使y≤10,则0.728 6x-0.857 5≤10,∴x≤14.901 9.因此,机器的转速应该控制在15转/s以下.故选B.4.登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x(°C)181310-1由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为()A.-10B.-8C.-6D.-6【答案】C【解析】由题意可得=10,=40.5,所以=+2=40.5+2×10=60.5,所以,当=72时,,解得x≈-6,故选C.【考点】回归分析5.在某次高三考试成绩中,随机抽取了9位同学的数学成绩进行统计。

高二数学统计案例测试题及答案

高二数学统计案例测试题及答案
18(10分).1907年一项关于16艘轮船的研究中;船的吨位区间位于192吨到3246吨;船员的人数从5人到32人;船员的人数关于船的吨位的回归分析得到如下结果:船员人数 吨位.
(1)假定两艘轮船相差1000吨;船员平均人数相差多少?
(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?
10
35
45
乙班
7
38
45
合计
17
73
90
利用独立性检验估计;你认为推断“成绩与班级有关系”错误的概率介于( )
A. B. C. D.
二、填空题(每题6分共36分)
12.某矿山采煤的单位成本 与采煤量 有关;其数据如下:
采煤量
(千吨)
289
298
316
322
327
329
329
331
350
单位成本
(元)
则 对 的回归系数为.
12.对于回归直线方程 ;当 时; 的估计值为.
13.在某医院;因为患心脏病而住院的665名男性病人中;有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶;则 .
14.某工厂在2004年里每月产品的总成本 (万元)与该月产量 (万件)之间有如下一组数据:
42
7817
吸烟
2099
49
2148
合计
9874
91
9965
根据表中数据;你认为吸烟与患肺癌有关的把握有( )
A. B. C. D.
6.调查某医院某段时间内婴儿出生的时间与性别的关系;得到下面的数据表:
晚上
白天
合计
男婴
24
31

(必考题)高中数学高中数学选修2-3第三章《统计案例》测试题(含答案解析)(4)

(必考题)高中数学高中数学选修2-3第三章《统计案例》测试题(含答案解析)(4)

一、选择题1.在一次对性别与是否说谎有关的调查中,得到如下数据,根据表中数据判断如下结论中正确的是( ) 性别 说谎 不说谎 总计 男 6 7 13 女 8 9 17 总计141630A .在此次调查中有95%的把握认为是否说谎与性别有关B .在此次调查中有99%的把握认为是否说谎与性别有关C .在此次调查中有99.5%的把握认为是否说谎与性别有关D .在此次调查中没有充分证据显示说谎与性别有关2.为检测某药品服用后的多长时间开始有药物反应,现随机抽取服用了该药品的1000人,其服用后开始有药物反应的时间(分钟)与人数的数据绘成的频率分布直方图如图所示.若将直方图中分组区间的中点值设为解释变量x (分钟),这个区间上的人数为y (人),易见两变量x ,y 线性相关,那么一定在其线性回归直线上的点为( )A .()1.5,0.10B .()2.5,0.25C .()2.5,250D .()3,3003.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:k≈参照附表,得到的正确结论是().由列联表算得7.8A.在犯错误的概率不超过0.01的前提下认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.01的前提下认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别无关”4.如图所示,茎叶图记录了甲、乙两组各4名学生完成某道数学题的得分情况,该题满分为12分.已知甲、乙两组学生的平均成绩相同,乙组某个数据的个位数字模糊,记为x.则下列命题正确的是( )A.甲组学生的成绩比乙组稳定B.乙组学生的成绩比甲组稳定C.两组学生的成绩有相同的稳定性D.无法判断甲、乙两组学生的成绩的稳定性5.在独立性检验中,统计量2χ有三个临界值:2.706、3.841和6.635,在一项打鼾与患心χ=18.87,根据这一数据分析,认为打鼾与脏病的调查中,共调查了1000人,经计算的2患心脏病之间 ( )A.有95%的把握认为两者无关B.约有95%的打鼾者患心脏病C.有99%的把握认为两者有关D.约有99%的打鼾者患心脏病6.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程35=-,变量x增加一个单位时,y平均增加5个单位;y x(),x y;③线性回归直线y bx a=+必过④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得K2=13.079.则其两个变量间有关系的可能性是90%.其中错误的个数是( )A.1 B.2C.3 D.47.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差 B.回归分析C.独立性检验 D.概率8.有下列数据:x123y3 5.9912.01下列四个函数中,模拟效果最好的为()A.B.C.D.9.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bcka b c d a c b d-=++++并参照附表,得到的正确结论是A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”10.下列说法中正确的是①相关系数r用来衡量两个变量之间线性关系的强弱,r越接近于1,相关性越弱;②回归直线y bx a=+一定经过样本点的中心(),x y;③随机误差e的方差()D e的大小是用来衡量预报的精确度;④相关指数2R用来刻画回归的效果,2R越小,说明模型的拟合效果越好.( ) A.①②B.③④C.①④D.②③11.已知变量x,y的一组观测数据如表所示:x34567y 4.0 2.5-0.50.5-2.0据此得到的回归方程为y bx a=+,若a =7.9,则x每增加1个单位,y的预测值就()A .增加1.4个单位B .减少1.2个单位C .增加1.2个单位D .减少1.4个单位12.已知回归方程0.8585.7y x ∧=-,则该方程在样本()165,57 处的残差为( ) A .111.55B .54.5C .3.45D .2.45二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______. 14.已知下列命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________.15.已知下列表格所示数据的回归直线方程为 y =" 3.8x" + a , 则a 的值为__________.16.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 17.炼钢时,通过加入有特定化学元素的材料,使炼出的钢满足一定的指标要求,假设为了炼出某特定用途的钢,每吨需要加入某元素的量在500g 到1000g 之间,用0.618法安排实验,则第二次试点加入量可以是____g .18.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号) 19.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 20.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.三、解答题21.为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生女生身高h ≥ 身高h <参照公式:()()()()()2n ad bc k a b c d a c b d -=++++()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.22.2020年是脱贫攻坚的收官之年,国务院扶贫办确定的贫困县全部脱贫摘帽,脱贫攻坚取得重大胜利,为确保我国如期全面建成小康社会,实现第一个百年奋斗目标打下了坚实的基础在产业扶贫政策的大力支持下,西部某县新建了甲、乙两家玩具加工厂,加工同一型号的玩具质监部门随机抽检了两个厂的各100件玩具,在抽取中的200件玩具中,根据检测结果将它们分成“A ”、“B ”、“C ”三个等级,A 、B 等级都是合格品,C 等级是次品,统计结果如下表所示: 等级 A B C 频数 2012060厂家 合格品 次品合计甲 75乙35在相关政策扶持下,确保每件合格品都有对口销售渠道,但从安全起见,所有的次品必须由原厂家自行销.(1)请根据所提供的数据,完成上面的2×2列联表(表二),并判断是否有95%的把握认为产品的合格率与厂家有关?(2)每件玩具的生产成本为30元,A、B等级产品的出厂单价分别为60元、40元.另外已知每件次品的销毁费用为4元.若甲厂抽检的玩具中有10件为A等级,用样本的频率估计概率,试判断甲、乙两厂能否都能盈利,并说明理由.附:22()()()()()n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.23.某土特产超市为预估2021年元旦期间游客购买土特产的情况,对2020年元旦期间的购买情况进行随机抽样并统计,得到如下数据:(1)估计游客平均购买金额(同一组中的每个数据可用该组区间的中点值代替);(2)根据以上数据完成22⨯列联表,并判断是否有90%的把握认为购买金额是否少于60元与性别有关.附:参考公式和数据:22(),()()()()n ad bcK n a b c da b c d a c b d-==+++ ++++.附表:)2k24.新冠肺炎疫情防控时期,各级各类学校纷纷组织师生开展了“停课不停学”活动,为了解班级线上学习情况,某位班主任老师进行了有关调查研究.(1)从班级随机选出5名同学,对比研究了线上学习前后两次数学考试成绩,如下表:线上学习前成绩x参考公式:在线性回归方程y bx a=+,()()()() 1122211n ni i i ii in ni ii ix x y y x y nx ybx x x n x ====---==--∑∑∑∑,a y bx=-(2)针对全班45名同学(25名女生,20名男生)的线上学习满意度调查中,女姓满意率为80%,男生满意率为75%,填写下面列联表,判断能否在犯错误概率不超过0.01的前提下,认为线上学习满意度与学生性别有关?参考公式和数据:()()()()()2n ad bcxa b c d a c b d-=++++,()20.0500.0100.0013.8416.63510.828P x kk≥25.2020突如其来的疫情让我们经历了最漫长、最特殊的一个假期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后某校进行了摸底考试,某数学教师为了调查高二学生这次摸底考试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的等高条形图:(1)根据等高条形图填写下面22⨯列联表,并根据列联表判断能否在犯错误的概率不超过0.05的前提下认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分 数学成绩超过120分 总计 每天在线学习数学不超过1小时 25每天在线学习数学超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,再随机抽取3人,求抽取的3人中每天在线学习数学的时长超过1小时的人数ξ的分布列与数学期望. 附临界值表()20P K k ≥0.050 0.010 0.001 0k3.8416.63510.828参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.26.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患有某种传染病的患者的相关信息,得到如表: 潜伏期(单位:天) []0,2(2,4](]4,6(]6,8(]8,10 (]10,12 (]12,14人数85205310250130155该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.(Ⅰ)请将列联表补充完整;(Ⅱ)根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】根据上表数据可求得20.027 1.323k ≈<,再结合课本上的概率附表可知在此次调查中没有充分证据显示说谎与性别有关,故选D2.C解析:C 【分析】写出四个区间中点的横纵坐标,从而可求出 2.5x =,250y =,进而可选出正确答案. 【详解】解:由频率分布直方图可知, 第一个区间中点坐标,111.0,0.101000100x y ==⨯=,第二个区间中点坐标,222.0,0.211000210x y ==⨯=, 第三个区间中点坐标,333.0,0.301000300x y ==⨯=, 第四个区间中点坐标,444.0,0.391000390x y ==⨯=, 则()12341 2.54x x x x x =+++=,()123412504y y y y y =+++=, 则一定在其线性回归直线上的点为(),x y ()2.5,250=. 故选:C. 【点睛】本题考查了频率分布直方图,考查了线性回归直线方程的性质.本题的关键是利用线性回归直线方程的性质,即点(),x y 一定在方程上.3.A解析:A 【解析】 【分析】由题意结合独立性检验的结论和临界值表给出结论即可. 【详解】由独立性检验的结论,观测值7.8k ≈,结合临界值表:7.8 6.635>,据此可给出结论:在犯错误的概率不超过0.01的前提下认为“爱好该项运动与性别有关”. 本题选择A 选项. 【点睛】本题主要考查独立性检验的思想及其应用等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】()x 甲=14×(9+9+11+11)=10,x 乙=14×(8+9+10+x +12)=10,解得x =1.又2s 甲=14×[(9-10)2+(9-10)2+(11-10)2+(11-10)2]=1,2s 乙=14×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=52,∴2s 甲<2s 乙,∴甲组学生的成绩比乙组稳定. 故答案为A.5.C解析:C 【解析】因为统计量2χ有三个临界值:2.706、3.841和6.635,而2χ=18.87>6.635,所以有99%的把握认为两者有关,选C.6.C解析:C 【解析】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,故正确;对于②,一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均减小5个单位,故不正确;对于③,线性回归直线ˆˆˆy bx a =+必过样本中心点(),x y ,故正确;对于④,曲线上的点与该点的坐标之间具有一一对应关系,故不正确;对于⑤,有一个2×2列联表中,由计算得213.079K =,则其两个变量间有关系的可能性是99.9%,故不正确. 故选C.7.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.8.A解析:A 【解析】当x =1,2,3时,分别代入求y 值,离y 最近的值模拟效果最好,可知A 模拟效果最好.故选A.考点:非线性回归方程的选择.9.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”10.D解析:D 【解析】①相关系数r 用来衡量两个变量之间线性关系的强弱,r 越接近于1,则相关性越强,所以错误;②回归直线y bx a =+一定经过样本点的中心(),x y ,正确; ③随机误差e 的方差()D e 的大小是用来衡量预报的精确度,正确;④相关指数2R 用来刻画回归的效果,2R 越小,说明模型的拟合效果越不好,所以错误. 所以正确的有②③.故选D .11.D解析:D 【解析】由表格得 5x =, 0.9y =,∵回归直线方程为7ˆ9ˆ.y bx=+,过样本中心, ∴57.90.9b +=,即75b =-,则方程为77.95ˆyx =-+,则x 每增加1个单位,y 的预测值就减少1.4个单位,故选D.12.D解析:D 【解析】57(0.85165ˆ85.7) 2.45Y Yσ=-=-⨯-= 二、填空题13.①③【分析】①在回归分析中根据相关指数越大模型的拟合效果越好即可判断;②根据离散型随机变量的概念即可判断;③根据样本的标准差是样本数据到平均数的一种平均距离样本的方差是标准差的平方即可判断;④根据相解析:①③ 【分析】①在回归分析中,根据相关指数2R 越大,模型的拟合效果越好即可判断;②根据离散型随机变量的概念即可判断;③根据样本的标准差是样本数据到平均数的一种平均距离,样本的方差是标准差的平方即可判断;④根据相互独立事件的定义即可判断. 【详解】解:①用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好,故①正确;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是不确定,无法一一列举出来,不是离散型随机变量,故②错误;③样本的标准差是样本数据到平均数的一种平均距离,样本的方差是标准差的平方,反映了样本数据的分散程度的大小它们越小,则随机变量偏离均值的平均程度越小,故③正确;④甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲、乙都没有击中目标”是对立事件,但不是相互独立事件,因为事件A 对事件B 发生有影响. 故答案为:①③. 【点睛】本题考查了相关系数的意义、离散型随机变量的概念、样本的标准差与方差的概念与应用、对立事件与相互独立事件的区别,是基础题.14.①②③【解析】①相关指数表示解释变量对于预报变量的贡献率越接近于1表示回归效果越好;是正确的;②两个变量相关性越强则相关系数r 的绝对值就越接近于1是正确的;③在回归直线方程中当解释变量每增加一个单位解析:①②③ 【解析】①相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好;是正确的;②两个变量相关性越强,则相关系数r 的绝对值就越接近于1,是正确的;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位是正确的,因为回归方程,并不是样本点都落在方程上,故只能是估计值,所以说是平均增长;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越小;故原命题错误;故答案为①②③.15.【解析】试题分析:因为回归直线方程恒过点则代入得考点:回归直线方程解析:242.8a =【解析】试题分析:因为回归直线方程恒过点(),x y ,则234562512542572622664,25855x y ++++++++====,代入 3.8?y x a =+, 得258 3.84?242.8a a =⨯+⇒= 考点:回归直线方程16.5【分析】根据列联表运用公式求出k 值根据计算出的临界值同临界值表进行比较得到假设不合理的程度【详解】设该学校15至16周岁的男生的身高和体重情况为:偏高超重的记为a 偏高不超重记为b 不偏高超重记为c 不解析:5 【分析】根据列联表运用公式2()()()()()n ad bc k a b c d a c b d -=++++求出k 值,根据计算出的临界值,同临界值表进行比较,得到假设不合理的程度. 【详解】设该学校15至16周岁的男生的身高和体重情况为:偏高超重的记为a,偏高不超重记为b,不偏高超重记为c,不偏高不超重记为D, 则41a b ==,,312c d ==, 所以22()20(41213) 5.934()()()()(41)(312)(43)(112)n ad bc k a b c d a c b d -⨯-⨯==≈++++++++因为5.934 5.024>所以可以有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.故答案为97.5. 【点睛】本题考查了独立性检验的应用,我们可以利用临界值的大小来决定是否拒绝原来的统计假设.17.【分析】由题意知试验范围为区间长度为故可利用黄金分割法(法)选取试点进行计算【详解】由题意知试验范围为可得区间长度为用法安排试验则第二次试点加入量可以是故答案为【点睛】本题考查黄金分割法的应用解题的解析:691. 【分析】由题意知试验范围为[]500,1000,区间长度为500,故可利用黄金分割法(0.618法)选取试点进行计算. 【详解】由题意知试验范围为[]500,1000,可得区间长度为500,用0.618法安排试验,则第二次试点加入量可以是()10000.6181000500691-⨯-=, 故答案为691. 【点睛】本题考查黄金分割法的应用,解题的关键是要了解黄金分割法(0.618法),考查分析问题与解决问题的能力,属于基础题.18.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误;③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+, ∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.19.②⑥⑦【解析】①回归直线恒过样本点的中心可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后根据方差公式可知方差恒不变;③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率越解析:②⑥⑦ 【解析】①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后,根据方差公式可知方差恒不变; ③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于0,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越大;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做相关关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 故答案为:②⑥⑦20.①④【解析】对于①从匀速传递的产品生产流水线上质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测这样的抽样方法是系统抽样故①正确;对于②两个变量的线性相关程度越强则相关系数的绝对值越接近于1解析:①④ 【解析】对于①,从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样,故①正确;对于②,两个变量的线性相关程度越强,则相关系数的绝对值越接近于1,故②错误; 对于③,两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越小,故③错误;对于④,∵随机变量X ∼N (0,1),设P (|X |<1)=p ,则1(1)(1)2pP X P X ->=<-=, ∴11(1)1(1)122p pP X P X -+<=->=-=, ∴2(1)1P X p <-=,即(1)2(1)1P X P X <=<-,故④正确。

(典型题)高中数学选修1-2第一章《统计案例》检测卷(包含答案解析)(1)

(典型题)高中数学选修1-2第一章《统计案例》检测卷(包含答案解析)(1)

一、选择题1.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.2922.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .453.在一次抗洪抢险中,准备用射击的方法引爆漂流的汽油桶.现有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击相互独立,且命中概率都是34.则打光子弹的概率是( ) A .9256B .13256C .45512D .910244.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( ) A .25B .310C .15D .1106.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .137.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系 8.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.20009.在5道题中有3道代数题和2道几何题.如果不放回地依次抽取2道题,则在第1次抽到代数题的条件下,第2次抽到代数题的概率为 ( ) A .15B .25C .12D .3510.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) A .0.12B .0.42C .0.46D .0.8811.下面给出四种说法:①用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好; ②命题P :“∃x 0∈R ,x 02﹣x 0﹣1>0”的否定是¬P :“∀x ∈R ,x 2﹣x ﹣1≤0”; ③设随机变量X 服从正态分布N (0,1),若P (x >1)=p 则P (﹣1<X <0)=12﹣p ④回归直线一定过样本点的中心(,x y ). 其中正确的说法有( ) A .①②③B .①②④C .②③④D .①②③④12.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥ 0.150.10 0.05 0.025 0.010 0.0050k2.072 2.7063.841 5.024 6.635 7.879A .130B .190C .240D .250二、填空题13.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.14.某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:得出下面四个结论:①甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前 ②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前 ③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前 ④乙同学的总成绩排名比丙同学的总成绩排名更靠前 则所有正确结论的序号是_________.15.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于__________. 16.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)17.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.18.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是_____________. ①若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.19.2019年7月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是3.240y x=-+,且20m n+=,则其中的n=______.20.现有A,B两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢1分,答错得0分;A队中每人答对的概率均为23,B队中3人答对的概率分别为23,23,13,且各答题人答题正确与否之间互不影响,若事件M表示“A队得2分”,事件N表示“B队得1分”,则()P MN=______.三、解答题21.在我国,大学生就业压力日益严峻,伴随着政府政策的引导与社会观念的转变,大学生的创业意识与就业方向也悄然发生转变.某大学生在国家提供的税收,担保贷款等多方面的政策扶持下选择加盟某专营店自主创业,该专营店统计了近五年来创收利润数i y(单位:万元)与时间i t(单位:年)的数据,列表如下:(1)依据表中给出的数据,是否可用线性回归模型拟合y与t的关系,请计算相关系数r 并加以说明(计算结果精确到0.01).(若0.75r>,则线性相关程度很高,可用线性回归模型拟合)(2)该专营店为吸引顾客,特推出两种促销方案.方案一:每满500元可减50元;方案二:每满500元可抽奖一次,每次中奖的概率都为25,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.(ⅰ)某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客换得100元现金奖励的概率(ⅱ)某位顾客购买了2000元的产品,作为专营店老板,是希望该顾客直接选择方案一返回200元现金,还是选择方案二参加四次抽奖?说明理由.附:相关系数公式:()()()()()()1122221111nnii i ii i nnnniiiii i i i tt y y t yntyr tt yy tt yy ======---==----∑∑∑∑∑∑,参考数据:56.957.547≈,5185.2i i i t y ==∑,()52110ii tt =-=∑,()52122.78ii yy =-=∑.22.2020年10月1日既是中华人民共和国第71个国庆日,又是农历中秋节,双节同庆,很多人通过短视频APP 或微信、微博表达了对祖国的祝福.某调查机构为了解通过短视频APP 或微信、微博表达对祖国祝福的人们是否存在年龄差异,通过不同途径调查了数千个通过短视频APP 或微信、微博表达对祖国祝福的人,并从参与者中随机选出200人,经统计这200人中通过微信或微博表达对祖国祝福的有160人.将这160人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[]55,65,得到的频率分布直方图如图所示:(1)求a 的值并估计这160人的平均年龄;(2)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,选出的200人中通过短视频APP 表达对祖国祝福的中老年人有26人,问是否有99%的把握认为是否通过微信或微博表达对祖国的祝福与年龄有关? 附:()20P K k > 0.150.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828()()()()()2n ad bc K a b c d a c b d -=++++23.随着运动App 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健康达人”小王某天统计了他朋友圈中所有好友(共400人)的走路步数,并整理成下表:间中点值作代表);(2)若用A 表示事件“走路步数低于平均步数”,试估计事件A 发生的概率;(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人有200人,其中健步达人恰有150人,请填写下面22⨯列联表.根据列联表判断有多大把握认为,健步达人与年龄有关?附:()()()()()2n ad bc K a b c d a c b d -=++++24.某研究所在研究某种零件的使用寿命和维护成本的关系时,得到以下数据: (1)若x 与y 之间存在线性相关关系y a bx =+①,试估计a ,b 的值a ,b ;(2)若x 与y 之间存在非线性相关关系2y c dx =+②,可按与(1)类似的方法得到8c =,2d =,且模型②残差平方和为6.计算模型①的残差平方和,并指出哪个模型的拟合效果更好;(3)利用(2)中拟合效果较好的模型,计算当零件使用多少个月时报废,可使得零件的性价比(即零件寿命与维护成本的比值)最高.参考公式:若()(),1,2,,i i x y i n =⋅⋅⋅是线性相关变量x ,y 的n 组数据,其回归直线y a bx =+的斜率和截距的最小二乘估计分别为:()()()121ˆˆˆni i i nii x x y y b x x ay bx ==⎧--⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑. 25.3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线A 和B 生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:该产品的质量评价标准规定:鉴定成绩达到[90,100)的产品,质量等级为优秀;鉴定成绩达到[80,90)的产品,质量等级为良好;鉴定成绩达到[60,80)的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.(1)从等级为优秀的样本中随机抽取两件,记X 为来自B 机器生产的产品数量,写出X 的分布列,并求X 的数学期望;(2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.A 生产线的产品B 生产线的产品 合计良好以上 合格 合计附:22()()()()()n ad bc K a b c d a c b d -=++++()20P K k0.10 0.05 0.01 0.005 0k2.7063.8416.6357.87926.某公司研发了一种帮助家长解决孩子早教问题的萌宠机器人。

高中统计案例试题及答案

高中统计案例试题及答案

高中统计案例试题及答案一、选择题1. 以下哪个选项是描述数据集中趋势的统计量?A. 方差B. 标准差C. 平均数D. 极差答案:C2. 一组数据的中位数是所有数据排序后位于中间位置的数值,如果数据个数为奇数,则中位数是:A. 第一个数据B. 最后一个数据C. 位于中间位置的数值D. 无法确定答案:C3. 以下哪个统计图适合展示时间序列数据的变化趋势?A. 条形图B. 饼图C. 折线图D. 散点图答案:C二、填空题4. 某班级有30名学生,他们的数学成绩分别为:70, 85, 90, 75, 95, 80, 85, 70, 80, 90, 85, 95, 75, 70, 80, 90, 85, 95, 75, 70, 80, 85, 90, 95, 75。

这组数据的平均数是____。

答案:825. 如果一组数据的方差是25,那么它的标准差是____。

答案:5三、简答题6. 描述统计学中的“样本”和“总体”的概念,并举例说明。

答案:在统计学中,“总体”指的是研究对象的全体,而“样本”是从总体中随机抽取的一部分个体。

例如,如果我们想要了解全国高中生的数学成绩水平,全国所有高中生的数学成绩就是总体,而如果我们随机抽取了1000名高中生的数学成绩进行研究,这1000名高中生的数学成绩就是我们的样本。

四、计算题7. 某工厂生产了一批零件,其长度的测量数据如下:20, 22, 21, 23, 20, 21, 22, 21, 22, 23。

请计算这组数据的平均数、中位数、方差和标准差。

答案:平均数 = (20+22+21+23+20+21+22+21+22+23) / 10 = 21.5中位数 = (21+22) / 2 = 21.5方差 = [(20-21.5)² + (22-21.5)² + ... + (23-21.5)²] / 10 = 1.65标准差= √1.65 ≈ 1.29结束语:通过上述试题及答案,我们可以看出,统计学是一门应用广泛的学科,它可以帮助我们更好地理解和分析数据。

(好题)高中数学选修1-2第一章《统计案例》测试(含答案解析)

一、选择题1.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C2.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .453.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”4.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .235.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ).A .0.378B .0.3C .0.58D .0.9586.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 7.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750 B .0.3000C .0.2500D .0.20008.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A .35B .14C .12D .139.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .1210.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;11.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .1412.抛掷一枚质地均匀的骰子两次,记事件{两次的点数均为奇数},{两次的点数之和小于},则( )A .B .C .D .二、填空题13.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______. 14.两个实习生加工一个零件,产品为一等品的概率分别为23和34,则这两个零件中恰有一个一等品的概率为__________.15.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 16.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象;④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号) 17.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.18.现有A B 、两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.A 队中每人答对的概率均为23,B 队中3人答对的概率分别为221,,332,且各答题人答题正确与否之间互无影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”__________.(填有或没有)附:()()()()()22n ad bc K a b c d a c b d -=++++20.排球比赛实行“五局三胜制”.某次比赛中,中国女排和M 国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为23,M 国女排获胜的概率为13,则中国女排在先输一局的情况下最终获胜的概率为________.三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求: (i )三个球中有两个红球一个黑球的概率;(ii )第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.150 0.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()2n ad bc K a b c d a c b d -=++++,n a b c d =+++ 23.在我国抗疫期间,素有“南抖音,北快手”之说的小视频除了给人们带来生活中的快乐外,更在于传递了一种正能量,为抗疫起到了积极的作用,但一个优秀的作品除了需要有很好的素材外,更要有制作上的技术要求,某同学学习利用“快影”软件将已拍摄的素材进行制作,每次制作分三个环节来进行,其中每个环节制作合格的概率分别为34,45,23,只有当每个环节制作都合格才认为一次成功制作,该小视频视为合格作品. (1)求该同学进行3次制作,恰有一次合格作品的概率;(2)若该同学制作10次,其中合格作品数为X ,求X 的数学期望与方差;(3)该同学掌握技术后制作的小视频被某广告公司看中,聘其为公司做广告宣传,决定试用一段时间,每天制作小视频(注:每天可提供素材制作个数至多40个),其中前7天制作合格作品数y 与时间t 如下表:(第t 天用数字t 表示)其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第14天能制作多少个合格作品(四舍五入取整)?(参考公式()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-,参考数据:71163i ii t y==∑.)24.高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢中国古典文学与性别有关?请说明理由;(3)已知在喜欢中国古典文学的10位男生中,1A ,2A ,3A 还喜欢数学,1B ,2B 还喜欢绘画,1C ,2C 还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2()P K k≥0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82825.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:停车时间取车概率停车人员(0,2](2,3](3,4](4,5]甲12x x x乙1613y0(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()Eξ. 26.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动不喜爱运动总计男生a b30女生c d20总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.2.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得mP n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.B解析:B 【解析】分析:设已知第一次取出的是红球为事件A ,第二次是白球为事件B ,先求出P AB ()的概率,然后利用条件概率公式进行计算即可.详解:设已知第一次取出的是红球为事件A ,第二次是白球为事件B .则由题意知,77371010930PA P AB ⨯===⨯(),(), 所以已知第一次取出的是白球,则第二次也取到白球的概率为7130|.7310PB A ()== . 故选B .点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键. 5.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.6.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.7.C解析:C 【解析】1x y a a =+-图象不经过第二象限,11,2a a ∴-≤-∴≥,随机变量ξ服从正态分布()21,N σ,且()()()()1010.3000,120.3000,210.60000.20002P a P a P a <<=∴<<=∴>=-=,∴函数1x y a a =+-图象不经过第二象限的概率为0.20.250010.2=-,故选C. 8.D解析:D 【解析】抛掷红、黄两枚骰子,第一个数字代表红色骰子,第二个数字代表黄色骰子,当红色骰子的点数为4或6时有(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共12种, 两颗骰子的点数之积大于20的种数有(4,6),6,4),(6,5),(6,6)4种, 根据概率公式得,两颗骰子的点数之积大于20的概率41123P ==. 本题选择D 选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.9.C解析:C 【解析】 因为12386x x x x ++++=,12383y y y y ++++=所以33,48x y ==,所以样本中心点的坐标为33(,)48, 代入回归直线方程得848ˆ331b =⨯+,解得ˆ13b=,故选C. 10.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.11.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.12.D解析:D 【解析】 由题意得,两次的点数均为奇数且和小于的情况有,则,故选D.二、填空题13.;【分析】将事件拆分为乙投进3次甲投进1次和乙投进2次甲投进0次再根据二项分布的概率计算公式和独立事件的概率计算即可求得【详解】根据题意甲和乙投进的次数均满足二项分布且甲投进和乙投进相互独立;根据题解析:16; 【分析】将事件拆分为乙投进3次,甲投进1次和乙投进2次,甲投进0次,再根据二项分布的概率计算公式和独立事件的概率计算即可求得. 【详解】根据题意,甲和乙投进的次数均满足二项分布,且甲投进和乙投进相互独立; 根据题意:乙恰好比甲多投进2次,包括乙投进3次,甲投进1次和乙投进2次,甲投进0次.则乙投进3次,甲投进1次的概率为3213112123318C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;乙投进2次,甲投进0次的概率为232311212239C ⎛⎫⎛⎫⎛⎫⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故乙恰好比甲多投进2次的概率为111 1896+=. 故答案为:16. 【点睛】本题考查二项分布的概率计算,属综合基础题.14.【分析】利用相互独立事件概率乘法公式直接求解【详解】解:两个实习生加工一个零件产品为一等品的概率分别为和这两个零件中恰有一个一等品的概率为:故答案为:【点睛】本题考查概率的求法考查相互独立事件概率乘 解析:512【分析】利用相互独立事件概率乘法公式直接求解. 【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为23和34, ∴这两个零件中恰有一个一等品的概率为:2323511343412p ⎛⎫⎛⎫=⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案为:512.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.15.②⑥⑦【解析】①回归直线恒过样本点的中心可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后根据方差公式可知方差恒不变;③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率越解析:②⑥⑦ 【解析】①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后,根据方差公式可知方差恒不变; ③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于0,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越大;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做相关关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 故答案为:②⑥⑦16.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2.因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+, ∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.17.3个【分析】直接利用线性回归直线的相关理论知识的应用求出结果【详解】(1)已知变量x 和y 满足关系y=-2x+3则x 与y 正相关;应该是:x 与y 负相关故错误(2)线性回归直线必过点线性回归直线必过中心点解析:3个 【分析】直接利用线性回归直线的相关理论知识的应用求出结果. 【详解】(1)已知变量x 和y 满足关系y=-2x+3,则x 与y 正相关;应该是:x 与y 负相关.故错误. (2)线性回归直线必过点(),x y ,线性回归直线必过中心点.故正确.(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大. 根据课本上有原句,故正确.(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数R 2的值越大,说明拟合的效果越好.故正确,根据课本上有原句. 故填3个. 【点睛】本题主要考查了线性回归直线的应用,学生对知识的记忆能力,主要考查学生的运算能力和转换能力,属于中档题.18.【解析】队总得分为分为事件队总得分为分即队三人有一人答错其余两人答对其概率记队得分为事件事件即为队三人人答错其余一人答对则队得分队得一分即事件同时发生则故答案为 解析:1081【解析】“A 队总得分为2分”为事件M , A 队总得分为2分,即A 队三人有一人答错,其余两人答对,其概率()2232241339P M C ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭,记“B 队得1分”为事件N ,事件N 即为B 队三人2人答错,其余一人答对,则()221221221511133233233218P N ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,A 队得2分B 队得一分,即事件,M N 同时发生,则()()()451091881P MN P M P N ==⨯=,故答案为1081.19.有【解析】根据表中数据计算观测值对照临界值知有95的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异解析:有 【解析】根据表中数据,计算观测值22100(60102010)1003.8417030802021K ⨯-⨯==>⨯⨯⨯,对照临界值知,有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”。

(常考题)北师大版高中数学高中数学选修2-3第三章《统计案例》测试卷(有答案解析)

一、选择题1.某科研机构为了研究中年人秃发与患心脏病是否有关,随机调查了一些中年人的情况,具体数据如表,根据表中数据则可判定秃发与患心脏病有关,那么这种判定出错的可能性为( ) 患心脏病情况秃发情况 患心脏病无心脏病 秃发 20 300 不秃发5450A .0.1B .0.05C .0.01D .0.992.经过对K 2的统计量的研究,得到了若干个观测值,当K 2≈6.706时,我们认为两分类变量A 、B ( )A .有67.06%的把握认为A 与B 有关系 B .有99%的把握认为A 与B 有关系C .有0.010的把握认为A 与B 有关系D .没有充分理由说明A 与B 有关系 3.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算2K 的观测值10k =,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响 4.下列命题正确的个数是:( )①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大;②在相关关系中,若用211c x y c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为23; ④“0,0a b >>”是“2b aa b+≥”的充分不必要条件 A .1B .2C .3D .45.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9% 6.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系:y 与x 的线性回归方程为 6.5175ˆ.y x =+,当广告支出5万元时,随机误差的效应(残差)为( ) A .40 B .20 C .30D .107.下列说法中,不正确的是A .两个变量的任何一组观测值都能得到线性回归方程B .在平面直角坐标系中,用描点的方法得到表示两个变量的关系的图象叫做散点图C .线性回归方程反映了两个变量所具备的线性相关关系D .线性相关关系可分为正相关和负相关8.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k 2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )P(K2≥k)…0.250.150.100.0250.0100.005…k…1.3232.0722.7065.0246.6357.879…A.90% B.95% C.97.5% D.99.5%9.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:心脏病无心脏病秃发20300不秃发5450根据表中数据得到()277520450530015.96820750320455k⨯⨯-⨯=≈⨯⨯⨯,因为K2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为()A.0.1 B.0.05 C.0.01 D.0.00110.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅临界值表来确定推断“X与Y有关系”的可信度,如果k>5.024,那么就推断“X和Y有关系”,这种推断犯错误的概率不超过()A.0.25 B.0.75C.0.025 D.0.97511.有下列数据:x123y3 5.9912.01下列四个函数中,模拟效果最好的为()A.B.C.D.12.已知,x y的取值如下表:()x01,234 y1 1.3 3.2 5.68.9若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-二、填空题13.回归方程ˆˆ 2.50.2x y=+在样本(4,1.2)处的残差为________. 14.在一次独立试验中,有200人按性别和是否色弱分类如下表(单位:人)男 女 正常 73 117 色弱73你能在犯错误的概率不超过_____的前提下认为“是否色弱与性别有关”?15.登山族为了了解某山高y (km)与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表: 气温x (℃) 18 13 10 -1 山高y (km)24343864由表中数据,得到线性回归方程ˆy=-2x+ˆa (ˆa ∈R),由此估计出山高为72(km)处的气温为_____℃.16.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生720为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________.17.炼钢时,通过加入有特定化学元素的材料,使炼出的钢满足一定的指标要求,假设为了炼出某特定用途的钢,每吨需要加入某元素的量在500g 到1000g 之间,用0.618法安排实验,则第二次试点加入量可以是____g .18.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2的列联表,根据列联表的数据,可以有_______%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.独立性检验临界值表独立性检验随机变量2K 值的计算公式:22()()()()()n ad bc K a b c d a c b d -=++++19.以下四个命题,其中正确的序号是____________________.①从匀速传递的产品生产流水线上,每20分钟从中抽取一件产品进行检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程0.212ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越大.20.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好.三、解答题21.随着新冠疫情防控进入常态化,人们的生产生活逐步步入正轨.为拉动消费,某市发行2亿元消费券.为了解该消费券使用人群的年龄结构情况,该市随机抽取了50人,对是否使用过消费券的情况进行调查,结果如下表所示,其中年龄低于45岁的人数占总人数的35.99%的把握认为是否使用消费券与人的年龄有关.)20k 0.152.0722()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. (2)从使用消费券且年龄在[15,25)与[25,35)的人中按分层抽样方法抽取6人,再从这6人中选取2名,记抽取的两人中年龄在[15,25)的人数为X ,求X 的分布列与数学期望. 22.据我国一项专题调查显示,北京市高级职称知识分子中竟有高达75.3%的人处于亚健康状态,更令人担忧的是85%以上的企业管理者处于慢性疲劳状态或亚健康状态,这是由他们的特殊工作、生活环境和行为模式所决定的.亚健康是指非病非健康的一种临界状态,如果这种状态不能及时得到纠正,非常容易引起身心疾病.某高科技公司为了解亚健康与性别的关系,对本公司部分员工进行了不记名问卷调查.该公司处于正常工作状态的员工(包括管理人员)共有10000人.其中男性员工有6000人,女性员工有4000人,从10000中用分层抽样的方法随机抽取了500人的样本,以调查健康状况. (1)求男性员工、女性员工各抽取多少人?(2)通过不记名问卷调查方式,得到如下等高条形图:其中0.2a =、0.1b =,根据以上等高条形图,完成下列22⨯列联表;健康 亚健康 总计男员工 女员工总计500附:22(),()()()()n ad bc K n a b c d a b a c c d b d -==+++++++. ()20P K k ≥0.50 0.25 0.05 0.025 0.010 0k0.4551.3213.8405.0246.63523.奥运会期间,为调查某高校学生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了60人,结果如下: 是否愿意提供志愿者服务 性别愿意不愿意男生 20 10 女生1020(2)你能否在犯错误的概率不超过0.01的前提下认为该高校学生是否愿意提供志愿者服务与性别有关? 下面的临界值表供参考:独立性检验统计量()()()()()2n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.24.某高校在A 省自主招生,对初审通过的1000人进行复试(20道客观题,每题10分,满分200分),按分数从高到低录取100人认定复试通过,不低于140分的各分数对应人数如下表:(Ⅰ)已知y 关于t 的回归方程为814.311.6y t =-,求y 关于x的回归方程y bx a =+; (Ⅱ)已知y关于x 的相关系数为0.95-,试求出y 关于t 的相关系数r (小数点后保留两位小数),通过比较,判断哪个回归方程拟合效果更好;(注:r 越大,拟合性越好) (Ⅲ)根据(Ⅱ)中拟合性更好的回归方程,预报得分为130的考生能否全部通过复试? 相关公式和数据:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-,()()nniii ix x y y x y nx yr---==∑∑,518960i ii x y==∑,521129000i i x ==∑,512.31i i i t y =≈∑,5210.0049i i t =≈∑,0.029t =,20.000841t =,160x =,12y =,31.6≈0.027≈21.4≈.25.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下列联表,并判断能否在犯错误率不超过0.05的前提下认为“体育迷”与性别有关?非体育迷 体育迷 合计男 女 合计(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()2P K k ≥0.050.01k 3.8416.63526.“海水稻”就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区,具有耐盐碱的水稻,它比其它普通的水稻均有更强的生存竞争能力,具有抗涝,抗病虫害,抗倒伏等特点,还具有预防和治疗多种疾病的功效,防癌效果尤为显著.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度x (‰)对亩产量y (吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量y 与海水浓度x 之间的相关关系,用最小二乘法计算得y 与x 之间的线性回归方程为.88ˆ0ˆy bx=+. 海水浓度i x (‰) 3 4 5 6 7 亩产量i y (吨)0.620.580.490.40.31(2)①完成上述残差表:②统计学中,常用相关指数2R 来刻画回归效果,2R 越大,模型拟合效果越好,并用它来说明预报变量与解释变量的相关性.你能否利用以上表格中的数据,利用统计学的相关知识,说明浇灌海水浓度对亩产量的贡献率?(计算中数据精确到0.01)(附:残差公式ˆˆi i i ey y =-,相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先列出22⨯联表,通过计算出2K 的值,然后作统计推断,得出正确的结论. 【详解】列出22⨯联表如下图所示:()277520450530015.96825750455320K ⨯⨯-⨯=≈⨯⨯⨯ 6.635>,故判断错误的概率不超过0.01,故选C .【点睛】本小题主要考查补全22⨯联表,考查2K 的计算以及独立性检验的概念,属于基础题. 独立性检验的步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22n ad bc K a b c d a c b d -=++++()()()()(),计算2K 的观测值;(3)比较2K 与临界值的大小关系作统计推断.2.B解析:B 【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P (K 2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A 与B 有关系. 【详解】 依据下表:2 6.635K >,2 6.6350.01P K =(>)∴我们在错误的概率不超过0.01的前提下有99%的把握认为A 与B 有关系, 故选B . 【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.3.A解析:A 【解析】 【分析】由题意结合2K 的观测值k 由独立性检验的数学思想给出正确的结论即可. 【详解】由于2K 的观测值10k =7.879>,其对应的值0.0050.5%=,据此结合独立性检验的思想可知:有99.5%的把握认为使用智能手机对学习有影响. 本题选择A 选项. 【点睛】独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.4.C解析:C 【解析】分析:根据独立性检验的性质可判断①;根据回归分析的基本原理可判断②;根据几何概型概率公式可判断③; 根据不等式的性质可判断④.详解:①对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越小,①错误;②在相关关系中,若用211c xy c e =拟合时的相关指数为21R ,用2y bx a =+拟合时的相关指数为22R ,且2212R R >,则1y 的拟合效果好,②正确;③利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为1123103-=-,正确; ④“0,0a b >>”可得到“2b a a b +≥”, “2b aa b+≥”时“0,0a b >>”不一定成立,所以“0,0a b >>”是“2b aa b+≥”的充分不必要条件,正确,即正确命题的个数是3,故选C. 点睛:本题主要通过对多个命题真假的判断,主要综合独立性检验、回归分析、几何概型概率公式、不等式的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.5.A解析:A 【解析】分析:根据列联表中数据代入公式计算k 的值,和临界值表比对后即可得到答案. 详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)6.D解析:D 【解析】∵y 与x 的线性回归方程为 6.5175ˆ.y x =+ 当5x =时,ˆ50y=. 当广告支出5万元时,由表格得:60y = 故随机误差的效应(残差)为605010.-= 故选D .解析:A【解析】要得到线性回归方程应至少有两个变量的两组观测值,因此A不正确.根据散点图、线性回归方程、线性相关关系的概念可得B,C,D都正确.故选A.8.C解析:C【详解】∵2 6.023 5.024K=>∴可断言市民收入增减与旅游欲望有关的把握为97.5%.故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bcKa b c d a c b d-=++++,计算出2K的值;(3)查表比较2K与临界值的大小关系,作统计判断.9.D解析:D【解析】10.828,10.0010.99999.90k≥∴-==,则有099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bcKa b a d a c b d-=++++计算2K的值;(3) 查表比较2K与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)10.C解析:C【解析】∵P(k>5.024)=0.025,故在犯错误的概率不超过0.025的条件下,认为“X和Y 有关系”.考点:独立性检验.11.A解析:A【解析】当x=1,2,3时,分别代入求y值,离y最近的值模拟效果最好,可知A模拟效果最好.故选A.考点:非线性回归方程的选择.解析:A 【解析】 设2t x = ,则11(014916)6,(1 1.3 3.2 5.68.9)455t y =++++==++++=,所以点(6,4)在直线12y t a =+上,求出1a =,选A. 点睛:本题主要考查了散点图,属于基础题.样本点的中心(),x y 一定在直线回归直线上,本题关键是将原曲线变形为12y t a =+,将点(6,4)代入,求出值. 二、填空题13.【分析】根据残差的定义直接计算即可【详解】由题当x=4时故所以回归方程在样本处的残差为故答案为:【点睛】本题主要考查了残差的概念考查了运算能力属于容易题 解析:9-【分析】根据残差的定义直接计算即可. 【详解】由题当x =4时,4ˆ 2.50.210.2y=+=⨯, 故1.210.29-=-所以回归方程ˆˆ 2.50.2x y=+在样本(4,1.2)处的残差为9-. 故答案为:9- 【点睛】本题主要考查了残差的概念,考查了运算能力,属于容易题.14.05【解析】【分析】根据表中的数据求出然后对照临界值表可得答案【详解】由题意得列联表为 男 女 合计 正常 73 117 190 色弱 7 3 10 合计 80 120 200 由列联表中的解析:05 【解析】 【分析】根据表中的数据求出2K ,然后对照临界值表可得答案. 【详解】 由题意得列联表为由列联表中的数据可得2200(7331177) 3.947 3.8418012010190K ⨯⨯-⨯=≈>⨯⨯⨯,所以在犯错误的概率不超过0.05的前提下可认为“是否色弱与性别有关”. 故答案为0.05. 【点睛】在独立性检验中,再求出2K 后查临界值表时不是查最大允许值,而是先根据题目要求的百分比找到第一行对应的数值,再将该数值对应的k 值与求得的2K 相比较.另外,临界值表中第一行数据表示两个变量没有关联的可能性p ,所以其有关联的可能性为1p -.15.-6【解析】由题意可得=10=40所以+2=40+2×10=60所以=-2x+60当=72时-2x+60=72解得x=-6解析:-6 【解析】由题意可得x =10,y =40,所以ˆay =+2x =40+2×10=60,所以ˆy =-2x+60,当ˆy =72时,-2x+60=72,解得x=-6.16.5【解析】因为随机变量K2的观测值k >3841所以在犯错误的概率不超过005的前提下认为主修统计专业与性别有关系故这种判断出现错误的可能性为5考点:独立性检验思想解析:5% 【解析】因为随机变量K 2的观测值k >3.841,所以在犯错误的概率不超过0.05的前提下认为“主修统计专业与性别有关系”.故这种判断出现错误的可能性为5%. 考点:独立性检验思想.17.【分析】由题意知试验范围为区间长度为故可利用黄金分割法(法)选取试点进行计算【详解】由题意知试验范围为可得区间长度为用法安排试验则第二次试点加入量可以是故答案为【点睛】本题考查黄金分割法的应用解题的解析:691. 【分析】由题意知试验范围为[]500,1000,区间长度为500,故可利用黄金分割法(0.618法)选取试点进行计算. 【详解】由题意知试验范围为[]500,1000,可得区间长度为500,用0.618法安排试验,则第二次试点加入量可以是()10000.6181000500691-⨯-=, 故答案为691.【点睛】本题考查黄金分割法的应用,解题的关键是要了解黄金分割法(0.618法),考查分析问题与解决问题的能力,属于基础题.18.5【分析】计算并与临界值表中数据比较即可得出答案【详解】故有的把握认为该学校至周岁的男生的身高和体重之间有关系故答案为:975【点睛】本题主要考查了独立性检验的实际应用属于中档题解析:5 【分析】计算2K ,并与临界值表中数据比较,即可得出答案. 【详解】2220(41213) 5.934 5.024713515K ⨯-⨯=≈>⨯⨯⨯故有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系. 故答案为:97.5 【点睛】本题主要考查了独立性检验的实际应用,属于中档题.19.②③【分析】利用系统抽样的定义判断①利用独立性检验判断④;利用相关系数的性质判断②;由回归方程的性质判断③【详解】①为系统抽样①不正确;④分类变量与它们的随机变量的观测值为当越小与有关系的把握程度越解析:②③ 【分析】利用系统抽样的定义判断①利用独立性检验判断④;利用相关系数的性质判断②;由回归方程的性质判断③. 【详解】①为系统抽样, ①不正确;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越小,④不正确;根据相关系数的性质可知②正确;由回归方程的性质可知③正确.故答案为②③. 【点睛】本题通过对多个命题真假的判断,综合考查系统抽样、相关系数、回归方程、独立性检验,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.20.②⑥⑦【解析】①回归直线恒过样本点的中心可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后根据方差公式可知方差恒不变;③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率越解析:②⑥⑦ 【解析】①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后,根据方差公式可知方差恒不变; ③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于0,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越大;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做相关关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 故答案为:②⑥⑦三、解答题21.(1)列联表答案见解析,有99%的把握认为是否使用消费券与人的年龄有关;(2)分布列答案见解析,数学期望:23. 【分析】(1)根据年龄低于45岁的人数占总人数的35.可列出关于,m n 的方程组求解. 根据数据列联表,由公式22()()()()()n ad bc K a b c d a c b d -=++++计算k 的值,查表可作结论.(2)考查超几何分布求分布列,若随机变量服用超几何分布()~,,X H m M N ,则概率公式为()mNm k N MM k C C P X k C --==,可利用公式求出分布列,再求数学期望即可. 【详解】(1)由题意得515105505153505m n m +++++=⎧⎪++⎨=⎪⎩解得10,5m n ==;由以上统计数据填写下面22⨯列联表,如下根据公式计算250(1027103)9.98 6.635 37133020K⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为是否使用消费券与人的年龄有关:(2)由题意知抽取的6人中年龄在[15,25)的有2人,年龄在[25,35)的有4人,所以X的可能取值为0,1,2.且21124242222666281 (0),(1),(2)51515C C C CP X P X P XC C C=========,所以X的分布列为()012515153E X=⨯+⨯+⨯=.【点睛】1.独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.2.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.22.(1)300人;200人;(2)列联表见解析,能有99%的把握认为亚健康与性别有关.【分析】(1)由题意可得样本容量与总体的比例为120,用比例乘以男性员工和女性员工即可得出抽取人数;(2)根据等高条形图计算男性健康240人,亚健康60人,女性健康180人,亚健康20人,完成22⨯列联表,代入2K公式计算即可.【详解】解:(1)因为样本容量与总体的比例为5001 1000020=,所以男性员工应抽取1600030020⨯=人,女性员工应抽取1400020020⨯=人;(2)由等高条形图可知:样本中男员工处于亚健康人数为:3000.260⨯=,样本中女员工处于亚健康人数为:2000.120⨯=,完成22⨯列联表为根据列联表中的数据,得到2500(2402018060)8.929 6.63530020080420k⨯⨯-⨯=≈>⨯⨯⨯.因此,能有99%的把握认为亚健康与性别有关.【点睛】独立性检验三个步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22(),()()()()n ad bcK n a b c da b a c c d b d-==+++++++,计算2K的值;(3)查表比较2K与临界值的大小关系,作统计判断.23.(1)4人;(2)是否愿意提供志愿者服务与性别有关.【分析】(1)根据题意,确定愿意提供志愿者服务的男女生人数,进而可求出抽取的男生人数;(2)根据题中数据,由()()()()()22n ad bca b c d a c b dχ-=++++求出2χ,结合临界值表,即可得出结果.【详解】(1)由题意,可知男生抽取20642010⨯=+(人).(2)2260(20201010)6.66730303030χ⨯⨯-⨯=≈⨯⨯⨯,由于6.667 6.635>,所以能在犯错误的概率不超过0.01的前提下认为该高校学生是否愿意提供志愿者服务与性别有关.【点睛】本题主要考查分层抽样,考查独立性检验的思想,属于常考题型.24.(Ⅰ)0.64114.4y x=-+;(Ⅱ)0.99,y关于t的方程拟合效果更好;(Ⅲ)不能.【分析】(Ⅰ)求出ˆa、ˆb,进而求出y关于x的回归方程y bx a=+;(Ⅱ)根据求相关系数r的方程,代入相关数值即可求解;然后比较,判断出哪个回归方程拟合效果更好;(Ⅲ)先根据(Ⅱ)中拟合性更好的回归方程求出预报得分为130的考生的人数;再根据。

高中数学统计综合检测考试试题含答案解析A

统计本章达标测评(总分:150分;时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列数字特征一定是数据组中数据的是( )A.众数B.中位数C.标准差D.平均数2.某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n的样本,已知3个区人口数之比为2∶3∶5,如果人口最多的一个区抽出60人,那么这个样本的容量等于( )A.96B.120C.180D.2403.某中学从高三甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图(单位:分),其中甲班学生成绩的众数是85分,乙班学生成绩的中位数是83分,则x+y的值为( )A.7B.8C.9D.104.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率为m,直方图中该组对应的小长方形的高为h,则|a-b|=( )A.hmB.mℎD.h+mC.ℎm5.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和926.如图为某个容量为100的样本的频率分布直方图,分组为[96,98),[98,100),[100,102),[102,104),[104,106],则在区间[98,100)上的频数为( )A.0.100B.0.200C.20D.107.一个容量为80的样本中,数据的最大值是140,最小值是50,组距是10,则应该将样本数据分为( )A.10组B.9组C.8组D.7组8.若数据x1,x2,…,xn的平均数为x,方差为s2,则3x1+5,3x2+5,…,3xn+5的平均数和标准差分别为( )A.x,sB.3x+5,sC.3x+5,3sD.3x+5,√9s2+30s+259.甲、乙两名同学在5次数学考试中,成绩统计图用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用x甲、x乙表示,则下列结论正确的是( )A.x甲>x乙,且甲比乙成绩稳定B.x甲>x乙,且乙比甲成绩稳定C.x甲<x乙,且甲比乙成绩稳定D.x甲<x乙,且乙比甲成绩稳定10.一个容量为200的样本,其数据的分组与各组的频数如下表:组别 [0,10] (10,20] (20,30] (30,40] (40,50]频数15 15 20 30 35组别(50,60] (60,70] (70,80] (80,90] (90,100]频数25 20 15 15 10则样本数据落在(20,60]上的频率为( )A.0.11B.0.5C.0.45D.0.5511.现有10个数,其平均数是4,且这10个数的平方和是200,那么这组数的标准差是( )A.1B.2C.3D.412.在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数x≤3;②标准差s≤2;③平均数x≤3且标准差s≤2;④平均数x≤3且极差小于或等于2;⑤众数等于1且极差小于或等于1.A.①②B.③④C.③④⑤D.④⑤二、填空题(本大题共4小题,每小题4分,共16分,把正确答案填在题中横线上)13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人)篮球组书画组乐器组高一45 30 a高二15 10 20学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为.14.一个容量为n的样本分成若干个小组,已知某组的频数和频率分别是50和0.4,则n= .15.从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布如下:分组 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)频数 1 2 3 10 3 1则这堆苹果中,质量不少于...120克的苹果数约占苹果总数的%.16.某产品的广告费用x(万元)与销售额y(万元)的统计数据如下表:广告费用x(万元) 3 4 5 6 销售额y(万元)25304045根据上表可得回归方程y ^=b ^x+a ^中的b ^为7.据此模型预测广告费用为10万元时销售额为 万元.三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(12分)有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校进行问卷调查.某中学A 、B 两个班各被随机抽取了5名学生接受问卷调查,A 班5名学生得分为:5,8,9,9,9;B 班5名学生得分为:6,7,8,9,10.(单位:分) 请你估计A 、B 两个班中哪个班的问卷得分要稳定一些.18.(12分)某地政府调查了工薪阶层1 000人的月工资,并根据调查结果画出如图所示的频率分布直方图,为了了解工薪阶层对月工资的满意程度,要用分层抽样的方法从调查的1 000人中抽出100人做电话询访,则(30,35](百元)月工资段应抽出多少人?19.(12分)抽样调查30个工人家庭的人均月收入,得到如下数据(单位:元): 404 444 556 430 380 420 500 430 420 384 420 404 424 340 424 412 388 472 358 476 376 396 428 444 366 436 364 438 330 426 (1)取组距为60,起点为320,列出样本的频率分布表; (2)画出频率分布直方图;(3)根据频率分布直方图估计人均月收入在[440,560)上的家庭所占的百分比.20.(12分)从全校参加科技知识竞赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高的比是1∶3∶6∶4∶2,最后边一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)列出频率分布表;(3)成绩落在哪个范围内的人数最多?并求该小组的频数、频率;(4)估计这次竞赛中,成绩不低于60分的学生占总人数的百分比.21.(12分)下面是60名男生每分钟脉搏跳动次数的频率分布表.分组频数频率频率/组距[51.5,57.5)4 0.067 0.011 [57.5,63.5)6 0.1 0.017 [63.5,69.5)11 0.183 0.031 [69.5,75.5)20 0.334 0.056 [75.5,81.5)11 0.183 0.031 [81.5,87.5)5 0.083 0.014 [87.5,93.5 3 0.05 0.008](1) 作出频率分布直方图;(2)根据直方图的各组中值估计总体平均数;(3)估计每分钟脉搏跳动次数的范围.22.(14分)以下是某地搜集到的新房屋的销售价格y(单位:万元)和房屋的面积x(单位:m2)的数据:房屋面积115 110 80 135 105销售价格24.8 21.6 18.4 29.2 22(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为150 m2时的销售价格(精确到0.1万元).附加题1.(2013辽宁,5,5分,★★☆)某班的全体学生参加英语测试,成绩的频率分布直方图如图.数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A.45B.50C.55D.602.(2015陕西质检二,★★☆)一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在[20,60)内的频率为0.8,则样本中在[40,60)内的数据个数为( )A.15B.16C.17D.19一、选择题1.A 众数一定是数据组中数据.2.B 由题意3个区人口数之比为2∶3∶5,得第三个区所抽取的人口数最多,所占比例为50%.又因为此区抽取60人,所以三个区所抽取的总人口数为60÷50%=120,即这个样本的容量等于120.3.B 由茎叶图及甲班学生成绩的众数是85分,可知x=5,而乙班学生成绩的中位数是83分,所以y=3,所以x+y=5+3=8.选B.4.B频率组距=h,∴|a -b|=组距=频率ℎ=m ℎ.5.A 将这组数据从小到大排列,得87,89,90,91,92,93,94,96. 故中位数为91+922=91.5.平均数为x =91+-4-2-1+0+1+2+5+38=91.5.6.C 区间[98,100)上小矩形的面积为0.100×2=0.200,所以区间[98,100)上的频数为100×0.200=20,选C.7.B 组数=极差组距=140-5010=9.8.C ∵x 1,x 2,…,x n 的平均数为x , ∴3x 1+5,3x 2+5,…,3x n +5的平均数为3x +5, s'2=1n [(3x 1+5-3x -5)2+…+(3x n +5-3x -5)2] =1n ×32[(x 1-x )2+…+(x n -x )2]=9s 2. ∴s'=3s.9.A x 甲=90,x 乙=88,∴x 甲>x 乙,甲的成绩的方差是15×(4+1+0+1+4)=2,乙的成绩的方差是15×(25+0+1+1+9)=7.2,故甲成绩稳定.10.D 由题中表格可知样本数据落在(20,60]上的频数为20+30+35+25=110,故其频率为110200=0.55.11.B 设这10个数为a 1,a 2,…,a 10,则有a 12+a 22+…+a 102=200,且a 1+a 2+…+a 10=40,则这10个数的方差为(a 1-4)2+(a 2-4)2+…+(a 10-4)210=a 12+a 22+…+a 102-8(a 1+a 2+…+a 10)+16010=200-8×40+16010=4,∴标准差为√4=2.12.D ①②③不符合,④符合,若极差等于0或1,在x ≤3的条件下显然符号指标;若极差等于2且x ≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.⑤符合,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标,故选D. 二、填空题 13.答案 30解析 由题意知,1245+15=30120+a ,解得a=30. 14.答案 125解析 由50n =0.4,得n=500.4=125. 15.答案 70解析 质量不少于120克的频数为14,∴频率为1420×100%=70%. 16.答案 73.5解析 由题表可知,x =4.5,y =35,代入回归方程y ^=7x+a ^,得a ^=3.5,所以回归方程为y ^=7x+3.5,所以当x=10时,y ^=7×10+3.5=73.5(万元).三、解答题17.解析 A 班的5名学生的平均得分为(5+8+9+9+9)÷5=8(分),方差s 12=15×[(5-8)2+(8-8)2+(9-8)2+(9-8)2+(9-8)2]=2.4;B 班的5名学生的平均得分为(6+7+8+9+10)÷5=8(分),方差s 22=15×[(6-8)2+(7-8)2+(8-8)2+(9-8)2+(10-8)2]=2. ∴s 12>s 22,∴B 班的预防知识的问卷得分要稳定一些. 18.解析月工资落在(30,35](百元)内的频率为1-(0.02+0.04+0.05+0.05+0.01)×5=1-0.85=0.15,而0.15÷5=0.03,所以各组的频率比为0.02∶0.04∶0.05∶0.05∶0.03∶0.01=2∶4∶5∶5∶3∶1,所以(30,35](百元)月工资段应抽出320×100=15(人). 19.解析 (1)频率分布表如下:分组 频数 频率 [320,380)60.20 [380,440) 18 0.60 [440,500) 4 0.13 [500,560) 2 0.07 合计30 1.00(2)频率分布直方图如图.(3)人均月收入落在[440,560)上的家庭所占的频率为0.13+0.07=0.2=20%.所以估计人均月收入在[440,560)上的家庭所占的百分比为20%.20.解析 (1)由于各组的组距相等,所以各组的频率与各小长方形的高成正比且各组频率的和等于1,那么各组的频率分别为116,316,616,416,216.设该样本容量为n,则6n =216,所以样本容量n=48.(2)由(1)及已知得频率分布表如下:成绩 频数 频率 [50.5,60.5) 3 116 [60.5,70.5) 9 316 [70.5,80.5) 18 616 [80.5,90.5) 12 416 [90.5,100.5]6 216 合计48 1(3)成绩落在[70.5,80.5)之间的人数最多,该组的频数和频率分别是18和38. (4)不低于60分的学生占总人数的百分比约为(1-116)×100%=93.75%.1121.解析 (1)频率分布直方图如图.(2)由各组中值估计总体平均数为(54.5×4+60.5×6+66.5×11+72.5×20+78.5×11+84.5×5+90.5×3)÷60=72.(3)由(2)中各组中值构成的样本数据可求得s≈8.078,∴每分钟脉搏跳动次数的范围大致为[x -s,x +s],即[63.922,80.078],取整数为[64,81].22.解析 (1)数据对应的散点图如图所示.(2)x =15∑i=15x i =109,∑i=15(x i -x )2=1 570, y =23.2,∑i=15(x i -x )(y i -y )=308. 设所求回归直线方程为y ^=b ^x+a ^,则b ^=∑i=15(x i -x )(y i -y )∑i=15(x i -x )2=3081 570≈0.196 2, a ^=y -b ^x =23.2-0.196 2×109=1.814 2.故所求回归直线方程为y ^=0.196 2x+1.814 2.回归直线如图.(3)由(2)得当x=150时,销售价格的估计值为y^=0.196 2×150+1.814 2=31.244 2≈31.2(万元).附加题1.B [20,40)间的频率为0.005×20=0.1,[40,60)间的频率为0.01×20=0.2.低于60=50,选B.分的频率为0.3,总人数为150.32.A 由题意知,样本中在[40,60)内的数据个数为30×0.8-4-5=15,故选A.12。

(常考题)北师大版高中数学选修1-2第一章《统计案例》测试卷(答案解析)(1)

一、选择题1.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为()A.14B.89C.116D.5322.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的12,男生喜欢抖音的人数占男生人数的16,女生喜欢抖音的人数占女生人数23若有95%的把握认为是否喜欢抖音和性别有关,则男生至少有()人.A.12 B.6 C.10 D.183.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A=“第一次取到的数可以被3整除”,B=“第二次取到的数可以被3整除”,则()P B|?A=( )A.59B.23C.13D.294.一射手对同一目标独立地进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为()A.19B.13C.23D.895.为直观判断两个分类变量x和y之间是否有关系,若它们的取值分别为{x1,x2}和{y1,y2},通过抽样得到频数表为:则下列哪两个比值相差越大,可判断两个分类变量之间的关系应该越强()A.aa c+与bb d+B.aa d+与cb c+C.ab d+与ca c+D.ac d+与ca b+6.以下四个命题,其中正确的个数有()①由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程^0.212y x=+中,当解释变量x每增加一个单位时,预报变量ˆy平均增加0.2个单位;④对分类变量X与Y,它们的随机变量2K的观测值k来说,k越小,“X与Y有关系”的把握程度越大.A.1 B.2 C.3 D.47.下列结论中正确的是()A.若两个变量的线性关系性越强,则相关系数的绝对值越接近于0B.回归直线至少经过样本数据中的一个点C.独立性检验得到的结论一定正确D.利用随机变量2x来判断“两个独立事件,X Y的关系”时,算出的2x值越大,判断“,X Y 有关”的把握越大8.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为A.13B.14C.12D.359.若y关于x的线性回归方程0.70.35y x=+是由表中提供的数据求出,那么表中m的值为( )A.3.5B.3C.2.5D.210.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9011.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .1412.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A .130B .190C .240D .250二、填空题13.某人抛掷一枚均匀骰子,构造数列{}n a ,使1,()1,()n n a n ⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n n S a a a =+++,则20S ≠且82S =的概率为_____.14.一盒子中装有6只产品,其中4只一等品,2只二等品,从中取产品两次,每次任取1只,做不放回抽样.则在第一次取到的是一等品的条件下,第二次取到的是二等品的概率为__________.15.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下联表:参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++参照附表,在犯错误的概率最多不超过__________(填百分比)的前提下,可认为“该种疫苗由预防埃博拉病毒感染的效果”.16.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________. 17.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)18.现有A B 、两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.A 队中每人答对的概率均为23,B 队中3人答对的概率分别为221,,332,且各答题人答题正确与否之间互无影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.排球比赛实行“五局三胜制”.某次比赛中,中国女排和M 国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为23,M 国女排获胜的概率为13,则中国女排在先输一局的情况下最终获胜的概率为________.三、解答题21.某电器企业统计了近10年的年利润额y (千万元)与投入的年广告费用x (十万元)的相关数据,散点图如图,对数据作出如下处理:令ln i i u x =,ln i i v y =,得到相关数据如表所示:101i i i u v =∑101ii u=∑101i i v =∑1021ii u=∑30.5 15 1546.5(1)从①y bx a =+;②()0,0ky m xm k =⋅>>;③2y cx dx e =++三个函数中选择一个作为年广告费用x 和年利润额y 的回归类型,判断哪个类型符合,不必说明理由; (2)根据(1)中选择的回归类型,求出y 与x 的回归方程;(3)预计要使年利润额突破1亿,下一年应至少投入多少广告费用?(结果保留到万元) 参考数据:103.6788e≈,33.678849.787≈. 参考公式:回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii tty y btt==--=-∑∑,a y bt =-.22.某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg ,每件尺寸限制为40cm 60cm 100cm ⨯⨯,其中头等舱乘客免费行李额为40kg ,经济舱乘客免费行李额为20kg .某调研小组随机抽取了100位国内航班旅客进行调查,得到如表所示的数据:(1)请完成22⨯列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关?(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补贴券”,记赠送的补贴券总金额为X 元,求X 的分布列与数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:23.2020年10月份黄山市某开发区一企业顺利开工复产,该企业生产不同规格的一种产品,根据检测标准,其合格产品的质量y (单位:g )与尺寸x (单位:mm )之间近似满足关系式b y c x =⋅(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间,97e e ⎛⎫⎪⎝⎭内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数试求随机变量的分布列和期望;(2)根据测得数据作了初步处理,得相关统计量的值如下表:②已知优等品的收益z (单位:千元)与x ,y 的关系为20.32z y x =-,则当优等品的尺寸x 为何值时,收益z 的预报值最大?(精确到0.1) 附:对于样本(),(1,2,,)i i v u i n =,其回归直线u b v a =⋅+的斜率和截距的最小二乘估计公式分别为:()()()1122211ˆnniii i i i nni ii i v v u u v unvu bv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7182e ≈. 24.2019年12月27日,国家统计局公布全国规模以上工业企业月累计营业收入利润率数据如表:(1)根据表中有关数据请在下图中补充完整与的折线图,判断y a bx=+与y c d x =+哪一个更适宜作为y 关于x 的回归方程类型,并说明理由;(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程(系数精确到0.01); (3)根据(2)得出的回归方程,预测1~12月月累计营业收入利润率()%的值为多少? 参考公式:对于一组数据()11,u v 、()22,u v 、、(),n n u v ,其回归直线ˆu u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆniii nii u u v v u u β==--=-∑∑,v u αβ=-.参考数据:xyw()1021ii x x =-∑()1021ii w w =-∑()()101iii x x y y =--∑ ()()101i ii w w y y =--∑5.505.66 2.25 82.50 4.52 8.14 2.07表中i i w x =,110i i w w ==∑11 3.32≈. 25.为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:女生: 睡眠时间(小时)[4,5)[5,6)[6,7)[7,8)[8,9]人数24842男生:(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;(2)完成下面2x2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?(()()()()()22n ad bcKa b c d a c b d-=++++,其中n=a+b+c+d)26.在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不少于120分的有10人,统计成绩后得到如下22⨯列联表:(1)请完成上面22⨯列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,其中每周线上学习时间不足5小时的人数为X,求X的分布列及其数学期望.(下面的临界值表供参考)(参考公式()()()()()22n ad bcKa b c d a c b d-=++++其中n a b c d=+++)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先确定是条件概率,在出现数字乘积为偶数的前提下,乘积为非零偶数的概率,首先求两次数字乘积为偶数的概率,然后两次为非零偶数的概率,再按照条件概率的公式求解.【详解】两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,概率是221 69⎛⎫=⎪⎝⎭,所以两次数字乘积为偶数的概率P=228169⎛⎫-=⎪⎝⎭;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),P =111152366636⨯⨯+⨯=,.故所求条件概率为55368329P ==.故选:D 【点睛】本题主要考查了条件概率的计算和独立事件,考查了学生的计算能力,属于基础题.2.A解析:A 【分析】由题,设男生人数x ,然后列联表,求得观测值,可得x 的范围,再利用人数比为整数,可得结果. 【详解】设男生人数为x ,则女生人数为2x , 则列联表如下:若有95%的把握认为是否喜欢抖音和性别有关,则 3.841K > 即2235()326636 3.841822x x x x x x K x x x x ⨯-⨯==>⨯⨯⨯ 解得10.24x > 又因为,,,236x x x为整数,所以男生至少有12人故选A 【点睛】本题是一道关于独立性检验的题目,总体方法是运用列联表进行分析求解,属于中档题.3.C解析:C 【解析】分析:先求()P AB ,()P A ,再根据()(|)()P AB P B A P A =得结果. 详解:因为214421101022(),()155C C P AB P A C C ====, 所以2()115(|)2()35P AB P B A P A ===, 选C.点睛:本题考查条件概率,考查基本求解能力.4.C解析:C 【解析】设此射手未射中目标的概率为p ,则1-p 4=8081,所以p =13,故此射手的命中率为1-p =23. 故选C5.A解析:A 【解析】因为22()()()()()()a b c d ad bc K a c b d a b c d +++-=++++,所以当2K 的值越小说明两个分类变量之间的有关系的把握程度越小,反之,当2K 的值越小说明两个分类变量之间的有关系的把握程度越大,即两个分类变量之间的关系应该越强,()()a b ad bc a c b d a c b d --=++++与2K 的关系等价,则()()a b ad bc a c b d a c b d --=++++值相差越大,可判断两个分类变量之间的关系应该越强,应选答案A .6.B解析:B 【解析】对于命题①认为数学成绩与物理成绩有关,不出错的概率是99%,不是数学成绩优秀,物理成绩就有99%的可能优秀,不正确;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小,不正确;容易验证②③正确,应选答案B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学统计案例综合检测试题及答案选修2-3第三章统计案例综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2019宁夏银川模拟)下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x 1 2 3 4用水量y 4.5 4 3 2.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y^=-0.7x+a,则a等于() A.10.5 B.5.15C.5.2 D.5.25[答案] D[解析] x=2.5,y=3.5,∵回归直线方程过定点(x,y),3.5=-0.72.5+a,a=5.25.故选D.2.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有()A.b与r的符号相同B.a与r的符号相同C.b与r的符号相反D.a与r的符号相反[答案] A[解析] 因为b0时,两变量正相关,此时,r0;b0时,两变量负相关,此时r0.3.有下列说法:①随机误差是引起预报值与真实值之间的误差的原因之一;②残差平方和越小,预报精度越高;③在独立性检验中,通过二维条形图和三维柱形图可以粗略判断两个分类变量是否有关系.其中真命题的个数是()A.0 B.1C.2 D.3[答案] D4.有甲、乙两种钢材,从中各取等量样品检验它们的抗拉强度指标如下:甲X 110 120 125 130 135P 0.1 0.2 0.4 0.1 0.2乙X 100 115 125 130 145P 0.1 0.2 0.4 0.1 0.2现要比较两种钢材哪一种抗拉强度较好,应考察哪项指标() A.期望与方差 B.正态分布C.卡方K2 D.概率[答案] A5.为调查中学生近视情况,测得某校男生150名中有80名近视,女生140名中有70名近视.在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.期望与方差 B.排列与组合C.独立性检验 D.概率[答案] C6.(2009海南宁夏理,3)对变量x,y观测数据(x1,y1)(i =1,2,…,10),得散点图1;对变量u,v有观测数据(u1,v1)(i=1,2,…,10),得散点图2.由这两个散点图可以判断.()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关[答案] C[解析] 本题主要考查了变量的相关知识,考查学生分析问题和解决问题的能力.用散点图可以判断变量x与y负相关,u与v正相关.7.某地2019年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:行业名称计算机机械营销物流贸易应聘人数 215830 201950 154676 74570 65280行业名称计算机营销机械建筑化工招聘人数 124620 102935 89115 76516 70436若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是() A.计算机行业好于化工行业B.建筑行业好于物流行业C.机械行业最紧张D.营销行业比贸易行业紧张[答案] B[解析] 建筑行业的比值小于6528076516,物流行业的比值大于7457070436,故建筑好于物流.8.工人月工资y(单位:元)关于劳动生产率x(单位:千元)的回归方程为y^=650+80x,下列说法中正确的个数是()①劳动生产率为1000元时,工资约为730元;②劳动生产率提高1000元时,则工资约提高80元;③劳动生产率提高1000元时,则工资约提高730元;④当月工资为810元时,劳动生产率约为2019元.A.1 B.2C.3 D.4[答案] C[解析] 代入方程计算可判断①②④正确.9.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是()A.由样本数据得到的回归方程为y^=b^x+a^必过样本点的中心(x-,y-)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数r=-0.9362,则变量y和x之间具有线性相关关系[答案] C[解析] R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好,故选C.10.判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是()A.三维柱形图 B.二维条形图C.等高条形图 D.独立性检验[答案] D[解析] 前三种方法只能直观地看出两个分类变量x与y是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.11.在建立两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合得最好的模型为()A.模型1的相关指数R2为0.75B.模型2的相关指数R2为0.90C.模型3的相关指数R2为0.25D.模型4的相关指数R2为0.55[答案] B[解析] 相关指数R2的值越大,意味着残差平方和越小,也就是说模型的拟合效果越好,故选B.12.下面是某市场农产品的调查表.市场供应量表:单价(元/千克) 2 2.4 2.8 3.2 3.6 4供应量(1000千克) 50 60 70 75 80 90市场需求量表:单价(元/千克) 4 3.4 2.9 2.6 2.3 2供应量(1000千克) 50 60 70 75 80 90根据以上信息,市场供需平衡点(即供应量和需求量相等的单价)应在区间()A.(2.3,2.6) B.(2.4,2.6)C.(2.6,2.8) D.(2.8,2.9)[答案] C[解析] 以横轴为单价,纵轴为市场供、需量,在同一坐标系中描点,用近似曲线观察可知选C.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.当且仅当r满足________时,数据点(xi,yi)(i=1,2,…,n)在一条直线上.[答案] |r|=1[解析] 当数据点(xi,yi)在一条直线上时,y只受x的影响,即数据点完全线性相关,此时|r|=1.14.已知一个回归直线方程为y^=1.5x+45,x{1,7,5,13,19},则y=__________.[答案] 58.5[解析] 因为x=15(1+7+5+13+19)=9,且y=1.5x+45,所以y=1.59+45=58.5.本题易错之处是根据x的值及y^=1.5x+45求出y的值再求y,由y^=1.5x+45求得的y值不是原始数据,故错误.15.对具有线性相关关系的变量x和y,测得一组数据如下表.若已求得它们的回归直线方程的斜率为6.5,则这条回归直线的方程为________.x 2 4 5 6 8y 30 40 60 50 70[答案] y^=17.5+6.5x[解析] 由数据表得x=5,y=50,所以a^=y-6.5x=17.5,即回归直线方程为y^=17.5+6.5x.16.(2019广东文,12)某市居民2019~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:年份 2019 2019 2019 2019 2009收入x 11.5 12.1 13 13.3 15支出Y 6.8 8.8 9.8 10 12根据统计资料,居民家庭平均收入的中位数是__________,家庭年平均收入与年平均支出有__________线性相关关系.[答案] 13 正[解析] 中位数的定义的考查,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时须取中间两数的平均数.由统计资料可以看出,当平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)为了调查胃病是否与生活规律有关,调查某地540名40岁以上的人得结果如下:患胃病未患胃病合计生活不规律 60 260 320生活有规律 20 200 220合计 80 460 540根据以上数据回答40岁以上的人患胃病与生活规律有关吗?[解析] k=540(60200-26020)232022080460=24969602590729.638∵9.638>6.63540岁以上的人患胃病与生活是否有规律有关,有99%的把握认为生活不规律的人易患胃病.18.(本题满分12分)一台机器可以按各种不同的速度运转,其生产的物件有一些会有问题,每小时生产有问题物件的多寡,随机器运转的速度而变化,下面表格中的数据是几次试验的结果.速度(转/秒) 每小时生产有问题物件数8 512 814 916 11(1)求出机器速度影响每小时生产有问题物件数的回归直线方程;(2)若实际生产中所允许的每小时最大问题物件数为10,那么机器的速度不得超过多少转/秒?[解析] (1)用x表示机器速度,y表示每小时生产有问题物件数,那么4个样本数据为:(8,5)、(12,8)、(14,9)、(16,11),则x-=12.5,y-=8.25.于是回归直线的斜率为b^=xiyi -4x-y-x2i-4x-2=25.5350.7286,a^=y--b^x-=-0.8575,所以所求的回归直线方程为y=0.7286x-0.8575.(2)根据公式y^=0.7286x-0.8575,要使y10,则就需要0.7286x-0.857510,x14.9019,即机器的旋转速度不能超过14.9019转/秒.19.(本题满分12分)在从烟台大连的某次航运中,海上出现恶劣气候.随机调查男、女乘客在船上晕船的情况如下表所示:晕船不晕船合计男人 32 51 73女人 8 24 32合计 40 75 115根据此资料你是否认为在恶劣气候航行中,男人比女人更容易晕船?[解析] 男人晕船所占比例为3283100%=0.386,女人晕船所占比例为832100%=0.25,虽然0.386远大于0.25,但我们不能用此判断在恶劣气候中航行,男人比女人更容易晕船,而应根据独立性检验进行分析.由公式得:K2=115(3224-518)2833240751.870.因为1.8702.706,所以我们没有充分的证据说晕船跟男女性别有关.20.(本题满分12分)有两个分类变量X与Y,其一组观测的22列联表如下表.其中a,15-a均为大于5的整数,则a取何值时有90%以上的把握认为“X与Y之间有关系”?y1 y2x1 a 20-ax2 15-a 30+a[解析] 查表可知,要使有90%以上的把握认为X与Y之间有关系,则K22.706,而其观测值k=65[a(30+a)-(20-a)(15-a)]220451550 =13(65a-300)2604550=13(13a-60)26090,解k2.706得a7.19或a2.04.又因为a5且15-a5,aZ,所以a=8,9,故当a取8或9时有90%以上的把握认为“X与Y之间有关系”.[点拨] 首先计算K2值,由题意K22.706,求得a的范围,再结合a5且15-a5,aZ,即可求得a的值.21.(本题满分12分)某超市为了了解热茶销售与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对比表如下表:气温x(℃) 26 18 13 10 4 -1杯数y 20 24 34 38 50 64画出散点图并计算相关系数r,判断热茶销售量与气温之间是否具有线性相关关系.[解析] 由表中数据画出散点图如图所示.由表中数据得x=16(26+18+13+10+4-1)11.67,y=16(20+24+34+38+50+64)38.33,i=16xiyi=2620+1824+1334+1038+450-164=1910,i =16x2i=262+182+132+102+42+(-1)2=1286,i=16y2i=202+242+342+382+502+642=10172,所以r-0.97,因为|r|0.970.75,所以热茶销售量与气温之间具有很强的线性相关关系.22.(本题满分14分)在一个文娱网络中,点击观看某个节目的累积人次和播放天数如下表:播放天数 1 2 3 4 5点击观看的累积人次 51 134 213 235 262播放天数 6 7 8 9 10点击观看的累积人次 294 330 378 457 533(1)画出散点图;(2)判断两变量之间是否具有线性相关关系,求回归直线方程是否有意义?[解析] (1)散点图如图所示.(2)由散点图知两变量线性相关,故求回归直线方程有意义.或借助科学计算器,完成下表中的有关计算.i 1 2 3 4 5 6 7 8 9 10xi 1 2 3 4 5 6 7 8 9 10yi 51 134 213 235 262 294 330 378 457 533xiyi 51 268 639 940 1310 1764 2310 3024 4113 5330x=5.5,y=288.7,i=110x2i=385,i=110y2i=1020953,i=110xiyi=19749 利用上表的结果,计算累积人次与播放天数之间的相关系数r=19749-105.5288.7(385-105.52)(1020953-10288.72)0.9840.75.这说明累积人次与播放天数之间存在着线性相关关系,自然求回归直线方程有意义.。

相关文档
最新文档