《等边三角形》教学设计-03

合集下载

等边三角形教学设计及反思

等边三角形教学设计及反思

13.3.2 等边三角形1 课题:等边三角形2 知识目标:(1)掌握等边三角形的概念(2)掌握等边三角形的性质(3)掌握等边三角形的判定方法。

能力目标:能够通过等边三角形的相关判定方法判定等边三角形并且能够灵活的运用等边三角形的性质解相关的题目。

情感目标:(1)通过等边三角形的学习,使同学们体会到正三角形的“稳健美”, 体会到数学学习的乐趣,激发学生学习数学的兴趣。

(2)通过探究式的学习等边三角形的性质,培养同学们勇于探究的思考能力。

数学素质培养目标:本课时学习的是等边三角形的相关内容,通过对等腰三角形的性质及判定方法的学习,通过探究分组合作交流式的学习方法,来探究等边三角形的相关性质及其判定,培养了同学们的逻辑推理能力。

难点:探究等边三角形的性质和判定方法的过程;等边三角形的轴对称变换与旋转变换在较复杂的图形中能够准确的判断等边三角形并用其性质解题。

4 教具:直尺、圆规、多媒体5 教学方法:小组探究讨论、合作交流6 教学过程:一、巩固复习:等腰三角形的定义:性质:判定:二、创设情境,引入新课。

活动1:图片欣赏提问:生活中有一种特殊的等腰三角形,它叫什么?我们是怎样定义它的?等边三角形定义:活动2: 用直尺和圆规画一个边长是5 厘米的等边三角形。

问题:等边三角形具有等腰三角形的哪些性质?它作为特殊的等腰三角形又有哪些特殊的性质?(小组合作讨论归纳)等边三角形的性质:性质1:文字表示几何表述推理证明性质2:性质3:活动3:小组讨论1满足怎样条件的等腰三角形是等边三角形?2、满足怎样条件的三角形是等边三角形? 等边三角形的判定:1、用定义判定::AB=AC=BC •••△ ABC是等边三角形2 ___________________ ■勺等腰三角形是等边三角形已知:求证:证明:3、的三角形是等边三角形已知:求证:证明:三、巩固训练,强化新知教科书54页例题4 (小组学习)例4 如图,△ ABC是等边三角形,DE// BC,交AB AC 于点D,E.求证:△ ADE是等边三角形?思考:本题还有什么方法可以证明?随堂练习:(1)教科书54页练习2(2)想一想:课外活动小组在一次测量活动中,测得/ AP4 60° A吐B吐200cm, 他们便得到了一个结论:池塘最长处不小于200cm.他们的结论对吗?(3)考考你:这是两个等边三角形,那么请移动三根火柴,将此图变成四个等边三角形.A四课堂小结五、课堂检测1、下列四个说法中,不正确的有()(A)0 个(B)1 个(C)2 个(D)3 个①三个角都相等的三角形是等边三角形。

等边三角形--优秀教学设计

等边三角形--优秀教学设计

等边三角形--优秀教学设计
教学目标:
1.了解等边三角形在形状和性质方面的特点。

2.能够基于等边三角形的规律推导出其他有关的结论。

3.能够应用等边三角形的特性解决数学问题。

适用对象:初中数学七年级学生
教学过程:
1.引入(5分钟)
(1)通过一个图像引出等边三角形问题。

(2)询问学生对等边三角形的了解。

2.讲解(25分钟)
(1)定义等边三角形。

(2)讲解等边三角形的性质:三边相等,三角度相等,垂心,中位线,中心,内切圆,旁切圆。

(3)通过图形探索等边三角形的性质,引出相关的定理。

3.练习(20分钟)
(1)结合教材,进行相关习题的训练。

(2)引导学生思考,通过等边三角形的规律,推导其他三角形的性质。

4.拓展(10分钟)
(1)老师布置一些进阶试题,让学生巩固和练习已有知识。

(2)老师给学生提供一些实际的例子,让学生能够应用等边三角形的特性解决数学问题。

5.总结(5分钟)
(1)学生口头总结所学内容。

(2)学生分享解决问题的思路和策略。

教学资源:
(1)图形。

(2)教材。

(3)多媒体设备。

评估方法:
(1)课堂参与度。

(2)完成练习题的表现。

(3)解决问题的思路和策略。

拓展推广:
老师可以将本课程中的题目和案例推广到学习其他数学知识点,如三角函数等,从而帮助学生更好地理解和掌握数学知识。

同时,也可以通过让学生自主设计等边三角形相关的问题,提高学生的综合应用能力和创造性思考能力。

等边三角形教学设计

等边三角形教学设计

等边三角形教学设计教学设计一:等边三角形的性质及计算1.教学目标:学生能够理解等边三角形的定义,掌握等边三角形的性质,能够计算等边三角形的周长和面积。

2.教学重点:理解等边三角形的定义,熟练掌握等边三角形的性质。

3.教学难点:掌握等边三角形的周长和面积的计算公式。

4.教学准备:教师:等边三角形的模型或图形、计算等边三角形周长和面积的公式。

学生:纸和铅笔、直尺、量角器。

5.教学步骤:步骤一:导入新知1.提问:请同学们谈谈你们对等边三角形的认识。

2.引入新概念:等边三角形是指三条边长度相等的三角形。

3.展示等边三角形的模型或图形,并引导学生观察并描述等边三角形的特点。

步骤二:探究等边三角形的性质1.根据展示的等边三角形,引导学生讨论等边三角形的性质。

2.学生自主思考或小组合作,试图推导出等边三角形的性质,例如等边三角形的内角相等。

3.教师对学生合作讨论得出的结论进行总结,确保学生理解等边三角形的性质。

步骤三:计算等边三角形的周长1.提问:请问如何计算等边三角形的周长?2.引入计算公式:等边三角形的周长等于三条边长的和。

3.通过示例演示计算等边三角形的周长,并让学生自主练习计算其他等边三角形的周长。

步骤四:计算等边三角形的面积1.提问:请问如何计算等边三角形的面积?2.引入计算公式:等边三角形的面积等于底边长度的平方乘以根号三再除以四3.通过示例演示计算等边三角形的面积,并让学生自主练习计算其他等边三角形的面积。

步骤五:巩固练习1.提供一些练习题,要求学生计算等边三角形的周长和面积。

2.让学生独立完成练习,并进行讲解和订正。

步骤六:小结和拓展1.小结等边三角形的性质及计算方法。

2.拓展:引导学生思考其他与等边三角形相关的问题,例如等边三角形的外接圆和内切圆。

6.教学反思:通过引导学生自主探究等边三角形的性质和计算方法,激发了学生的学习兴趣和思维能力。

同时,通过提供合适的练习题,巩固了学生对等边三角形的理解和计算能力。

数学八年级上册《等边三角形(3)》教案

数学八年级上册《等边三角形(3)》教案
12.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,
①求证:△BCE≌△ACD;
②求证:CF=CH;
③判断△CFH的形状并说明理由.
板书设计12.3.1 等边三角形(三)
一、复习知识要点
二、练习
教学小结:
3.等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.
4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
二、练习(35分钟)
(一)、选择题
1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()
教学方法与手段
归纳结论——补充讲解——练习提高
教学准备
圆规、三角尺
第 一 课时
课时数
1课时
课堂教学实施设计(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一、复习知识要点(5分钟)
1.三条边都相等的三角形叫做等边三角形,也叫做正三角形.
2.等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°
A.60°B.90°C.120°D.150°
1.下列三角形:①有两个角等于60°;②有一个角等于60°的等
腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()
A.①②③B.①②④C.①③D.①②③④
3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF的形状是()
A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状

13.3.2《等边三角形》教案

13.3.2《等边三角形》教案
尝试其它解法。


个人备课
集体研讨与个案补充





2、随堂练习:课本80页练习1、2
3、多媒体展示如下问题
让学生动手操作,用两个含30°角的三角尺摆一摆,猜一猜,证一证。
用含30°角的直角三角尺摆出了如下两个三角形.
其中,图(1)是等边三角形,因为△ABD≌△ACD,所以AB=AC,又因为Rt△ABD中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.
分析:观察图形可以发现在Rt△AED与Rt△ACB中,由于∠A=30°,所以DE= AD,BC= AB,又由D是AB的中点,所以DE= AB.
[例]等腰三角形的底角为15°,腰长为2a,求腰上的高.
已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.
求:CD的长.
已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.求证:BC= AB.
分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.


个人备课
集体研讨与个案补充
3、 展示例5:
右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长?
图(1)中,已经知道它是等边三角形,所以AB=BC=AC.而∠ADB=90°,即AD⊥BC.根据等腰三角形“三线合一”的性质,可得BD=DC= BC.所以BD= AB,即在Rt△ABD中,∠BAD=30°,它所对的边BD是斜边AB的一半.
定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

《等边三角形》教案(最终五篇)

《等边三角形》教案(最终五篇)

《等边三角形》教案(最终五篇)第一篇:《等边三角形》教案等边三角形一、教学目标(1)知识与技能:掌握等边三角形的性质和判定方法,并能运用等边三角形的性质和判定方法解决有关数学问题.(2)过程与方法:通过讨论,发现和归纳等边三角形的判定方法,并用演绎推理的方法进行证实.(3)情感态度与价值观:通过对等边三角形有关知识的学习,感悟数学思想在现实生活中的应用,并从中感受图形的魅力之处。

二、教学重难点(1)教学重点:等边三角形的性质及判定及其应用。

(2)教学难点:探索等边三角形性质及判定的过程。

三、教学策略:(1)教学方法:运用小组合作学习,独立思考与小组合作相结合,发挥学生之间的相互合作、相互帮助的精神。

(2教学手段:课上运用多媒体课件激发学生的学习兴趣。

四、教学过程:1、旧识回顾,导入新课与学生一起回顾等腰三角形的定义、性质以及判定。

师:等腰三角形与等边三角形有什么样的关系呢? 生:等边三角形是特殊的等腰三角形,所以等边三角形具有等腰三角形的所有性质。

设计意图:复习知识为本节课新知类比学习做准备,引导学生自己探究等腰三角形与等边三角形的关系。

2、创设情景,探究新知1.创设问题:根据等边三角形的定义结合等腰三角形的性质,你能得出等边三角形有什么性质?并进行证明。

设计意图:让学生在已有知识的基础上,启发学生运用类比的思想得出等边三角形的性质。

2.归纳总结等边三角形的性质。

设计意图:让学生对等边三角形的性质由系统的认识。

进一步让学生体会定义既是性质又是判定。

3.创设问题情境:猜想一个三角形满足什么条件就是等边三角形?一个等腰三角形满足什么条件就是等边三角形?以小组为单位先猜想,再进行讨论探究,在已有知识结论的基础上验证自己的猜想。

设计意图:采用分类讨论的方法,即从边与角两方面来考虑,使学生能从中领悟数学分类讨论思想。

4.归纳总结等边三角形的判定方法。

设计意图:让学生对等边三角形的的判定方法有系统认识。

强化在应用中的思维技巧。

《等边三角形》教学设计

《等边三角形》教学设计

《等边三角形》教学设计(3)有一个角是60°的等腰三角形是等边三角形。

三、考点分析:等边三角形是一种特殊的等腰三角形,在中考中经常出现,对这部分知识的考查主要是:等边三角形的性质和判定,即边与角的互相转化。

【典型例题】题型1:角度的计算例1. 如图所示,△ABC是等边三角形,AD为中线,AD=AE,求∠EDC的度数。

分析:先求出∠DAE=30°,∠AED=∠ADE=75°,结合∠EDC=∠AED-∠C可求。

解:∵△ABC为等边三角形,AD为中线,∴∠DAE=∠BAC=×60°=30°。

∵AD=AE,∴∠ADE=∠AED=×(180°-∠DAE)=×(180°-30°)=75°。

∵∠AED=∠EDC+∠C,∴∠EDC=∠AED-∠C=75°-60°=15°。

评析:求角度时注意利用等腰三角形或等边三角形中角的关系及三角形内角和定理。

题型2:线段的计算例2. 如图所示,在△ABC中,AB=AC=2,∠B=15°,求腰上的高的长。

分析:△ABC为钝角三角形,要准确作出高CD。

解:过C点作CD⊥BA交BA的延长线于D。

∵AB=AC,∴∠B=∠ACB=15°(等边对等角)。

∴∠DAC=∠B+∠ACB=30°。

在Rt△ADC中,∠DAC=30°,∴CD=AC=1.∴等腰△ABC腰上的高为1.评析:准确作出高和利用直角三角形的性质是解决本题的关键,直角三角形中,30°角所对的边等于斜边的一半,在计算中应用广泛。

题型3:证明线段相等例3. 如图所示,已知△ABC和△BDE均为等边三角形,求证:BD+CD=AD。

分析:证明BD+CD=AD,将AD变为AE+ED,只要证明BD=DE,CD=AE就可以了。

证明:∵△ABC、△BDE为等边三角形,∴BE=BD=DE,AB=BC,∠ABC=∠EBD=60°。

等边三角形 优秀教学设计

等边三角形  优秀教学设计

等边三角形【课题】:等边三角形(平行班)【教学目标】:(1)理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法,能够用等边三角形的知识解决相应的数学问题(2)证明直角三角形中有一个角为30°的性质和它的简单应用【教学重点】:等边三角形判定定理的发现与证明;含30°角的直角三角形的性质定理的发现与证明.【教学难点】:等边三角形性质和判定的应用,含30°角的直角三角形性质定理的探索与证明.【教学突破点】:借助于等腰三角形的性质解决等边三角形的有关问题.【教法、学法设计】:教法:教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法;学法:小组合作,实验操作,观察发现,师生互动,学生互动的学习方式.【课前准备】:课件,三角形纸片A1 如图,△ABC是等边三角形,DE∥BC,交) 直角三角形中有一个角为30°的性质)探索:将两个含有板有30°的三角尺如图摆放在一起你能借助这个图的直角边BC与斜边AB之间的数量关系吗?轴对称,∴AB=AD,ABD是等边三角形AB在直角三角形中,如果一个锐角等于三这(C)11.. 如图,点E 是∠AOB 的平分线上一点,答案: 1.4a 2.C 3.4,2,6 4. 11cm 5. CD的长为a 6.1522 7.21 8. ∠DBC 的度数为3009.连接AF ,∵EF 垂直平分AC ,∴AF=FC,∵AB=AC, ∠A=120°, ∴∠B=∠C=300,由于AF=FC,∠C=300∴∠AFB=600,∴∠BAF=900在⊿ABF中,∠BAF=900,∠B=300∴BF=2AF∴BF=2FC10. AC之长为4cm如图,点E是∠AOB的平分线上一点,CE⊥OA,ED⊥OB,垂足分别是C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.11.证明(1)∵点E是∠AOB的平分线上一点∴∠DOE=∠COE,∵CE⊥OA,ED⊥OB∴∠ODE=∠OCE=900OE=OE∴△ODE≌△OCE∴DE=CE∴∠ECD=∠EDC(等边对等角)(2)∵△ODE≌△OCE∴OC=OD(3)∵DE=CE,OC=OD,∴OE是线段CD的垂直平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等边三角形》教学设计
〖教学目标〗
◆1、理解等边三角形的性质与判定.
◆2、体会等边三角形与现实生活的联系.
◆3、理解等边三角形的轴对称性.
〖教学重点与难点〗
◆教学重点:等边三角形的性质与判定.
◆教学难点:等边三角形的轴对称变换与旋转变换.
〖教学过程〗
一、复习引入:
1、回顾等腰三角形定义、性质。

2、一般情况下腰与底有何关系?若三边相等又如何?
3、学生举例生活中的等边三角形(交通警告标志、台球桌上用于固定起始球放置的框)
二、新课教学:
1、等边三角形定义:三边相等的三角形叫做等边三角形,也称正三角形
2、等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是
等边三角形
3、合作学习
用直尺和圆规作一个边长是3CM的等边三角形ABC
讨论:(1)在△ABC中,∠A、∠B、∠C存在什么关系?
(2)任选一个角(如∠A),作出它的角平分线,再作出该角所对的边的高线、中线,试问这些线有何
特征?
(3)等边三角形有几条对称轴?这些对称轴有何特点?
(4)除了定义以外,什么条件下也可以得到等边三角形?
(学生分组讨论,教师提示从角、边去考虑)
师生一起总结:
1、等边三角形的内角相等,且为60度
2、等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
3、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所
在直线
4、等边三角形的判定:
(1)三边相等的三角形是等边三角形
(2)三角相等的三角形是等边三角形
(3)有一个角是60度的等腰三角形是等边三角形
三、例题分析:
例1:如图,等边三角形ABC中,三条内角
平分线AD、BE、CF相交于点O。

(1)△AOB,△BOC,△AOC有何关系?并说明理由
(2)求∠AOB,∠BOC,∠AOC的度数,将△ABC
绕点O旋转,问要旋转多少度就能和原来的三角形重合(只要求说出一个旋转度数)?解:(1)△AOB,△BOC,△AOC互相全等
∵AD、BE、CF是等边三角形的三条角平分线
∴AD、BE、CF所在直线是等边△ABC的对称轴
∴△AOB与△AOC关于直线AD成轴对称
∴△AOB≌△AOC
同理△AOB≌△COB
∴△AOB≌△AOC≌△COB
思考:能否由全等判定得到这三个全等?
(2)∵△AOB≌△AOC≌△COB
∴∠AOB=∠BOC=∠AOC (全等三角新的对应角相等)
OA=OB=OC (根据什么?)
∵∠AO B+∠BOC+∠AOC=3600
∴∠AOB=∠BOC=∠AOC=1
3
3600=1200
∴△ABC绕点O旋转1200,就能和原来的三角形重合
四、练习巩固
1、课本课内练习1、2
2、课本作业题A组2、3
五、师生小结
A
B C
D
E
F
O
1、等边三角形的性质
2、等边三角形的判定
3、等边三角形的轴对称性
六、作业:作业本。

相关文档
最新文档