大肠杆菌克隆载体
大肠杆菌克隆表达人类基因的注意事项

大肠杆菌克隆表达人类基因的注意事项大肠杆菌是常用的真核表达系统之一,具有优点如易于培养、遗传稳定和高表达水平等。
在进行大肠杆菌克隆表达人类基因的过程中,需要注意以下几个方面:1.选择合适的质粒载体:质粒载体是将目标基因插入宿主细胞中的工具。
选择具有致密复制位点和特定启动子的质粒,可以提高基因的稳定性和表达水平。
一般建议选择常用的表达载体,如pET系列、pGEX系列等。
2.制备合适的基因片段:将人类基因转入大肠杆菌前,需要利用PCR或其他方法从人类细胞中扩增得到基因片段。
合理设计引物,包含适当的启动子和终止子序列,避免产生GC丰富的片段,以免影响大肠杆菌的转化和表达效率。
3.优化启动子和终止子:为了提高目标基因的表达水平,可以选择合适的启动子和终止子来调控基因的转录和翻译。
常用的启动子包括T7、lac、trp等,终止子一般选择T7终止子。
4.确定正确的大肠杆菌菌株:大肠杆菌有多个常用的表达菌株,如BL21(DE3)、XL1-Blue、TOP10等。
根据实验要求选择合适的菌株,包括产蛋白质的溶解度、转化和表达效率、内毒素含量等因素。
5.优化诱导条件:为了获得最佳的基因表达效果,需要优化诱导条件。
常用的诱导剂有IPTG、Lactose等。
优化诱导时间、温度和诱导剂浓度等条件,可根据目标蛋白的特性进行调整。
6.加入相关辅助单元:在大肠杆菌中表达人类基因时,可能需要加入辅助单元,如信号肽序列、标签序列、分泌酶等。
信号肽序列可以帮助蛋白质定位和转运,标签序列如His-tag、GST-tag可以辅助蛋白质纯化和检测。
7.注意避免内毒素产生:大肠杆菌属于革兰氏阴性菌,其细胞壁含有内毒素。
内毒素可引起细胞毒性和炎症反应,影响目标蛋白的纯化和性质。
因此,在表达人类基因时,需要注意控制内毒素的产生,如选择低内毒素菌株、减少诱导剂的使用量等。
8.合理的蛋白质纯化策略:在成功表达目标蛋白后,需要进行蛋白质的纯化。
根据蛋白质的性质,选择合适的纯化方法,如亲和层析、离子交换层析、凝胶过滤层析等。
载体的构建

基因工程所用的克隆载体常称之为分子克隆载体(molecular cloning vector),它是一类可供外源DNA插入并携带重组DNA分子进入适当宿主细胞的DNA分子。
如果打一个十分浅显的比喻,分子克隆载体犹如航天技术中的运载火箭,外源DNA分子就如火箭上搭载的卫星,宿主细胞则如外部深邃的空间。
分子克隆载体的主要功能就是将外源基因携带入宿主细胞,并在宿主细胞中进行DNA扩增和使外源基因得以高效表达。
在这一点上又与火箭不一样,因为火箭在运载卫星的过程中分级脱落和烧毁。
尽管克隆载体是由DNA分子所构成,但与宿主细胞的染色体DNA分子相比,它们一般都比较小。
比如常用的质粒载体多数都在10 kb以下,而常用的噬菌体载体,一般都在20 kb 左右。
我们知道,大肠杆菌的染色体DNA是4200kb。
正是由于克隆载体的分子量比较小,在操作过程中不会造成载体DNA分子的断裂,而大分子的DNA容易在操作中发生断裂。
克隆载体的基本结构和功能在短短的20年间,用于不同生物和不同目的的分子克隆载体至少也有好几千种,那么它们应该有些什么样的基本结构呢?经过仔细分析发现,所有的分子克隆载体都具备了以下3个最基本的结构:1)至少有一个复制起点,因而至少可在一种生物体中自主复制;2)至少应有一个克隆位点,以供外源DNA插入;3)至少应有一个遗传标记基因,以指示载体或重组DNA 分子是否进入宿主细胞。
既然说每一个载体至少应有一个复制起点,一个克隆位点和一个标记基因,那么一个载体可否有多个复制起点,多个克隆位点和多个标记基因呢?答案是肯定的。
不过,我们还是先看看载体中的三个基本结构克隆载体的复制起点由于DNA的复制是始于复制起点的,因此只要一个DNA分子有了复制起点,那么这个DNA分子就可以自主复制。
如果一个分子克隆载体有了复制起点,那么该载体就可以在某种生物的细胞中自主复制,因此这个载体就可以多拷贝地存在于某种细胞内。
多拷贝DNA有两个好处:一是可以用于大量制备克隆载体DNA分子,以利于外源基因的克隆,这样可大大减少工作量;二是如果载体中插入了外源基因,那么外源基因的拷贝数也就大量增加了,这就有利于大量地表达外源基因,从而获得大量的基因表达产物,这也正是基因工程的目的之一。
大肠杆菌基因克隆的基本步骤

大肠杆菌基因克隆的基本步骤嘿,咱今儿个就来聊聊大肠杆菌基因克隆那些事儿!你可别小瞧这大肠杆菌,它在生物领域那可是有着相当重要的地位呢!要进行大肠杆菌基因克隆,第一步,得先找到咱要克隆的那个基因吧。
这就好比你要去一个陌生的地方,得先知道目的地在哪儿呀!得通过各种技术手段,像侦探破案似的,把那个特定的基因给揪出来。
然后呢,就该准备载体啦。
载体就像是一辆小货车,要把基因这个“宝贝”给装进去,拉到它该去的地方。
这小货车可得选好喽,得合适才行,不然基因在里面不舒服可不行。
接下来,把基因和载体连接到一块儿。
这就好像给基因找了个“家”,让它安稳地待在里面。
这连接的过程可得仔细着点儿,不能有一丁点儿差错。
之后,把连接好的载体导入大肠杆菌里。
这就好比把货物运进了仓库。
这导入的方法也有好几种呢,就看哪种适合咱啦。
导入之后,就得让大肠杆菌好好生长啦。
给它提供适宜的环境,就像咱人得住在舒服的房子里一样。
让大肠杆菌在里面开开心心地生活,把咱的基因好好复制。
这时候你可能会问啦,那怎么知道基因克隆成功没呀?嘿嘿,这就得检测啦。
就像考试要看看成绩一样,得知道自己做得对不对。
咱再想想,这基因克隆就像是搭积木,一块一块地搭起来,最后搭成一个漂亮的城堡。
每一步都得小心翼翼,不能马虎。
你说要是中间出了差错会咋样?那可就麻烦啦,就像搭积木搭错了一块,整个城堡可能就歪了或者倒了。
所以每一个步骤都得认真对待呀!你想想,通过这些步骤,咱就能把一个小小的基因复制好多好多份,这多神奇呀!这就是科学的魅力,能让不可能变成可能。
总之呢,大肠杆菌基因克隆虽然听起来挺复杂,但只要咱一步一步慢慢来,肯定能成功。
咱可不能怕困难,要像勇士一样勇往直前!咱要相信,通过咱的努力,一定能在这个领域做出一番大成就!。
2-2章 大肠杆菌分子克隆载体

如插入片段的5’段定向缺失: XbaI→SphI→ExoⅢ→S1→T4 DNA lingase; 插入片段的3’-端亦可采用类似的方法进行缺 失(SmaI→SstI→ExoⅢ→S1→T4 DNA lingase) 不同载体中的多克隆位点区可以供不同目的片段的重组。又 例如: pBS+多克隆位点区的排列顺序是(见图): 假设有一EcoRI→HindⅢ DNA片段,并要求在其3’-末 端或5’-端接上另外的DNA片段(如终止子、启动子), 显然,pUC系列载体的多克隆位点区是不太适宜,但选用 pBS+中的多克隆位点区就能满足要求。
λ噬菌体的基因组
5’3’
-3’ -5’
1.线状双链DNA分子,全长48.502kb。 2.两端的5’末端具有12碱基的突出互补的粘性末端 (cohensive end,cos),该末端称为cos位点。 可被λ编码的A蛋白所识别 3.当λ侵入宿主细胞后,线状DNA分子借助粘性末端 连接成环状分子。
第三节
大肠杆菌分子克隆载体
一、E.coli克隆载体的种类
1. 质粒载体—复制起点来自一些天然质粒。 2. 噬菌体载体—λ,P1和M13、fd载体,复制 起点来自噬菌体。 3. COS质粒载体—质粒载体中插入λcos片段, 以利于体外包装 4.噬粒载体(phagemid)—有质粒和M13、fd 的复制起点,以质粒或噬菌体方式复制。
iii)
M13 噬菌体
单链DNA噬菌体的特点
(1)+DNA。(ssDNA) (2)复制型(RF)是双链环状DNA。
(3)RF DNA和ssDNA都能转染感受态大 肠杆 菌。并产生噬菌斑。
(4)不存在包装限制。 (5)可产生大量的含有外源DNA插入片 段的单链分子,便于作探针或测序。
在大肠杆菌中表达重组蛋白的流程

在大肠杆菌中表达重组蛋白的流程
在大肠杆菌中表达重组蛋白的流程通常包括以下步骤:
1. 克隆:首先需要将目标基因克隆到适当的表达载体中。
这可以通过PCR扩增目标基因,然后将其与表达载体连接,形成重组质粒。
2. 转化:将重组质粒转化到大肠杆菌细胞中。
可以使用化学方法(如热冲击法)或电穿孔法将质粒导入细胞。
3. 选择:转化后,将细胞分散在含有适当抗生素的琼脂平板上培养。
只有带有重组质粒的细胞能够存活并形成菌落。
4. 培养:将含有重组细胞的培养液转移到适当的培养基中,并在适当的条件下培养。
这可能包括调节温度、pH值和搅拌速度等。
5. 表达:在培养期间,目标基因会被大肠杆菌细胞转录和翻译为蛋白质。
使用适当的启动子和调控序列,可实现目标蛋白的高效表达。
6. 细胞破碎:一旦细胞达到最佳表达水平,就需要破碎细胞以释放目标蛋白。
这可以通过多种方法实现,如超声波、高压破碎或化学方法。
7. 纯化:通过使用各种分离和纯化技术(如亲和层析、凝胶过滤、离子交换层析等),从细胞裂解液中纯化目标蛋白。
以上是在大肠杆菌中表达重组蛋白的一般流程。
具体的步骤和条件可能因实验设计和目标蛋白的特性而有所不同。
pET-21a(+)大肠杆菌表达载体说明

pET-21a(+)编号 载体名称北京华越洋生物VECT4170 pET-‐21a(+)pET21a载体基本信息别名: pET21a, p et 21a质粒类型: 大肠杆菌蛋白表达表达水平: 高克隆方法: 多克隆位点,限制性内切酶载体大小: 5443bp5' 测序引物: T75' 测序引物序列: 5'-‐TAATACGACTCACTATAGGG-‐3'载体标签: N-‐T7, C-‐His载体抗性: Ampicillin备注: Same a s p ET24abcd(+) b ut a mpR; a,b,c,d v ary b y M CS; T he f1 o riginis o riented s o t hat i nfection w ith h elper p hage w ill p roduce v irionscontaining single-‐stranded DNA that corresponds to the codingstrand.稳定性: 瞬时表达 Transient组成型: 组成型 Constitutive病毒/非病毒: 非病毒pET21a载体质粒图谱和多克隆位点信息pET21a载体简介The pET-‐21a-‐d(+) vectors carry an N-‐terminal T7•Tag® sequence plus an optional C-‐terminal His•Tag® sequence. These vectors differ from pET-‐24a-‐d(+) only by their selectable marker (ampicillin vs. kanamycin resistance). Unique sites are shown on the circle map. Note that the sequence i s n umbered b y t he p BR322 c onvention, s o t he T7 e xpression r egion i s r eversed o n t he circular map. The cloning/expression region of the coding strand transcribed by T7 RNApolymerase is shown below. The f1 origin is oriented so that infection with helper phage willproduce virions containing single-‐stranded DNA that corresponds to the coding strand. Therefore, s ingle-‐stranded s equencing s hould b e p erformed u sing t he T7 t erminator p rimer.pET21a载体序列ORIGIN1 ATCCGGATAT AGTTCCTCCT TTCAGCAAAA AACCCCTCAA GACCCGTTTA GAGGCCCCAA61 GGGGTTATGC TAGTTATTGC TCAGCGGTGG CAGCAGCCAA CTCAGCTTCC TTTCGGGCTT121 TGTTAGCAGC CGGATCTCAG TGGTGGTGGT GGTGGTGCTC GAGTGCGGCC GCAAGCTTGT181 CGACGGAGCT CGAATTCGGA TCCGCGACCC ATTTGCTGTC CACCAGTCAT GCTAGCCATA241 TGTATATCTC CTTCTTAAAG TTAAACAAAA TTATTTCTAG AGGGGAATTG TTATCCGCTC301 ACAATTCCCC TATAGTGAGT CGTATTAATT TCGCGGGATC GAGATCTCGA TCCTCTACGC361 CGGACGCATC GTGGCCGGCA TCACCGGCGC CACAGGTGCG GTTGCTGGCG CCTATATCGC421 CGACATCACC GATGGGGAAG ATCGGGCTCG CCACTTCGGG CTCATGAGCG CTTGTTTCGG481 CGTGGGTATG GTGGCAGGCC CCGTGGCCGG GGGACTGTTG GGCGCCATCT CCTTGCATGC541 ACCATTCCTT GCGGCGGCGG TGCTCAACGG CCTCAACCTA CTACTGGGCT GCTTCCTAAT601 GCAGGAGTCG CATAAGGGAG AGCGTCGAGA TCCCGGACAC CATCGAATGG CGCAAAACCT661 TTCGCGGTAT GGCATGATAG CGCCCGGAAG AGAGTCAATT CAGGGTGGTG AATGTGAAAC721 CAGTAACGTT ATACGATGTC GCAGAGTATG CCGGTGTCTC TTATCAGACC GTTTCCCGCG781 TGGTGAACCA GGCCAGCCAC GTTTCTGCGA AAACGCGGGA AAAAGTGGAA GCGGCGATGG841 CGGAGCTGAA TTACATTCCC AACCGCGTGG CACAACAACT GGCGGGCAAA CAGTCGTTGC901 TGATTGGCGT TGCCACCTCC AGTCTGGCCC TGCACGCGCC GTCGCAAATT GTCGCGGCGA961 TTAAATCTCG CGCCGATCAA CTGGGTGCCA GCGTGGTGGT GTCGATGGTA GAACGAAGCG1021 GCGTCGAAGC CTGTAAAGCG GCGGTGCACA ATCTTCTCGC GCAACGCGTC AGTGGGCTGA1081 TCATTAACTA TCCGCTGGAT GACCAGGATG CCATTGCTGT GGAAGCTGCC TGCACTAATG1141 TTCCGGCGTT ATTTCTTGAT GTCTCTGACC AGACACCCAT CAACAGTATT ATTTTCTCCC1201 ATGAAGACGG TACGCGACTG GGCGTGGAGC ATCTGGTCGC ATTGGGTCAC CAGCAAATCG1261 CGCTGTTAGC GGGCCCATTA AGTTCTGTCT CGGCGCGTCT GCGTCTGGCT GGCTGGCATA1321 AATATCTCAC TCGCAATCAA ATTCAGCCGA TAGCGGAACG GGAAGGCGAC TGGAGTGCCA1381 TGTCCGGTTT TCAACAAACC ATGCAAATGC TGAATGAGGG CATCGTTCCC ACTGCGATGC1441 TGGTTGCCAA CGATCAGATG GCGCTGGGCG CAATGCGCGC CATTACCGAG TCCGGGCTGC1501 GCGTTGGTGC GGATATCTCG GTAGTGGGAT ACGACGATAC CGAAGACAGC TCATGTTATA1561 TCCCGCCGTT AACCACCATC AAACAGGATT TTCGCCTGCT GGGGCAAACC AGCGTGGACC1621 GCTTGCTGCA ACTCTCTCAG GGCCAGGCGG TGAAGGGCAA TCAGCTGTTG CCCGTCTCAC1681 TGGTGAAAAG AAAAACCACC CTGGCGCCCA ATACGCAAAC CGCCTCTCCC CGCGCGTTGG1741 CCGATTCATT AATGCAGCTG GCACGACAGG TTTCCCGACT GGAAAGCGGG CAGTGAGCGC1801 AACGCAATTA ATGTAAGTTA GCTCACTCAT TAGGCACCGG GATCTCGACC GATGCCCTTG1861 AGAGCCTTCA ACCCAGTCAG CTCCTTCCGG TGGGCGCGGG GCATGACTAT CGTCGCCGCA1921 CTTATGACTG TCTTCTTTAT CATGCAACTC GTAGGACAGG TGCCGGCAGC GCTCTGGGTC1981 ATTTTCGGCG AGGACCGCTT TCGCTGGAGC GCGACGATGA TCGGCCTGTC GCTTGCGGTA2041 TTCGGAATCT TGCACGCCCT CGCTCAAGCC TTCGTCACTG GTCCCGCCAC CAAACGTTTC2101 GGCGAGAAGC AGGCCATTAT CGCCGGCATG GCGGCCCCAC GGGTGCGCAT GATCGTGCTC2161 CTGTCGTTGA GGACCCGGCT AGGCTGGCGG GGTTGCCTTA CTGGTTAGCA GAATGAATCA2221 CCGATACGCG AGCGAACGTG AAGCGACTGC TGCTGCAAAA CGTCTGCGAC CTGAGCAACA2281 ACATGAATGG TCTTCGGTTT CCGTGTTTCG TAAAGTCTGG AAACGCGGAA GTCAGCGCCC2341 TGCACCATTA TGTTCCGGAT CTGCATCGCA GGATGCTGCT GGCTACCCTG TGGAACACCT 2401 ACATCTGTAT TAACGAAGCG CTGGCATTGA CCCTGAGTGA TTTTTCTCTG GTCCCGCCGC 2461 ATCCATACCG CCAGTTGTTT ACCCTCACAA CGTTCCAGTA ACCGGGCATG TTCATCATCA 2521 GTAACCCGTA TCGTGAGCAT CCTCTCTCGT TTCATCGGTA TCATTACCCC CATGAACAGA 2581 AATCCCCCTT ACACGGAGGC ATCAGTGACC AAACAGGAAA AAACCGCCCT TAACATGGCC 2641 CGCTTTATCA GAAGCCAGAC ATTAACGCTT CTGGAGAAAC TCAACGAGCT GGACGCGGAT 2701 GAACAGGCAG ACATCTGTGA ATCGCTTCAC GACCACGCTG ATGAGCTTTA CCGCAGCTGC 2761 CTCGCGCGTT TCGGTGATGA CGGTGAAAAC CTCTGACACA TGCAGCTCCC GGAGACGGTC 2821 ACAGCTTGTC TGTAAGCGGA TGCCGGGAGC AGACAAGCCC GTCAGGGCGC GTCAGCGGGT 2881 GTTGGCGGGT GTCGGGGCGC AGCCATGACC CAGTCACGTA GCGATAGCGG AGTGTATACT 2941 GGCTTAACTA TGCGGCATCA GAGCAGATTG TACTGAGAGT GCACCATATA TGCGGTGTGA 3001 AATACCGCAC AGATGCGTAA GGAGAAAATA CCGCATCAGG CGCTCTTCCG CTTCCTCGCT 3061 CACTGACTCG CTGCGCTCGG TCGTTCGGCT GCGGCGAGCG GTATCAGCTC ACTCAAAGGC 3121 GGTAATACGG TTATCCACAG AATCAGGGGA TAACGCAGGA AAGAACATGT GAGCAAAAGG 3181 CCAGCAAAAG GCCAGGAACC GTAAAAAGGC CGCGTTGCTG GCGTTTTTCC ATAGGCTCCG 3241 CCCCCCTGAC GAGCATCACA AAAATCGACG CTCAAGTCAG AGGTGGCGAA ACCCGACAGG 3301 ACTATAAAGA TACCAGGCGT TTCCCCCTGG AAGCTCCCTC GTGCGCTCTC CTGTTCCGAC 3361 CCTGCCGCTT ACCGGATACC TGTCCGCCTT TCTCCCTTCG GGAAGCGTGG CGCTTTCTCA 3421 TAGCTCACGC TGTAGGTATC TCAGTTCGGT GTAGGTCGTT CGCTCCAAGC TGGGCTGTGT 3481 GCACGAACCC CCCGTTCAGC CCGACCGCTG CGCCTTATCC GGTAACTATC GTCTTGAGTC 3541 CAACCCGGTA AGACACGACT TATCGCCACT GGCAGCAGCC ACTGGTAACA GGATTAGCAG 3601 AGCGAGGTAT GTAGGCGGTG CTACAGAGTT CTTGAAGTGG TGGCCTAACT ACGGCTACAC 3661 TAGAAGGACA GTATTTGGTA TCTGCGCTCT GCTGAAGCCA GTTACCTTCG GAAAAAGAGT 3721 TGGTAGCTCT TGATCCGGCA AACAAACCAC CGCTGGTAGC GGTGGTTTTT TTGTTTGCAA 3781 GCAGCAGATT ACGCGCAGAA AAAAAGGATC TCAAGAAGAT CCTTTGATCT TTTCTACGGG 3841 GTCTGACGCT CAGTGGAACG AAAACTCACG TTAAGGGATT TTGGTCATGA GATTATCAAA 3901 AAGGATCTTC ACCTAGATCC TTTTAAATTA AAAATGAAGT TTTAAATCAA TCTAAAGTAT 3961 ATATGAGTAA ACTTGGTCTG ACAGTTACCA ATGCTTAATC AGTGAGGCAC CTATCTCAGC 4021 GATCTGTCTA TTTCGTTCAT CCATAGTTGC CTGACTCCCC GTCGTGTAGA TAACTACGAT 4081 ACGGGAGGGC TTACCATCTG GCCCCAGTGC TGCAATGATA CCGCGAGACC CACGCTCACC 4141 GGCTCCAGAT TTATCAGCAA TAAACCAGCC AGCCGGAAGG GCCGAGCGCA GAAGTGGTCC 4201 TGCAACTTTA TCCGCCTCCA TCCAGTCTAT TAATTGTTGC CGGGAAGCTA GAGTAAGTAG 4261 TTCGCCAGTT AATAGTTTGC GCAACGTTGT TGCCATTGCT GCAGGCATCG TGGTGTCACG 4321 CTCGTCGTTT GGTATGGCTT CATTCAGCTC CGGTTCCCAA CGATCAAGGC GAGTTACATG 4381 ATCCCCCATG TTGTGCAAAA AAGCGGTTAG CTCCTTCGGT CCTCCGATCG TTGTCAGAAG 4441 TAAGTTGGCC GCAGTGTTAT CACTCATGGT TATGGCAGCA CTGCATAATT CTCTTACTGT 4501 CATGCCATCC GTAAGATGCT TTTCTGTGAC TGGTGAGTAC TCAACCAAGT CATTCTGAGA 4561 ATAGTGTATG CGGCGACCGA GTTGCTCTTG CCCGGCGTCA ATACGGGATA ATACCGCGCC 4621 ACATAGCAGA ACTTTAAAAG TGCTCATCAT TGGAAAACGT TCTTCGGGGC GAAAACTCTC 4681 AAGGATCTTA CCGCTGTTGA GATCCAGTTC GATGTAACCC ACTCGTGCAC CCAACTGATC 4741 TTCAGCATCT TTTACTTTCA CCAGCGTTTC TGGGTGAGCA AAAACAGGAA GGCAAAATGC 4801 CGCAAAAAAG GGAATAAGGG CGACACGGAA ATGTTGAATA CTCATACTCT TCCTTTTTCA 4861 ATATTATTGA AGCATTTATC AGGGTTATTG TCTCATGAGC GGATACATAT TTGAATGTAT 4921 TTAGAAAAAT AAACAAATAG GGGTTCCGCG CACATTTCCC CGAAAAGTGC CACCTGAAAT4981 TGTAAACGTT AATATTTTGT TAAAATTCGC GTTAAATTTT TGTTAAATCA GCTCATTTTT 5041 TAACCAATAG GCCGAAATCG GCAAAATCCC TTATAAATCA AAAGAATAGA CCGAGATAGG 5101 GTTGAGTGTT GTTCCAGTTT GGAACAAGAG TCCACTATTA AAGAACGTGG ACTCCAACGT 5161 CAAAGGGCGA AAAACCGTCT ATCAGGGCGA TGGCCCACTA CGTGAACCAT CACCCTAATC 5221 AAGTTTTTTG GGGTCGAGGT GCCGTAAAGC ACTAAATCGG AACCCTAAAG GGAGCCCCCG 5281 ATTTAGAGCT TGACGGGGAA AGCCGGCGAA CGTGGCGAGA AAGGAAGGGA AGAAAGCGAA 5341 AGGAGCGGGC GCTAGGGCGC TGGCAAGTGT AGCGGTCACG CTGCGCGTAA CCACCACACC 5401 CGCCGCGCTT AATGCGCCGC TACAGGGCGC GTCCCATTCG CCA//其他大肠杆菌表达载体:pBV221 ptdTomato pET-52b(+) pAmCyan pDsRed-Express2 pBV220 pCold-GST pColdS-SUMO pCold TF pCold IV pCold III pCold IIpCold I pE-SUMO pCold-ProS2 pBAD102/D-TOPO pBAD202/D-TOPO pACYC184 pBAD/Thio-TOPO pBad/Myc-His C pBad/Myc-His B pBad/Myc-His A pBad/His C pBad/His B pBad/His A pBAD-TOPO pET-23b(+) pET-23a(+)pET-23c(+) pET-23(+) pET-12b(+) pET-12c(+)pET-12a(+) pET-11b(+) pET-11a(+) pET-11c(+) pBad24 pQE-82L pQE-81L pQE-80LpQE-32 pQE-9 pQE-16 pQE-31pQE-60 pQE-70 pQE-40 pET-51b(+)pET-50b(+) pET-49b(+) pET-48b(+) pET-47b(+)pET-26b(+) pET-32a(+) pET-21b(+) pET-22b(+)pET-14b pET-16b pET-15b pET-19bpET-20b(+) pET-21d(+) pET-21c(+) pET-21b(+)pET-21a(+) pET-24a(+) pET-24d(+) pET-25b(+)pET-27b(+) pET-28a(+) pET-30a(+) pET-42a(+)pET-43.1c(+) pET-43.1b(+) pET-43.1a(+) pET-44a(+)pET-44c(+) pET-46 EK/LIC pET-37b(+) pTrcHis2 C pTrcHis2 B pTrcHis2 A pET303/CT-His pET302/NT-His pRSET-CFP pRSET-EmGFP pRSET-BFP pGFPuvpET300/NT-DEST pET301/CT-DEST pGEM-T pBad43pGEX-4T-3 pGEX-5X-2 pBlueScript SK(+) pG-Tf2pG-KJE8 pGro7 pET-SUMO pSE380pET-17b pET102/D-TOPO pCDFDuet-1 pMAL-p5xpTf16 pET-28c(+) pBluescript II SK(+) pET-30b(+) pSUMO pProEX HTc pProEX HTb pProEX HTa pKD3 pKD13 pKD46 pTYB1pTYB2 pTWIN2 pBluescript II KS(-) pTYB12pMAL-p5e pACYCDuet-1 pEGM-11ZF(+) pEGM-7ZF(+) PinPoint Xa-3 PinPoint Xa-2 PinPoint Xa-1 pSP73pSP64 pTWIN1 pTYB11 pTXB1pET-5b(+) pBad/gIII C pBad/gIII B pBad/gIII A pET-5a(+) pMal-p4X pMal-p2G pkk223-3pkk232-8 pCYB1 pEZZ18 pBAD18pMAL-c5x pMal-p2E pMal-p2X pET-44 EK/LIC pET-43.1 EK/LIC pET-41 EK/LIC pMal-c4X pTrcHis BpET-31b(+) pET-3b(+) pET-41a(+) pGEX-3XpGEX-4T-2 pETDuet-1 pGEX-4T-1 pTrc99apET-28b(+) pET-His pALEX a,b,c pACYC177pBR322 pKD4 pKD20 pMXB10pEcoli-6xHN-GFPuv pKJE7 pRSET B pGEX-KGpGEX-2T pRSFDuet-1 pCOLADuet-1 pTrcHis C pTrcHis A pET-41b(+) pET-42b(+) pET-3a(+) pGEX-6P-3 pGEX-6P-2 pGEX-6P-1 pGEX-5X-3 pGEX-5X-1 pGEX-2TK pRSET A pMal-c2GpMal-c2E pMal-c2X pRSET C pQE-30pET-45b(+) pET-44b(+) pET-42c(+) pET-41c(+) pET-40b(+) pET-33b(+) pET-39b(+) pET-32 EK/LIC pET-32 Xa/LIC pET-32c(+) pET-32b(+) pET-30 Xa/LIC pET-30 EK/LIC pET-30c(+) pET-29c(+) pET-29b(+) pET-29a(+) pET-24c(+) pET-24b(+) pET-24(+)pET-23d(+) pET-11d(+) pBad33。
克隆载体与表达载体

克隆载体与表达载体
1. T载体是克隆载体,你的基因通过TA克隆法插入载体,这一步的目的是扩增基因,得到大量你要的目的基因片段,以便进行下一步表达载体的构建;DH5α是克隆菌株,不能用来做表达;
2. 欲在大肠杆菌中表达外源基因,需要首先构建原核表达载体,如可将构建至T 载体的目的通过双酶切切下来然后连接到表达载体上,如PET系列的载体等,构建成原核表达载体后,可将此载体转化表达菌株,如BL21(DE3,)等,如果你的目的基因含有稀有密码子,也可以转化Rosetta系列的表达菌株。
最后将构建成功的基因工程菌进行诱导表达。
1、T载体常用于克隆,一般来讲都会再把目的基因亚克隆到表达载体上。
但是并非T载体不能用来表达。
常见的pMD18-T,含有lacZ操纵子,可以IPTG诱导表达。
pGEM-T则含有T7和SP6启动子。
2、为了能够顺利地使用T7系统来表达蛋白,在如BL21(DE3)一类的大肠杆菌菌株中,编码T7RNA聚合酶的基因被整合到其染色体上,并位于lacUV5启动子的下游,受乳糖操纵子调控。
而目标蛋白的编码序列则被构建到含T7启动子序列的质粒上,并受T7RNA聚合酶调控转录。
3、构建质粒、基因表达看似比较成熟,也比较简单。
其实这里面大有学问。
学会看菌株和质粒的相关文档,答案就在其中。
如何构建一个大肠杆菌高效表达的分子克隆

如何构建一个大肠杆菌高效表达的分子克隆?影响基因在大肠杆菌中表达的因素是多方面的,以下我就从载体选择、启动子、终止子、核糖体结合位点、密码子、质粒拷贝数、表达产物的稳定性、受体细胞代谢等方面说明构建大肠杆菌高效表达的方法。
一、表达载体表达载体应具有以下条件:1、能够独立复制。
根据载体复制的特点,可分为严谨型和松弛型。
严谨型载体伴随宿主染色体的复制而复制,在宿主中拷贝数很少(1~3个);松弛型的复制而不依赖于宿主染色体,在宿主细胞中的拷贝数可多达3000个。
2、应具有灵活得多克隆位点和方便的筛选标记,便于外源基因的克隆、鉴定和筛选。
而且多克隆位点应位于启动子序列之后,以使外源基因表达。
3、应具有很强的启动子,能被大肠杆菌的RNA聚合酶识别。
4、应具有使启动子受抑制的阻遏子,只有在受到诱导时才能进行转录。
阻遏子的阻遏作用可由物理(如温度)、化学(如IPTG、IAA等)因素进行调节,这样可人为地选择启动子启动转录mRNA的时机。
因外源基因的高效表达往往会抑制宿主细胞的生长、增殖。
而阻遏子可使宿主细胞免除此不良影响。
例如可使宿主细胞快速生长增殖到相当量,再通过瞬时消除阻遏,使所表达的蛋白质在短时间内大量积累,同时可减少表达产物的降解。
5、应具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基因,而不转录其他无关基因。
同时强终止子所产生的mRNA较为稳定。
诱导表达时,由于强终止子所致的高水平转录反过来会影响质粒DNA自身的复制,从而引起质粒的不稳定或脱质粒现象。
因此在外源基因的下游安置强终止子可以克服由质粒转录引起的质粒不稳定。
6、所产生的mRNA必须有翻译的起始信号,即起始密码AUG和SD序列。
二、启动子启动子是表达载体最重要的组成成分,这是因为启动子控制了基因表达的第一个阶段,决定了mRNA合成的速度。
启动子是在转录水平上影响基因表达。
转录的最大速率取决于启动子中碱基的组成,往往会因为一个碱基的不同,启动子效率可能提高上千倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
筛 选 重 组 子 的 示 意 图
pBR322质粒载体的优点:
◇具有较小的分子量
(经验表明,为避免在DNA纯化过程中发生链的断裂,克 隆载体的分子大小最好不要超过10kb)
◇具有两种抗生素的遗传标记基因, 易于选择 重组DNA分子 ◇具较高的拷贝数,而且经过氯霉素扩增之后, 每个细胞中可累积1000~3000个拷贝
3)整合质粒: 含有整合酶编码基因和特异性整合位点序列,
克隆在整合质粒上的外源基因进入受体细胞 后,准确重组整合在染色体的特定位置上。
4)穿梭质粒 a) 分子上含有两个亲缘关系不同的复制子结构
及相应选择标记基因,因此能在两种不同种属 的受体中复制并检测。
大肠杆菌---链酶素穿梭质粒,大肠杆菌---酵 母菌穿梭质粒。
质 粒 载 体 克 隆 的 一 般 步 骤
see movie
3.质粒的分类及用途
1)克隆质粒: 用于克隆和扩增外源基因。 2) 测序质粒: a) 高拷贝复制,便于DNA片段克隆和扩增。 b) 含多酶切口的接头片段,在接头片段两端邻近
区域,设有两个不同的引物序列,重组质粒变性 后即可测序。
报告基因才能表达。 e) 表达量的大小直接反应被克隆基因的表达调控元件
的强弱。
6)表达质粒 a) 在多克隆位点的上游和下游分别装有两套转
录效率较高的启动子,合适的核糖体结合位点 (SD 序列),终止子结构。使得克隆在合适位 点上的任何外源基因都可在受体细胞中,高效表 达。
b) 大肠杆菌常用启动子:Lac, Tac, Trp 和来自 噬菌体强启动子 PL, PR 。它们由大肠杆菌 RNA 聚合酶识结构及特征的两种不同质粒不
能稳定地存在于同一受体细胞内,这种现象称质 粒的不相容性。 a) 两种不同质粒同时进入受体细胞,两者复制的 起始频率随机. b) 分裂前夕的拷贝数不均等,经过若干次细胞分 裂后必然导致,两种不同质粒的独占性。
2.质粒的改造、构建与使用
删除非必需区,减小质粒的分子量,提高外源DNA的 装载量(一般来说,大于20kb的质粒很难导入受体细 胞)
加入遗传标记基因 在标记基因内引入具有多种限制酶识别及切割位点的
DNA序列,即多克隆位点(multiple cloning sites, MCS) 根据不同要求,插入特殊的基因表达调控序列 灭活某些质粒的编码基因
大肠杆菌克隆载体
主要内容
一. 质粒载体 二. λ载体 三. cos 质粒 四. 细菌人工染色体
质粒载体
1.质粒的基本特性 2.质粒的改造、构建与使用 3.质粒的分类及用途 4.常用的质粒载体
1. 质粒的基本特性
质粒是一类存在于细菌细胞中能独立于染 色体DNA而自主复制的共价,闭合,环状双 链DNA分子 (1~500 kb)
(Covalently closed circular DNA, cccDNA)
Plasmids: smaller cycles of doublestrand DNA that do not carry essential genes
1). 具有自己的复制起始位点 (Origing)(ori) 和 控制复制频率的控制基因及编码基因,形成独立 复制子 (Replico) 结构。
pUC系列载体
是在pBR322基础上衍生出来的一 系列质粒载体
pUC质粒载体的优点:
◇具有更小的分子量和更高的拷贝数 (2.7kb, 500~700 copies/cell)
◇适用于组织化学法检测重组体,一步 实现对阳性克隆的鉴定
◇具有多克隆位点区(MCS)
Common plasmid vectors can carry up to 15kb foreign DNA
c) 来自T7 噬菌体的T7 启动子。必须由T7 噬菌 体来源 T7 RNA聚合酶识别起始转录。
d) 表达载体用T7 启动子必须用能产生T7 RNA 聚 合酶的受体菌株 JM109 , DE3。
问题:
4.关于穿梭质粒载体,下面哪种说法最正确() A. 在不同的宿主中具有不同的复制机制 B. 在不同的宿主细胞中使用不同的复制起点 C. 在不同的宿主细胞中使用不同的复制酶 D. 在不同的宿主细胞中具有不同的复制速率
问题
1.质粒具备下列特征,因此适合作为克隆载体,除了() 。
A.赋予宿主细胞某种可检测的特性 B.可通过一定的纯化步骤与宿主细胞基因组分离 C.独立复制的能力 D.可复制自身DNA以及插入的外源DNA E.甲基化防止宿主的限制性内切核酸酶对其降解 2.下列对质粒特性描述中,不正确的是()。 A. 既能以单链环状又能以双链环状的形式存在 B. 是独立于细菌染色体DNA以外的复制子 C. 没有线性的质粒DNA D. 能够自身复制。
4. 常用的质粒载体
pBR322
Ampr
1)限 制 酶 切 2)DNA重 组
无 DNA插 入
Ampr Tcr
转化
Ampr Tcr
Tc
有 DNA插 入
Amp r Tc s 外 源 DNA Ampr Tcs
无菌落
筛选重组子
阳性菌落
A m p + T c平 板
提 取 DNA 电泳
A m p平 板
重 组 DNA Ampr Tcs
2)可扩增性。 ▲严紧型复制质粒 (Stringent) 每个细胞复制1-5 个质粒拷贝。 ▲松弛型复制质粒 ( Relaxed) 具有高拷贝数30-50个。
3) 可转移性在天然条件下,野生型质粒通过细菌 接合作用从一个宿主细胞转移至另一个宿主细胞。
4) 选择标记的插入失活
F plasmid
b) 克隆在穿梭质粒上的外源基因不用更换载 体直接从一个受体菌转移至另一个受体菌中复 制并遗传。
5)探针质粒 a) 设计用来筛选克隆基因的表达调控元件,如启动子,
终止子。 b) 装有定量检测表达程度的报告基因,(抗生素的抗
性基因) c) 缺少启动子,终止子,载体本身不能表达报告基因 d) 当含有启动子,终止子的DNA片段插入合适的位点,