概率论 第五章数学期望和方差
概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列
∑
n
i =1
Xi −
∑ E(X
i =1
n
i
)
∑
n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0
《数学期望与方差》课件

相关系数在统计学、金融等领域有广泛应用,如股票价格与市场指数的相关性分析、回归分析等。
相关系数的应用
数学期望的性质
数学期望具有线性性质、可加性质、可乘性质等,这些性质在概率论和统计学中有重要应用。
05
数学期望与方差的实例分析
总结词
数学期望和方差在投资组合的风险与回报分析中具有重要应用。
总结词
利用数学期望和方差可以对赌博游戏的概率进行分析。
详细描述
在赌博游戏中,玩家需要根据游戏规则和概率计算每种可能结果的数学期望和方差,以评估游戏的风险和潜在收益。通过比较不同赌博游戏的数学期望和方差,玩家可以做出更明智的决策。
数学期望
对于赌博游戏而言,数学期望计算的是长期玩家的平均收益。如果数学期望为正数,则表示长期玩家将获得正收益;如果数学期望为负数,则表示长期玩家将面临亏损。
方差
在赌博游戏中,方差反映了玩家实际收益与预期收益之间的波动范围。较小的方差表示实际收益相对稳定,而较大的方差则表示实际收益可能存在较大的波动。
01
02
03
04
总结词:数学期望和方差可用于预测市场的表现。
THANK YOU
数学期望和方差在某些情况下可以相互转化,如当随机变量服从正态分布时。
变量同时变动的情况,即一个变量增加或减少时,另一个变量也相应地增加或减少的概率。
协方差的概念
协方差 = E[(X-E[X])(Y-E[Y])],其中E[X]和E[Y]分别是X和Y的数学期望,X和Y是随机变量。
协方差的计算公式
协方差可以用于分析投资组合的风险,如果两个资产的收益率呈正相关,则它们的协方差为正;如果呈负相关,则协方差为负。
协方差的应用
1
概率论与数理统计(浙大版)第五章第六章课件大数定律和中心极限定理

Yn x
lim P i1 n
n
x
x
证明略。
在实用上,n≥30
1
t2
e 2 dt
2
此定理表明,当n充分大时,Yn近似服从N 0,1.
n
即: X(i 近似)~N (n, n 2 ), i=1
从而,P(a
n i 1
Xi
b)
(b n ) ( a n ).
n
n
答案:N (, 2 )
关键词: 总体 个体 样本 统计量
2 分布 t 分布 F 分布
23
引言:数理统计学是一门关于数据收集、整理、分析 和推断的科学。在概率论中已经知道,由于大 量的 随机试验中各种结果的出现必然呈现它的 规律 性,因而从理论上讲只要对随机现象进行 足够多次观察,各种结果的规律性一定能清楚 地呈现,但是实际上所允许的观察永远是有限 的,甚至是 少量的。 例如:若规定灯泡寿命低于1000小时者 为次 品,如何确定次品率?由于灯泡寿命试验是 破坏性试验,不可能把整批灯泡逐一检测,只 能抽取一部分灯泡作为样本进行检验,以样本 的信 息来推断总体的信息,这是数理统计学研 究的问题之一。
24
§1 总体和样本
总体:研究对象的全体。如一批灯泡。 个体:组成总体的每个元素。如某个灯泡。 抽样:从总体X中抽取有限个个体对总体进行观察的取值过程。 随机样本:随机抽取的n个个体的集合(X1,X2,…,Xn), n为样本容量 简单随机样本:满足以下两个条件的随机样本(X1,X2,…,Xn)称
2. 用泊松分布近似计算
np 400 0.02 8 查表得
P X 2 1 P X 0 P X 1 1 0.000335 0.002684 0.9969
概率的期望与方差

概率的期望与方差概率是概率论中的重要概念,它描述了某个事件发生的可能性。
在概率论中,期望与方差是两个与概率密切相关的重要概念。
本文将就概率的期望与方差进行探讨。
一、期望期望是概率论中描述随机变量平均数的指标。
它代表了随机事件在一次试验中发生的长期平均结果。
概率的期望可以以数学期望的方式进行计算。
对于一个离散型随机变量X,其概率质量函数可以表示为:P(X=x1)=p1, P(X=x2)=p2, ..., P(X=xn)=pn其期望E(X)可以通过以下公式计算:E(X)=x1*p1 + x2*p2 + ... + xn*pn对于一个连续型随机变量X,其概率密度函数可以表示为:f(x)其期望E(X)可以通过以下公式计算:E(X)=∫xf(x)dx二、方差方差是衡量随机变量离散程度的指标。
它是随机变量与其期望的差值的平方的期望,用来描述随机事件的波动程度。
对于一个离散型随机变量X,其方差Var(X)可以通过以下公式计算:Var(X)=E[(X-E(X))^2]=∑(xi-E(X))^2 * P(X=xi)对于一个连续型随机变量X,其方差Var(X)可以通过以下公式计算:Var(X)=E[(X-E(X))^2]=∫(x-E(X))^2 * f(x)dx三、概率的期望与方差的意义1. 期望表示了一次试验中随机变量的平均结果,可以用来预测概率分布的中心位置。
2. 方差表示了一次试验中随机变量的波动程度,用来衡量随机事件的不确定性。
3. 期望和方差是概率分布的两个基本性质,可以通过它们来描绘随机事件的特征。
四、概率的期望与方差的应用1. 期望和方差在金融学中有着广泛的应用,用来衡量金融资产的收益和风险。
2. 在统计学中,期望和方差是估计参数和检验假设的重要工具。
3. 期望和方差也在工程、物理等领域中有广泛的应用,用来分析实验数据和优化系统性能。
总结:概率的期望与方差是概率论中重要的概念,用来描述随机事件的平均结果和波动程度。
数学期望与方差的计算

数学期望与方差的计算引言数学期望与方差是统计学中两个重要的概念。
它们是描述一个随机变量分布特征的常用指标,对于理解和分析数据具有重要意义。
本文将介绍数学期望与方差的概念、计算方法以及它们的应用。
数学期望数学期望又称平均值,是描述一个随机变量的平均水平的指标。
对于离散型随机变量,数学期望的计算公式为:$$ E(X)=\\sum_{i=1}^n x_i p_i $$其中,X为随机变量,x i为随机变量可能取的值,p i为随机变量取每个值的概率。
对于连续型随机变量,数学期望的计算公式为:$$ E(X)=\\int_{-\\infty}^{+\\infty} x f(x) dx $$其中,f(x)为随机变量的概率密度函数。
数学期望可以理解为在大量重复实验中,随机变量平均取值的水平。
方差方差是描述一个随机变量分散程度的统计指标。
方差越大,随机变量的取值越分散;方差越小,随机变量的取值越集中。
方差的计算公式为:Var(X)=E[(X−E(X))2]方差可以理解为每个随机变量与其期望的偏差的平方的加权平均。
数学期望与方差的计算方法离散型随机变量对于离散型随机变量,计算数学期望的方法如下:1.计算每个随机变量取值对应的概率。
2.将随机变量取值与对应的概率相乘。
3.将所有结果相加,得到数学期望。
计算方差可以使用以下方法:1.计算数学期望。
2.将每个随机变量取值与数学期望的差值的平方相乘。
3.将所有结果相加,得到方差。
连续型随机变量对于连续型随机变量,计算数学期望的方法如下:1.计算随机变量的概率密度函数。
2.将随机变量的取值与概率密度函数相乘。
3.对结果进行积分,得到数学期望。
计算方差可以使用以下方法:1.计算数学期望。
2.将随机变量的取值与数学期望的差值的平方与概率密度函数相乘。
3.对结果进行积分,得到方差。
数学期望与方差的应用数学期望与方差作为描述随机变量特征的指标,在统计学和概率论中有重要的应用。
数学期望在实际问题中可以用于计算平均值,如统计学中的样本均值就是数学期望的一种估计。
方差与期望

方差与期望期望公式:方差公式:方差=E(x²)-E(x)²,E(X)是数学期望。
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
它反映随机变量平均取值的大小。
概率论简介:期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。
期望值可能与每一个结果都不相等。
换句话说,期望值是该变量输出值的加权平均。
期望值并不一定包含于其分布值域,也并不一定等于值域平均值。
赌博是期望值的一种常见应用。
例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。
赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。
考虑到38种所有的可能结果,然后这里我们的设定的期望目标是“赢钱”,则因此,讨论赢或输两种预想状态的话,以1美元赌注押一个数字上,则获利的期望值为:赢的“概率38分之1,能获得35元”,加上“输1元的情况3 7种”,结果约等于-0。
0526美元。
也就是说,平均起来每赌1美元就会输掉0。
0526美元,即美式轮盘以1美元作赌注的期望值为负0。
0526美元扩展资料:在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
在许多实际问题中,研究方差即偏离程度有着重要意义。
方差刻画了随机变量的取值对于其数学期望的离散程度。
(标准差、方差越大,离散程度越大)若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D (X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
概率论中的期望与方差计算

假设检验
假设检验的基本思想是通过样本信息对总体参数进行检验 常见的假设检验方法有参数检验和非参数检验 参数检验方法包括t检验、Z检验和方差分析等 非参数检验方法包括卡方检验、秩和检验和K-W检验等
方差分析
方差分析的概念:通过比较不同组数据的离散程度,判断其稳定性。
方差分析的应用场景:在统计学中,方差分析常用于检验两组或多组数 据是否有显著性差异。
对于离散随机变量,期望值和方差 的具体计算公式分别为 E(X)=∑xp(x)和D(X)=∑x^2p(x)E(X)^2。
期望与方差的计算实例
第四章
离散型随机变量的期望与方差
定义:离散型随机变量的期望是所有可能取值的概率加权和,方差是各个取值与期望的差的 平方的平均值。
计算公式:期望E(X)=∑x*p(x),方差D(X)=∑p(x)*(x-E(X))^2。
期望的定义基于概率和随机变量的取值,通过数学运算计算得出。
期望具有线性性质,即对于两个随机变量的和或差,其期望等于各自期望 的和或差。 期望的计算方法包括离散型和连续型两种情况,具体计算方法根据随机变 量的分布类型而有所不同。
期望的性质
无穷可加性:对 于任意个事件, 概率之和等于1
交换律:期望的 交换律满足 E(X+Y)=E(X)+E (Y)
概率论中的期望与 方差计算
XX,a click to unlimited possibilities
汇报人:XX
目录
CONTENTS
01 概率论中的期望 02 概率论中的方差 03 期望与方差的关系 04 期望与方差的计算实例
05 期望与方差在统计学中的应用
概率论中的期望
第一章
期望的定义
期望是概率论中的一个重要概念,它表示随机变量取值的平均值。
随机变量的数学期望与方差

随机变量的数学期望与方差随机变量在概率论中具有重要地位,它描述了随机事件的变化规律,数学期望和方差是衡量随机变量分布的重要指标。
一、数学期望数学期望是对随机变量取值的平均值的度量,记作E(X),其中X为随机变量。
数学期望可以理解为长期重复试验中,随机变量取值的平均结果。
对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X=x))其中x为随机变量的取值,P(X=x)为该取值发生的概率。
对于连续型随机变量,数学期望的计算公式为:E(X) = ∫(x * f(x))dx其中f(x)为随机变量的概率密度函数。
二、方差方差是随机变量取值分散程度的度量,记作Var(X)或σ^2,其中X为随机变量。
方差描述的是随机变量取值与其数学期望之间的偏离情况。
对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))^2 * P(X=x))其中x为随机变量的取值,E(X)为该随机变量的数学期望。
对于连续型随机变量,方差的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中f(x)为随机变量的概率密度函数。
三、应用举例为了更好理解数学期望与方差的作用和计算方法,下面以骰子为例进行说明。
假设我们有一个六面骰子,其取值范围为1到6,每个面出现的概率相等。
我们可以定义骰子的随机变量X表示投掷后骰子的结果。
1. 计算数学期望:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5所以,这个六面骰子的数学期望为3.5,即在长期重复的投掷中,平均每次的点数是3.5。
2. 计算方差:Var(X) = ((1-3.5)^2 * 1/6) + ((2-3.5)^2 * 1/6) + ((3-3.5)^2 * 1/6) + ((4-3.5)^2 * 1/6) + ((5-3.5)^2 * 1/6) + ((6-3.5)^2 * 1/6) ≈ 2.92所以,这个六面骰子的方差为2.92,即在长期重复的投掷中,每次投掷结果与平均值3.5偏离的程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X1
+
Xn X2 + .
.
.
+
Xn
],
又
E[ X1
+
X1 X2 + . . .
+
Xn
+
X1
+
X2 X2 + . . .
+
Xn
+
···
+
X1
+
Xn X2 + . . .
+
Xn ]
=
E1
=
1,
故
E
[
Xi X1+X2+...+Xn
]
=
1 n
,
i
=
1, 2, . . . , n
从而
E[ ] X1+X2+...+Xk
4
从而
ρ(X
+ Y, X
−
Y)
=
√ Cov(X+√Y,X−Y )
V ar(X+Y ) V ar(X−Y )
=
V arX−V arY V arX+varY
.
5.27 解 由题意知 U = aX + bY + cZ + d 服从正态分布, 且 EU = aEX + bEY + cEZ + d = aµx + bµy + cµz + d, V arU = a2V arX + b2V arY + c2V arZ = a2σx2 + b2σy2 + c2σz2. 即 U ∼ N (aµx + bµy + cµz + d, a2σx2 + b2σy2 + c2σz2).
=
1 0
2 0
6x4+2x2y 5
dydx
=
56 75
.
5.16 解 设 Xi = 1 表示第 i 站有人下车, Xi = 0 表示第 i 站无人下车, i = 1, 2, . . . , 9
则
9
Xi
i=1
表示有人下车的站数,
且
P (Xi
=
1)
=
1
−
838 938
,
P
(Xi
=
0)
=
, 838
938
故有人下车的平均站数为
)
的联合密度为
f (x, y)
=
1 π
,
(x,
y)
∈
D
故
√ E X2 + Y 2 =
√
D
x2 + π
y2
dxdy
=
2π 0
1 0
r2 π
=
23 .
5.20 解
n E(Xj − µˆ)2 Eσˆ2 = j=1 n − 1
n
V ar(Xj − µˆ) = j=1 n − 1
=
n
V ar(Xj
j=1
−
则 P (Y > y) = P (X1 > y, X2 > y, . . . , X5 > y) = P (X1 > y)P (X2 > y) . . . P (X5 > y) = exp(−5yλ),
从而首台计算机被感染病毒前的时间的期望为
EY =
∞
P (Y > y)dy =
0
∞
exp(−5yλ)dy
cos(ak−aj) 2
.
5.14 解 E(XY )−1 =
EY = D yf (x, y)dxdy
D
1 xy
f
(x,
y)dxdy
=
∞ 1
=
∞ 1
x3
1 x
2x3y2
x
1
f
(x,
y)y
dy
dx
x
1 xy
dydx
=
3 5
.
=
3 4
,
5.15 解
EX =
xfX(x)dx =
1 0
x(
2 0
f
(x,
y)dy)dx
EZ =
∞
P (Z > z)dz =
0
∞
1
0
−
(1 − exp(−zλ))5dz
=
137 60λ
.
5.18 解 设 θ 为辐角, 则 θ ∼ U(0, 2π), 落点的横坐标为 X = R cos(θ),
从而落点的横坐标的数学期望为
EX =
2π 0
R cos 2π
θ dθ
=
0.
5.19 解
(X, Y
5.6 解 设 Xi 表示审稿后第 i 页的遗留错误的个数, Yi 表示第 i 页的审稿前的错误数, 则
∞
P (Xi = k) =
P (Xi = k|Yi = n)P (Yi = n)
n=k
=
∞ n=k
n k
×
0.15k
×
0.85n−k
×
2n n!
×
e−2
=
(0.15 × k!
2)k
e−2
×
∞
[
n=k
σj−2
n
时, V ar(Y ) 最小.
σj−2
j=1
5.23 解
设这个时间段内到达的乘客数为
X,
则乘
i
路车的人数为
i 15
X,
且由已知可得 X ∼ P(90), 故 EX = 90, V arX = 90,
故乘
i
路车的人数的数学期望为
E
(
i 15
X
)
=
i 15
E
X
=
6i,
方差为
V
ar(
i 15
X
)
=
i2 152
V
arX
=
2i2 5
.
5.24 解
由于指数分布无记忆性,
故剩余寿命的期望仍为
1 λ
,
方差仍为
1 λ2
.
∞
5.25 证明 (1)P (X > x) = P ( {X = xj}) = P (X = xj) = pj = pjI[x < xj],
xj >x
xj >x
xj >x
j=1
(2)EX =
(n
1 −
k)!
×
(2
×
0.85)n−k]
=
(0.15 × k!
2)k
e−2
×
e2×0.85
=
0.3k k!
×
e−0.3,
即 Xi ∼ P(0.3), i = 1, 2, . . . , 290 则 E(Xi) = 0.3, 从而该书校对后的平均遗留下的打印错误为
1
290
290
E( Xi) = E(Xi) = 290 × 0.3 = 87.
i=1
i=1
(b)E
(
Sn n
)
=
E(Sn) n
=
µ,
V
ar
(
Sn n
)
=
V ar(Sn) n2
=
σ2,
(c)E(T2n) = E[X1−X2+· · ·+(−1)2n−2X2n−1+(−1)2n−1X2n] = µ−µ+· · ·+(−1)2n−2µ+(−1)2n−1µ = 0, n = 1, 2, . . .
1 107
,
元.
P (X
=
−1)
=
1
−
1 107
,
5.3 解 设 X 表示玩家在一局中的获利金额, 则
P (X
=
1000)
=
13×C42 C522
=
1 17
,
所以期望获利为 EX = 1000
×
P (X = −100) = 1
1 17
+
(−100)
×
16 17
=
−
1 17
=
−35.29
16 17
,
元.
5.28 解
EX =
1 0
xfX
(x)dx
=
1 0
1 0
xf
(x,
y)dydx
=
由 X, Y
的对称性可得 EY
= EX =
7 12
,
1 0
1 0
x(x
+
y)dydx
=
7 12
,
EXY
=
1 0
1 0
xyf (x,
y)dxdy
=
1 0
1 0
故 Cov(X, Y ) = EXY − EXEY =
xy(x + y)dxdy =
E(T2n+1) = E(T2n + X2n+1) = E(T2n) + E(X2n+1) = µ, n = 1, 2, . . . V ar(Tn) = n V ar(Xi) = nσ2.
i=1
5.22 解
V
ar(Y
)
=
n j=1
V
ar(aj Xj )
=
n j=1
a2j σj2,
由拉格朗日乘数法可得, 当 aj =
5.11 解
E(sin(X)) =
π 2