方差分析中的两两比较
方差分析的几个统计学问题

方差分析的几个统计学问题来源:52stata博客正态性检验正态性检验是统计学分析中非常基础的一个问题,但也很关键,它牵扯到你应该使用什么样的方法,数据是否满足正态性决定了你是否应采用参数方法还是非参数方法。
所谓正态性检验,也就是看你的数据是不是满足正态分布,也就是说,如果把你的数据做个频数图,是不是看起来像个钟形。
正态性检验最简单的就是直接画频数图,看形状是不是类似于对称的钟形形状,如果有明显的数据都集中在某一边,那图形看起来就会偏向一侧,这可能意味着你的数据不满足正态性,可以考虑用非参数方法来分析。
正态性检验常用的有四种方法,即Shapiro-Wilk检验、Kolmogorov-Smirnov检验、Cramer-von Mises检验和Anderson-Darling检验。
这是SAS软件中输出的四种检验。
Shapiro-Wilk检验是专门用于正态性检验的方法,其思想是基于峰度和偏度来考虑偏离正态的程度,该法可用于例数在3至50之间。
但后来经Royston改进后,可用于例数在3至2000之间的正态性检验。
因此,有的统计书上还在强调说SAS中的Shapiro-Wilk检验只能用于50例以下的数据,实际上是不对的,作者没有仔细看一下方法的进展。
SAS中输出的Shapiro-Wilk检验是可以用在2000例以内数据的检验的。
其余三种方法是通用方法,可用于多种分布的拟合优度检验,正态性检验只是其中之一。
其思想都是基于理论分布函数与实际分布函数的差距,当假定理论分布函数是正态分布时,便是正态性检验。
当假定理论分布为其它分布(如Poisson分布)时,便成了其它分布的拟合优度检验。
所以说,Shapiro-Wilk检验是专门检验正态分布的,其它三种方法是顺便检验的。
就像诺基亚是专做手机的,而联想只是业余做手机的,也做其它的,手机只是其中之一。
正常情况下,如果例数在2000以内,Shapiro-Wilk检验可作为首选的结果,该法具有较好的检验效能。
r语言 三组间两两比较方法

在R语言中,有多种方法可以进行三组间的两两比较。
以下是一些常见的方法:1. t检验(pairwise.t.test):当数据满足正态性和方差齐性假设时,可以使用t检验来进行两两比较。
该函数会对每对组进行t检验,计算出每对之间的差异显著性水平和置信区间。
```Rpairwise.t.test(data$group, data$value, p.adjust.method = "bonferroni")```2. 方差分析(ANOVA):如果数据不满足t检验的假设条件,可以使用方差分析来进行两两比较。
可以使用ANOVA函数进行方差分析,然后使用posthoc函数进行多重比较。
```Rmodel <- aov(value ~ group, data = data)posthoc <- TukeyHSD(model)```3. 非参数检验(Kruskal-Wallis检验):当数据不满足正态性和方差齐性假设时,可以使用非参数方法进行两两比较,如Kruskal-Wallis检验。
可以使用kruskal.test函数进行Kruskal-Wallis检验,然后使用pairwise.wilcox.test函数进行多重比较。
```Rkruskal.test(value ~ group, data = data)pairwise.wilcox.test(data$value, data$group, p.adjust.method = "bonferroni")```这些方法都可以用于进行三组间的两两比较,具体应该根据数据的性质和实验设计来选择合适的方法。
在进行多重比较时,通常需要考虑到多重比较校正以控制错误率。
常见的多重比较校正方法包括Bonferroni校正、Holm校正等。
方差分析两两比较

方差分析中均值比较的方法最近看文献时,多数实验结果用到方差分析,但选的方法不同,主要有LSD,SNK-q,TukeyHSD法等,从百度广库里找了一篇文章,大概介绍这几种方法,具体公式不列了,软件都可以计算。
这几种方法主要用于方差分析后,对均数间进行两两比较。
均数间的两两比较根据研究设计的不同分为两种类型:一种常见于探索性研究,在研究设计阶段并不明确哪些组别之间的对比是更为关注的,也不明确哪些组别问的关系已有定论、无需再探究,经方差分析结果提示“ 概括而言各组均数不相同”后,对每一对样本均数都进行比较,从中寻找有统计学意义的差异:另一种是在设计阶段根据研究目的或专业知识所决定的某些均数问的比较.常见于证实性研究中多个处理组与对照组、施加处理后的不同时间点与处理前比较。
最初的设计方案不同.对应选择的检验方法也不同.下面分述两种不同设计均数两两比较的方法选择。
1.事先计划好的某对或某几对均数间的比较:适用于证实性研究。
在设计时就设定了要比较的组别,其他组别间不必作比较。
常用的方法有: Dunnett-t 检验、LSD-t 检验(Fisher ’s least significant difference t test) 。
这两种方法不管方差分析的结果如何——即便对于 P稍大于检验水平α进行所关心组别间的比较。
1.1 LSD-t检验即最小显著法,是Fisher于1935年提出的,多用于检验某一对或某几对在专业上有特殊探索价值的均数间的两两比较,并且在多组均数的方差分析没有推翻无效假设H0时也可以应用。
该方法实质上就是 t检验,检验水准无需作任何修正,只是在标准误的计算上充分利用了样本信息,为所有的均数统一估计出一个更为稳健的标准误,因此它一般用于事先就已经明确所要实施对比的具体组别的多重比较。
由于该方法本质思想与 t 检验相同,所以只适用于两个相互独立的样本均数的比较。
LSD法单次比较的检验水准仍为α,因此可以认为该方法是最为灵敏的两两比较方法.另一方面,由于LSD法侧重于减少第Ⅱ类错误,势必导致此法在突出组间差异的同时,有增大I类错误的倾向。
多组间两两比较的方法

多组间两两比较的方法一种多组间两两比较的方法就是采用一种叫做“多元方差分析(multivariate analysis of variance,MANOVA)”的统计方法。
虽然这项分析看上去很复杂,但它的核心思想其实很简单。
MANOVA的假设是不同组之间的平均值有显著差异。
为了证明这一假定,将所有变量以向量形式表示出来,然后用F-检验或ADONIS检验来测试其相似性。
如果P值小于0.05,说明这些变量之间存在显著差异。
然后,再使用T检验或Tukey-Kramer HSD检验来测试不同组之间的差异性。
如果P值也小于0.05,则表明不同组之间存在显著差异。
此外,也可以使用ANOVA或Kruskal-Wallis H检验来对多组进行两两比较。
ANOVA是一种广泛使用的多元分析方法,它通过F-test来测试变量之间的差异性。
而Kruskal-Wallis H检验是一种非参数方法(nonparametric method ),它用H-test来测试不同样本中数字大小的差异性。
如果P值小于0.05,则表明不同样本之间存在显著差异。
此外,也可以使用Wilcoxon rank sum test or Wilcoxon signed rank test 来对两个独立样本进行两两比较, 这是一种常用的非参数方法, 首先将样本中所有数字从小到大依序重新加上正序号(rank),然后再将正序号相加, 如果rank sum 差别大, 则表明样本中数字大小有显著差别, P值小于0.05时即表明样本中数字大小有显著性差别. Wilcoxon signed rank test 测试的是相对数字大小而不是相对数字大小, 其测试命题是: 给定样本A, B, 样本A中x > y的概率是否要大于样本B中x > y的概率.最后, 还可以使用G-test或Fisher’s exact test来对两个独立样本进行两两比较。
G-test是一种基于卡方分布的统计方法,它用来测试相关性,如果P值小于0.05,则表明不同样本之间存在显著差异。
方差分析中的两两比较

一、均数间的多重比较(Multipie Comparison)方法的选择:1、宇文皓月2、如两个均数的比较是独立的,或者虽有多个样本的均数,但事先已计划好要做某几对均数的比较,则不管方差分析的结果如何,均应进行比较,一般采取LSD法或Bonferroni法;3、如果事先未计划进行多重比较,在方差分析得到有统计意义的F检验值后,可以利用多重比较进行探索性分析,此时比较方法的选择要根据研究目的和样本的性质。
比方,需要进行多个实验组和一个对照组比较时,可采取Dunnett法;如需要进行任意两组之间的比较而各组样本的容量又相同时,可采取Tukey法;若各组样本的容量不相同时,可采取Scheffe法;若事先未计划进行多重比较,且方差分析结果未有显著不同,则不该进行多重比较;4、有时候研究者事先有对特定几组均值比较的考虑,这时可以不必Post hoc进行几乎所有均值组合的两两比较,而是通过Contrasts中相应的设置来实现;5、最后需要注意的是,如果组数较少,如3组、4组,各种比较方法得到的结果不同不会很大;如果比较的组数很多,则要慎重选择两两均值比较的方法。
6、LSD法:即最小显著差法;是最简单的比较方法之一,它其实只是t检验的一种简单变形,未对检验水准做任何校正,只是在尺度误计算上充分利用了样本信息。
它一般用于计划好的多重比较;7、Sidak法:它是在LSD法上加入了Sidak校正,通过校正降低每次两两比较的一类错误率,达到整个比较最终甲类错误率为α的目的;8、Bonferroni法:它是Bonferroni校正在LSD法上的应用。
9、Scheffe法:它实质上是对多组均数间的线性组合是否为0做假设检验(即所谓的Contrasts),多用于各组样本容量不等时的比较;10、Dunnett法:经常使用于多个实验组与一个对照组间的比较,因此使用此法时,应当指定对照组;11、S-N-K法:它是根据预先制定的准则将各组均数分为多个子集,然后利用Studentized Range分布进行假设检验,并根据均数的个数调整总的犯一类错误的概率不超出α;12、Tukey法:这种方法要求各组样本容量相同,它也是利用Studentized Range分布进行各组均数间的比较,与S-N-K法分歧,它是控制所有比较中最大的一类错误(即甲类错误)的概率不超出α;13、Duncan法:思路与S-N-K法相似,只不过检验统计量服从的是Duncan′s Multiple Range分布;14、还需注意的是,SPSS同时给出了方差不齐性时的4种检验方法,但从接受程度和稳定性看,方差不齐性时尽量不做多重比较。
方差分析两两比较

方差分析中均值比较的方法最近看文献时,多数实验结果用到方差分析,但选的方法不同,主要有LSD,SNK-q,TukeyHSD法等,从百度广库里找了一篇文章,大概介绍这几种方法,具体公式不列了,软件都可以计算。
这几种方法主要用于方差分析后,对均数间进行两两比较。
均数间的两两比较根据研究设计的不同分为两种类型:一种常见于探索性研究,在研究设计阶段并不明确哪些组别之间的对比是更为关注的,也不明确哪些组别问的关系已有定论、无需再探究,经方差分析结果提示“ 概括而言各组均数不相同”后,对每一对样本均数都进行比较,从中寻找有统计学意义的差异:另一种是在设计阶段根据研究目的或专业知识所决定的某些均数问的比较.常见于证实性研究中多个处理组与对照组、施加处理后的不同时间点与处理前比较。
最初的设计方案不同.对应选择的检验方法也不同.下面分述两种不同设计均数两两比较的方法选择。
1. 事先计划好的某对或某几对均数间的比较:适用于证实性研究。
在设计时就设定了要比较的组别,其他组别间不必作比较。
常用的方法有:Dunnett-t 检验、LSD-t 检验(Fisher ’s least significant dif ference t test) 。
这两种方法不管方差分析的结果如何——即便对于P稍大于检验水平α进行所关心组别间的比较。
LSD-t检验即最小显著法,是Fisher于1935年提出的,多用于检验某一对或某几对在专业上有特殊探索价值的均数间的两两比较,并且在多组均数的方差分析没有推翻无效假设H0时也可以应用。
该方法实质上就是t检验,检验水准无需作任何修正,只是在标准误的计算上充分利用了样本信息,为所有的均数统一估计出一个更为稳健的标准误,因此它一般用于事先就已经明确所要实施对比的具体组别的多重比较。
由于该方法本质思想与t 检验相同,所以只适用于两个相互独立的样本均数的比较。
LSD法单次比较的检验水准仍为α ,因此可以认为该方法是最为灵敏的两两比较方法.另一方面,由于LSD法侧重于减少第Ⅱ类错误,势必导致此法在突出组间差异的同时,有增大I类错误的倾向。
方差分析中均值比较的方法

方差分析中均值比较的方法最近看文献时,多数实验结果用到方差分析,但选的方法不同,主要有LSD,SNK-q,TukeyHSD法等,从百度广库里找了一篇文章,大概介绍这几种方法,具体公式不列了,软件都可以计算。
这几种方法主要用于方差分析后,对均数间进行两两比较。
均数间的两两比较根据研究设计的不同分为两种类型:一种常见于探索性研究,在研究设计阶段并不明确哪些组别之间的对比是更为关注的,也不明确哪些组别问的关系已有定论、无需再探究,经方差分析结果提示“ 概括而言各组均数不相同”后,对每一对样本均数都进行比较,从中寻找有统计学意义的差异:另一种是在设计阶段根据研究目的或专业知识所决定的某些均数问的比较.常见于证实性研究中多个处理组与对照组、施加处理后的不同时间点与处理前比较。
最初的设计方案不同.对应选择的检验方法也不同.下面分述两种不同设计均数两两比较的方法选择。
1. 事先计划好的某对或某几对均数间的比较:适用于证实性研究。
在设计时就设定了要比较的组别,其他组别间不必作比较。
常用的方法有: Dunnett-t 检验、LSD-t 检验(Fisher ’s least significant dif ference t test) 。
这两种方法不管方差分析的结果如何——即便对于 P稍大于检验水平α进行所关心组别间的比较。
1.1 LSD-t检验即最小显著法,是Fisher于1935年提出的,多用于检验某一对或某几对在专业上有特殊探索价值的均数间的两两比较,并且在多组均数的方差分析没有推翻无效假设H0时也可以应用。
该方法实质上就是 t检验,检验水准无需作任何修正,只是在标准误的计算上充分利用了样本信息,为所有的均数统一估计出一个更为稳健的标准误,因此它一般用于事先就已经明确所要实施对比的具体组别的多重比较。
由于该方法本质思想与 t 检验相同,所以只适用于两个相互独立的样本均数的比较。
LSD法单次比较的检验水准仍为α ,因此可以认为该方法是最为灵敏的两两比较方法.另一方面,由于LSD法侧重于减少第Ⅱ类错误,势必导致此法在突出组间差异的同时,有增大I类错误的倾向。
方差分析两两比较知识分享

方差分析两两比较方差分析中均值比较的方法最近看文献时,多数实验结果用到方差分析,但选的方法不同,主要有LSD,SNK-q,TukeyHSD法等,从百度广库里找了一篇文章,大概介绍这几种方法,具体公式不列了,软件都可以计算。
这几种方法主要用于方差分析后,对均数间进行两两比较。
均数间的两两比较根据研究设计的不同分为两种类型:一种常见于探索性研究,在研究设计阶段并不明确哪些组别之间的对比是更为关注的,也不明确哪些组别问的关系已有定论、无需再探究,经方差分析结果提示“ 概括而言各组均数不相同”后,对每一对样本均数都进行比较,从中寻找有统计学意义的差异:另一种是在设计阶段根据研究目的或专业知识所决定的某些均数问的比较.常见于证实性研究中多个处理组与对照组、施加处理后的不同时间点与处理前比较。
最初的设计方案不同.对应选择的检验方法也不同.下面分述两种不同设计均数两两比较的方法选择。
1. 事先计划好的某对或某几对均数间的比较:适用于证实性研究。
在设计时就设定了要比较的组别,其他组别间不必作比较。
常用的方法有: Dunnett-t 检验、LSD-t 检验(Fisher ’s least s ignificant difference ttest) 。
这两种方法不管方差分析的结果如何——即便对于 P稍大于检验水平α进行所关心组别间的比较。
1.1 LSD-t检验即最小显著法,是Fisher于1935年提出的,多用于检验某一对或某几对在专业上有特殊探索价值的均数间的两两比较,并且在多组均数的方差分析没有推翻无效假设H0时也可以应用。
该方法实质上就是 t检验,检验水准无需作任何修正,只是在标准误的计算上充分利用了样本信息,为所有的均数统一估计出一个更为稳健的标准误,因此它一般用于事先就已经明确所要实施对比的具体组别的多重比较。
由于该方法本质思想与 t 检验相同,所以只适用于两个相互独立的样本均数的比较。
LSD法单次比较的检验水准仍为α ,因此可以认为该方法是最为灵敏的两两比较方法.另一方面,由于LSD法侧重于减少第Ⅱ类错误,势必导致此法在突出组间差异的同时,有增大I类错误的倾向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、均数间的多沉比较(Multipie Comparison)要领的采用:之阳早格格创做
1、如二个均数的比较是独力的,大概者虽有多个样本的均数,但是预先已计划佳要搞某几对付均数的比较,则没有管圆好分解的截止怎么样,均应举止比较,普遍采与LSD法大概Bonferroni法;
2、如果预先已计划举止多沉比较,正在圆好分解得到有统计意思的F考验值后,不妨利用多沉比较举止探干脆分解,此时比较要领的采用要根据钻研手段战样本的本量.比圆,需要举止多个真验组战一个对付照组比较时,可采与Dunnett法;如需要举止任性二组之间的比较而各组样本的容量又相共时,可采与Tukey法;若各组样本的容量没有相共时,可采与Scheffe法;若预先已计划举止多沉比较,且圆好分解截止已有隐著没有共,则没有该举止多沉比较;
3、偶尔间钻研者预先有对付特定几组均值比较的思量,那时不妨没有必Post hoc举止险些所有均值拉拢的二二比较,而是通过Contrasts中相映的树坐去真止;
4、末尾需要注意的是,如果组数较少,如3组、4组,百般比较要领得到的截止没有共没有会很大;如果比较的组数很多,则要慎沉采用二二均值比较的要领.
5、LSD法:即最小隐著好法;是最简朴的比较要领之一,
它本去不过t考验的一种简朴变形,已对付考验程度搞所有矫正,不过正在尺度误估计上充分利用了样本疑息.它普遍用于计划佳的多沉比较;
6、Sidak法:它是正在LSD法上加进了Sidak矫正,通过矫正落矮屡屡二二比较的一类过失率,达到所有比较最后甲类过失率为α的手段;
7、Bonferroni法:它是Bonferroni矫正正在LSD法上的应用.
8、Scheffe法:它真量上是对付多组均数间的线性拉拢是可为0搞假设考验(即所谓的Contrasts),多用于各组样本容量没有等时的比较;
9、Dunnett法:时常使用于多个真验组与一个对付照组间的比较,果此使用此法时,应当指定对付照组;
10、S-N-K法:它是根据预先造定的规则将各组均数分为多身材集,而后利用Studentized Range分散举止假设考验,并根据均数的个数安排总的犯一类过失的概率没有超出α;
11、Tukey法:那种要领央供各组样本容量相共,它也是利用Studentized Range分散举止各组均数间的比较,与S-N-K法分歧,它是统造所有比较中最大的一类过失(即甲类过失)的概率没有超出α;
12、Duncan法:思路与S-N-K法相似,只没有过考验统计量遵循的是Duncan′s Multiple Range分散;
13、还需注意的是,SPSS共时给出了圆好没有齐性时的4种考验要领,但是从担当程度战宁静性瞅,圆好没有齐性时尽管没有搞多沉比较.
二、各组均数的粗细比较(Contrast)
对付于具备4组均值的比较,正在Coefficient如果依次输进数字3,-1,-1,-1,则表示要考验本假设Ho:μ1=(μ2+μ3+μ4)/3;
三、一元单果素圆好分解
1、一元单果素圆好分解包罗二种数教模型:(1)独力模型;(2)接互模型;
设二果素为A战B,则有
(1)独力模型:应变量Y的变更=A果素效率+B果素效率+随机效率
(2)接互模型:Y的变更=A的效率+B的效率+AB接互效率+随机效率
2、正在接互模型中,每个格子内起码要有二个样本
个案,那样才搞把接互效率分散出去.
3、对付于考验而止,最先经常考验接互效率的效率
是可隐著;如果没有隐著,则将接互效率并进随机效
率,而后按独力模型考验;
4、如果接互效率隐著,进一步的考验则要根据变量
A战B的属性有所变更:
分为牢固模型、随机模型战混同模型.详睹卢淑华课本的相闭真量.。