概率论课件东北大学

合集下载

东北大学概率论课后习题答案PPT2-3

东北大学概率论课后习题答案PPT2-3

1 2
e

( x )2 2 2
, x ,
其中,(>0)为常数,则X为正态变量,称其服从参数 为, 2 的正态分布或高斯(Gauss)分布,记为X~ N(,2)。
f ( x)
正态分布密度函数图示
o

x
性质:1.曲线关于x=对称。
2.当x=时取到最大值。
1),计算P{ X 0},P{2, 31 X 1,25}, 例7 设X ~ N (0, P{| X | 1.54},P{的血压(收缩压,以mm-Hg计), X ~ N( 110, 12 2 ) 求: (1)18岁女青年血压低于100mm-Hg或高于120mm-Hg的概 率; (2)确定x,使 P{| x - | a}
一、正态分布
正态分布是应用最 广泛的一种连续型分布. 德莫佛(De Moivre)最早 发现了二项分布的一个近似公 式,这一公式被认为是正态分 布的首次露面. 正态分布在十九世纪前叶由 高斯(Gauss)加以推广,所以通 常称为高斯分布.
德莫佛
正态变量及其分布
设连续型随机变量X的概率密度为
f ( x)
返回
例4 设电阻值R是一个随机变量,均匀分布在900~1100。求 R的概率密度及R落在950~1050的概率。 解 按题意,R的概率密度为
1 , f ( r ) 1100 900 0, 故有
900 r 1100, 其 它. 1 dr 0.5. 200
P(| X | 3 ) 0.9974
可以认为,X的取值几乎全部集中在 这在统计学上称作“ 3 准则” (三倍标准差原则).
[ 3 , 3 ] 区间内.
设X ~ N (0, 1),对任意给定的 (0 1),称使 P{ X z } 成立的z 为标准正态分布N (0, 1)的上分位数。 易见, ( z ) 1

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生 (2)明天,地球仍会转动 必然发生 必然事件
(3)实心铁块丢入水中,铁块浮起 不可能发生 (4)在标准大气压00C以下,雪融化 不可能发生 (5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
件A发生的概率的近似值,

P ( A)
m n
,(其中P(A)为事件A发生的概率)
注意点:
1.随机事件A的概率范围 任何事件发生的概率都满足:0≤P(A)≤1
频率与概率的区别与联系
1、频率本身是随机的,在试验前 不能确定。做同样次数的重复试验 得到事件的频率会不同。 2、概率是一个确定的数,与每次 试验无关。是用来度量事件发生可 能性大小的量。
出现正 面的频 率m n

摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838
0.2 0.54
138
685 1313 6838
276
2557 4948
0.552 0.5114
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事

东北大学概率论课后习题答案PPT2-3

东北大学概率论课后习题答案PPT2-3
第三节连续型随机变量及其分布
如果存在实数域上的非负函数f(x),使对于任一实数 a,b(a<b),随机变量X的取值在区间(a,b]中的概率为
P(a x b) f ( x)dx
a
b
则称X为连续型随机变量。其中,非负函数f(x)即是描述 连续型随机变量X取值规律的概率函数,称为X的概率密度 函数,记为 X ~ f ( x) ,概率密度函数简称为密度函数。 X的密度函数有时记为 f X ( x)
返回
例10 将一温度调节器放置在存储着某种液体的容器内,调节器 定在d℃,液体的温度X(以℃计)是一个随机变量,且X~ N(d,0.52)。(1)若d=90,求X<90的概率;(2)若要求保持液体 的温度至少为80的概率不低于0.99,问d至少为多少?
解 (1)所求概率为 X 90 89 90 P{ X 89} P 0.5 0.5 89 90 ( 2 ) 0.5 1 ( 2) 1 0.9772 0.0228.
1 2
e

( x )2 2 2
, x ,
其中,(>0)为常数,则X为正态变量,称其服从参数 为, 2 的正态分布或高斯(Gauss)分布,记为X~ N(,2)。
f ( x)
正态分布密度函数图示
o

x
性质:1.曲线关于x=对称。
2.当x=时取到最大值。
例2 判断函数
| x| G (1,2) (5,6) ,求 f ( x ) Ae 例3 是随机变量X的密度函数为 ,
(1)常数A;(2)P{-1<X<2}和
P( x G )
常见的连续型随机变量及其分布

概率论第一章ppt课件

概率论第一章ppt课件

i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
P Ak
k 1
k
k 1 k!
e
1 e

本题可采用另外一种解法. A A0 { 该地一年内
未发生交通事故} ,于是
P(A) 1 P(A) 1 P( A0) 1 e .
33
小结
• 本节课主要讲授: 1.概率的统计定义; 2.概率的公理化定义; 3.概率的性质(重点)。
34
§1.3 古典概型与几何概型
验,简称试验。随机试验常用E表示。
7
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
8
例1-2:

概率论第一章PPT课件

概率论第一章PPT课件

2021/3/24
-
10
费尔马的解法
费尔马注意到,如果继续赌下去,最多只要再赌4轮便可 决出胜负,如果用“甲”表示甲方胜,用“乙”表示乙方胜, 那么最后4轮的结果,不外乎以下16种排列。
甲甲甲甲 甲甲甲乙 甲甲乙甲 甲乙甲甲 乙甲甲甲 乙甲甲乙
甲甲乙乙 甲乙甲乙 甲乙乙甲 乙乙甲甲 乙甲乙甲
甲乙乙乙 乙甲乙乙 乙乙甲乙 乙乙乙甲 乙乙乙乙
2021/3/24
-
8
直到1654年,一位经验丰富的法国赌徒默勒以自己的 亲身经历向帕斯卡请教“赌金分配问题“,求助其对这种现 象作出解释,引起了这位法国天才数学家的兴趣,帕斯卡接 受了这些问题,但他没有立即去解决它,而是把它交给另一 位法国数学家费尔马。之后,他们频频通信,互相交流,围 绕着赌博中的数学问题开始了深入细致的研究。这些问题后 来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他也开 始就这方面展开研究。
若每次试验中,事件A与事件B不能同时发生, 即A∩B= 。则称事件A与事件B互斥或互不相 容。
有时,我们也称满足以上三个特点的试验为随机 试验。
2021/3/24
-
20
§1.1.2 样本空间 随机事件
一、样本空间
随机试验E的所有可能的结果组成的集合称为E的 样本空间,记为Ω。Ω的每个元素,即Ω的每一个可能 的结果,称为E的一个样本点或基本事件。
指的是基本 结果
2021/3/24
样本点
-
21
特征:条件不能完全决定结果。
确定性现象与随机现象的共同特点是事物本身的含 义确定。随机现象与模糊现象的共同特点是不确定性, 随机现象的不确定性是指试验的结果不确定,而模糊现 象的不确定性有两层含义,一是指事物本身的定义不确 定,二是结果不确定。

东北大学概率论课后习题答案PPT2-2

东北大学概率论课后习题答案PPT2-2

(1) pk 0, k=1,2, …
一个函数是否是
概率分布
(2) pk 1
k
分布律也可以用表格的形式来表示:
X
x1 x2 … xn …
pk
p1 p2 … pn …
称为随机变量X的概率分布表。
也可用矩阵表示
X
~
x1 p1
x2 p2
xi pi
也可用散点图表示。
有了分布列,可以计算任意时间的概率
几何分布的无记忆性
在贝努利试验中,等待首次成功的时间服从几何分布。 现在假定已知在前m次试验中没有出现成功,那么为了达到 首次成功所再需要的等待时间′也还是服从几何分布,与 前面的失败次数m无关,形象化地说,就是把过去的经历完 全忘记了。因此无记忆性是几何分布所具有的一个有趣的 性质。但是更加有趣的是,在离散型分布中,也只有几何 分布才具有这样一种特殊的性质。
件,第i个零件为不合格品的概率为 pi 1/ i 1,i 1,2,3 ,若
以X表示三个零件中合格品的个数,问X是二项变量吗?写出 X的分布律。
例5:某人进行射击,设每次射击的命中率为0.02,独立射击 400次,试求至少击中两次的概率。
解:将一次射击看成是一次试验.设击中的次数为X,则X~ B(400,0.02)。X的分布律为 P{ X k} 4k00(0.02)k (0.98)400k , k 0,1,,400. 于是所求概率为 P{X 2} 1 P{X 0} P{X 1} 1 (0.98)400 400(0.02)(0.98)399 0.9972.
P{Y
4} 1
k
3 0
8k0(0.01)k
(0.99)80k
0.0087.
我们发现,在后一种情况尽管任务重了(每人平均

东北大学《概率与数理统计》课件-第4章

东北大学《概率与数理统计》课件-第4章

(k 0,常数),求W的数学期望.
解:由上面的公式
E(W
)
kv 2
f
(v)dv
a
kv 2
1
dv
1
ka2
0a
3
例9 求数学期望E(eX),若 (1)X~P(3); (2) X~B(n,p); (3) X~N(1,4).
例10 设二维连续型随机变量(X ,Y)的概率密度为
f
( x,
y)
Asin( x
x0
N min( X1, X2 ) 的分布函数为
Fmin ( x)
1 [1
F ( x)]2
1
2x
e
x0
0
x0
于是N的概率密度为
fmin
(
x)
2
2x
e
x0
0
x0
E(N
)
xfmin
(
x)dx
0
2x
2x
e dx
2
例4.4 商店的销售策略 某商店对某种家用电器的销售采用先使用后
付款的方式 ,记使用寿命为X (以年计),规定 : X 1,一台付款1500元;1 X 2,一台付款2000元; 2 X 3,一台付款2500元; X 3,一台付款3000元.
y)
0 x
2
0
其它
(1)求系数A, (2)求E( X ), E( XY ).
解:(1)由于
f
( x,
y)dxdy
/2
dy
/2
Asin( x
y)dx
1,得A
1
0
0
2
例10 设二维连续型随机变量(X ,Y)的概率密度为

《概率论》ppt课件

《概率论》ppt课件
xi R, i 1, 2, , n.
对于固定的 n ,我们称{FX (x1, x2, , xn;t1,t2, ,tn ),ti T}
为随机过程{X (t),t T}的 n 维分布函数族。
注:可以证明(柯尔莫哥洛夫),在一定条件下 ,随机过程的统计特性完全由它的有限维分布函 数族决定。
(二)二维随机过程的联合分布函数
p
2 (1, )
2 1 2
(0, 1 ) 4
1
2
三 随机过程的数字特征
1.单个随机过程的情况
① 函数 X (t) E[X (t)], t T
为{X(t),tT}的均值函数.

2 X
(t)
E[ X
2
(t )]
为{X(t),tT}的均方值函数.

2 X
(t
)
DX (t) D[ X (t)]
为{X(t),tT}的方差函数.
例3: 考虑抛掷一颗骰子的试验,(i)设 X是n 第n次 (n )1 抛掷的点数,对于n=1,2…的不同值, 是X不n 同的随机变量,因而 { Xn构, n成 1一} 随机过程,称为 贝努利过程或贝努利随机序列,(ii)设Xn是前n次
抛掷中出现的最大点数,
也{是X一n , n随机1}过程。
例 4 在时间 [0,t]内某地段出现的交通事故次数
2. n维分布函数族
对 任 意 正 整 数 n 可 取 定 t1,t2, ,tn T 则 (X (t1), X (t2 ), , X (tn )) 是一个n 维随机变量,他的分 布函数为
FX (x1, x2 , , xn; t1, t2, , tn )
P( X (t1) x1, X (t2 ) x2, , X (tn ) xn ),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 实验可能出现的一切结果可事先预知,但不 能事先预知每次实验会出现哪一个结果。
2.样本空间
随机试验 所有可能结果组成的集合称为它的 样本空间,用符号Ω来表示。
样本空间的元素,即实验的每一个可能结果
称为 样本点,用符号 来表示。
样本空间可以是有限 (或无限) 多个离散点, 也可以是有限(或无限)的区间;还可以是二维 或者任意维数的集合。
如 A= { HHH,TTT } ,则 A 的对立事件的 样本点是{ HHT,HTH,HTT,THH,THT, TTH } 即三次出现的结果不全相同。
3. 随机事件的运算规则
符号 集合论含义
Ω 空间或全集

空集

元素
A
子集
A 是 A 的元素
概率论含义
样本空间或必然事件 不可能事件 样本点 随机事件
(1).事件的包含关系
如果 A 发生必然导致 B 的发生, 则称 A 包含在 B 中, 记为 A B 。
即 A 的每个样本点也都属于 B
AB
S
A = { HHH },三次都是正面, B = { H } , 第一次是正面。
特别的,对任意 A 有 A S
(2).事件的和运算
得到一个新事件,它的发生表示 这些事件中至少有一个发生,
A B A B, A BA B
例1.7 某工程队承包建造了三幢楼房,设Ai表“第
i幢楼房经验收合格”,i=1,2,3.试用A1,A2,A3表 示下列事件:
(1) 只有第一幢楼房验收合格
(2) 恰有一幢楼房验收合格
(3) 至少有一幢楼房验收合格
(4) 至多有第一幢楼房验收随机现象; 2. 教材 5 页 第 1,2,3 题。
例1.1抛掷一枚均匀硬币,观察出现的结果。 正面( H ) 或 反面( T )
Ω ={H,T} 例1.2 抛掷一枚均匀硬币三次,观察出现的结果。 正面( H ) 或 反面( T )
Ω ={HHH,HHT,HTH,HTT, THH,THT,TTH,TTT}
思考:样本空间是唯一的吗?
例1.1.2中我们关心的问题是正面出现的次数 Ω ={1,2,3,4}
和事件 A∪B={| ∈ A或B }
AB
S
A = { HHH },B = { TTT } ; A∪B = { HHH,TTT } 三次都是同一面
特别的,对任意的随机事件 A ,
A∪A = A, A∪ = A, A∪S = S
当 A、B 不相容时,记成 A∪B = A+B
(3).事件的积运算
得到一个新事件,它的发生表示
§1.2 随机事件的概率
1.2.1 频率与概率 1.频率的定义
描述一个随机事件发生的频繁程度
定义1.2. 在相同的条件下进行了 n 次重复试 验,记nA 是 A 发生的次数 (又称频数) ; 则定义随机事件 A 发生的频率为 fn (A) = —nn—A 。
2. 频率的性质
(1) (非负有界) 0 ≤ fn (A) ≤ 1 ;
《概率论与数理统计》
东北大学数学系
版权所有 违者必究
第1章 随机事件与概率
1.1 随机事件 1.2 随机事件的概率 1.3 古典概型与几何概型 1.4 条件概率 1.5 全概率公式与贝叶斯公式 1.6 事件的独立性
§1.1 随机事件 1.1.1样本空间
1.随机试验
无法事先预知结果的试验或者观察
(1) 相同条件下可以重复进行,每次的结果不一 定相同
这些事件中每一个都要发生,
A
B
积事件 A∩B ={| ∈ A且∈ B }
S
A = { H },B = { H } ; AB = { HH} 前两次都是正面
特别的,对任意的随机事件 A ,
A∩A = A, A∩ = ,A∩S = A
(4).事件的差运算
得到一个新事件。它表示
A
B
(1) 交换律 A∪B = B∪A,AB = BA ;
(2) 结合律 (A∪B)∪C = A∪( B∪C ), (A∩B)∩C = A∩(B∩C);
(3) 分配律 A∪( B∩C ) = (A∪B)∩(A∪C ), A∩(B∪C) = (A∩B)∪(A∩C )。
(4) De Morgan(德莫根) 定律
一个发生而另一个不会发生,
差事件 A – B={| ∈ A且∈ B }
S
A = { HH },B = { T } ; A – B = { HHH} 三次都是正面
A – B = A – AB 特别的,对任意的随机事件 A ,
A – = A, A – S = , A – A =
(5).事件的互不相容(互斥) 关系
表示这些事件不会同时发生。 A 即它们没有公共样本点
B
S
A∩B=
A = { HHH },三次都是正面, B = { TTT } , 三次都是反面。
特别的, 与任意一个事件 A 互斥
(6).对立事件(互逆事件)
得到一个新事件,事件中有且 A A
只有一个发生,记为 A 。
S
A SA A B AB
事件 A 包含样本点
符号 集合论含义
概率论含义
A B A 是 B 的子集 A 发生将导致B 发生
AB = A、B 不相交 A、B 不可能同时发生
A∪B 并集
A、B 至少有一个发生
A∩B 交集
A、B 同时发生
A – B 差集
A 发生而B 不发生
A
补集 (余集)
A 不发生
2. 类似于集合运算,随机事件的运算满足
1.1.2 随机事件及其运算
1.随机事件
可能发生、也可能不发生的事件 随机事件是随机试验结果(样本点)组成的
集合,一般用字母A、B、…表示。
三个特殊的随机事件: 基本事件:仅由一个样本点组成的集合
必然事件:全部样本点组成的集合,即Ω 不可能事件:不包含任何样本点的集合,即
2. 事件的关系与运算
(2) 频率还具有稳定性,总是在某一个具体数值 附近波动,随着试验次数的不断增加,频率的 波动会越来越小,逐渐稳定在这个数值。
(2) (规范性) fn (Ω) = 1 ;
(3) (有限可加) 如果 A1,A2,···,Ak 两两互不相容,则: fn ( A1+A2+···+Ak ) = fn (A1)+fn (A2)+···+fn (Ak)
大量的随机试验表明:
(1) 频率具有随机波动性,即对于同一个随机 事件来说,在相同的试验次数下,得到的 频率也不一定会相同。
相关文档
最新文档