河南工业大学2014年数学分析考研真题
2014年考研数学二试题及答案解析

2014年全国硕士研究生入学统一考试数学(二)试题及答案解析一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)当x →0+时,若1ln (12),(1-cos )x x αα+均是比x 高阶的无穷小,则α的取值范围是( ) (A )),(∞+2 (B )(1,2) (C )),(121 (D ))(210, 【答案】B【解析】当x →0+时,∵()()ln12~2x x αα+,111211(1cos )~()()22x x ααα-=·2x α ,∴由2111 2.ααα>>⇔<<且(2)下列曲线有渐近线的是( )(A ).sin x x y += (B ).sin 2x x y +=(C ).1sin x x y += (D )21sin .y x x=+【答案】C【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]lim sin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线注:渐近线有3种:水平、垂直、斜渐近线。
本题中(A)(B)(D)都没有渐近线,(C)只有一条斜渐近线。
(3)设函数()f x 具有2阶导数,()()()()011g x f x f x =-+,则在区间[0,1]上( )(A)当0f x '≥()时,()()f x g x ≥.(B)当0f x '≥()时,()()f x g x ≤ (C)当0f ''≥时,()()f x g x ≥.(D)当0f ''≥时,()()f x g x ≤【答案】D【解析】方法1:(利用函数的凹凸性)当() 0f x "≥时,()f x 是凹函数,而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()()f xg x ≤方法2:(利用函数的单调性)()()()h x g x f x =-令,则(0)(1)0h h ==,由洛尔定理知,(0,1)()0,h ξξ'∃∈=,使若()0f x ''≥,则()0,()h x h x '''≤单调递减, 当(0,)x ξ∈时,()()0h x h ξ''≥=,()h x 单调递增,()(0)0,g(x)()h x h f x ≥=≥即; 当(,1)x ξ∈时,()()0h x h ξ''≤=,()h x 单调递减,()(1)0,g(x)()h x h f x ≥=≥即;注:当0f x '≥()时,只能说明()f x 是单调增加的,但增加的方式可能是以凸的形式,也可能是以凹的形式,若是前者,则()()f x g x ≥,此时(A)成立,如()f x x =;若是后者,则()()f x g x ≤,此时(B)成立,如2()f x x =.(4)曲线⎪⎩⎪⎨⎧++=+=,t t y ,t x 14722上对应1t =的点处的曲率半径是( )(A ).5010 (B ).10010 (C ).1010 (D ).105 【答案】C【解析】令()27x t t ϕ==+ ()241y t t t ψ==++则2,()2t t t ϕϕ'''=()=; ()24t t ψ'=+ ()2t ψ"=当t =1时,(1)2,(1)2(1)6,(1)2ϕϕψψ''''''====则332222|2226|811010(26)40K ⨯-⨯===+,曲率半径11010.K ρ== (5)设函数()arctan f x x =,若)()(ξf x x f '=,则22limx xξ→=( )(A )1. (B ).32 (C ).21(D ).31【答案】D【解析】由()()arctan , f x x f x ==()xf ξ'得21arctan 1x x ξ=⋅+ ()3322222|||()()()()|1[()()]y t t t t K y t t ϕψϕψϕψ''''''''-=='''++2arctan arctan x x x ξ-=,222232000011arctan arctan 11lim lim lim lim arctan 33x x x x x x x xx x x x xx ξ→→→→---+∴==== (6)设函数()u x y ,在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足0022222=∂∂+∂∂≠∂∂∂yux u y x u 及,则( ) (A )()u x y ,的最大值和最小值都在D 的边界上取得. (B )()u x y ,的最大值和最小值都在D 的内部取得.(C )()u x y ,的最大值在D 的内部取得,最小值在D 的边界上取得. (D )()u x y ,的最小值在D 的内部取得,最大值在D 的边界上取得. 【答案】A【解析】A=22u x ∂∂,B=2u x y∂∂∂,C=22u y ∂∂,22200 0B A C AC B A B ≠+=-=--<,,,∴D 内部无极值.(7)行列式=dc dc b a ba 00000000( )(A )2()ad bc - (B )2()ad bc --(C )2222a dbc - (D)2222b c a d -【答案】B【解析】41440000004(1)00(1)00000000a ba b a ba bc bd a c d c d c dc d++-+-按第行展开 32212(1)(1)()()()()()a b a b c b d a c dc dad bc bc ad ad bc ad bc bc ad ad bc ++=-⋅-+⋅⋅-=-⋅--=--=--注:此题按其它行或列展开计算都可以。
2014年考研数学二真题及答案解析

一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题
目要求的,请将所选项前的字母填在答.题.纸.指定位置上.
1
(1) 当 x 0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无穷小,则 的取值范围是( )
(A) (2, )
()10(A)50 Nhomakorabea10
(B)
100
(C)10 10
(D) 5 10
(5)
设函数
f (x)
arctan x ,若
f
(x)
xf
(
)
,则
lim
x0
x
2 2
()
(A)1
(B) 2 3
(C) 1 2
(D) 1 3
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy
()
(A) 当 f (x) 0 时, f (x) g(x) (C) 当 f (x) 0 时, f (x) g(x)
(B) 当 f (x) 0 时, f (x) g(x) (D) 当 f (x) 0 时, f (x) g(x)
(4)
曲线
x y
t2 t2
7 4t
1
上对应于
t
1的点处的曲率半径是
lim x0
1
1
1 x
2
3x2
1 3
故选 D.
(D) 1 3
()
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy
及
2u x2
2014考研数学一真题及答案

(23) 【答案】 (1) EX
ˆ (2)
(3)存在
1 n X i2 n i 1
6( y )2 y 3 y 2 y 2 yy 2 yy x 2( y )2 x 2 yy 2 y 2 xy 2 xy x 2 y 0 12 y( 1 ) 4 y( 1 ) 4 y( 1 ) 0 9 y( 1 ) 4 y( 1 ) 9 0 4
y 2x 1 x
(12) (13)[-2,2] (14)
2 5n
三、解答题:15—23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、 ... 证明过程或演算步骤. (15) 【答案】
2014 年全国硕士研究生入学统一考试数学一
x
lim
x
1
[ t ( e 1 ) t ] dt x 2 ln( 1
2E 2E f ( e x cos y )e 2 x ( 4 E e x cos y )e 2 x x 2 y 2 f ( e x cos y ) 4 f ( e x cos y ) e x cos y
令 e x cos y u , 则 f ( u ) 4 f ( u ) u , 故 f ( u ) C1e 2 u C 2 e 2u 由 f ( 0 ) 0 , f ( 0 ) 0 , 得
(21) 【答案】利用相似对角化的充要条件证明。
0, y 0, 3 y, 0 y 1, 4 (22) 【答案】 (1) FY y 1 1 1 y ,1 y 2, 2 2 1, y 2.
(2)
3 4 1 , EX 2 2
1 x x
2014年考研数学二真题及答案

2014年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)B(2)B(3)D(4)C(5)D(6)A(7)B(8)A二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)83π (10)11=-)(f (11)(12)22ππ+-=x y (13)1120(14)[-2,2]三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)【答案】2121111111110202211212112=-=--=--=--=--=+--++→→+∞→+∞→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,xu x )e (x lim xtdt dt t )e (lim )x ln(x dt ]t )e (t [lim u u u u x x x xx x x x x 则令(16)【答案】因为y y y x '-='+122,①得到112±==x ,x y y y )y (y x ''-=''+'+2222,01121111222<+-=''⇒''-=''+)(y )(y )(y )(y )(y ,01121111222>+-=-''⇒-''-=-''-+-)(y )(y )(y )(y )(y 。
所以1=x 时,取极大值)(y 1。
1-=x 时,取极小值)(y 1-。
由①可知,C x x y y dx)x (dy )y (+-=+-=+33113322,因为02=)(y ,所以32=C ,323333+-=+x x y y 。
2014年全国硕士研究生入学统一考试数学一试题及解析.doc

2014年全国硕士研究生入学统一考试数学一试题及解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。
(1)下列曲线中有渐近线的是 (A )sin y x x =+.(B)2sin y x x =+.(C)1sin y x x =+.(D)21sin y x x=+.【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]limsin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线【答案】C(2)设函数()f x 具有2阶导数,()()()()011g x f x f x =-+,则在区间[0,1]上( ) (A)当0f x '≥()时,()()f x g x ≥. (B)当0f x '≥()时,()()f x g x ≤ (C)当0f x '≥()时,()()f x g x ≥.(D)当0f '≥时,()()f x g x ≤【解析】当() 0f x "≥时,()f x 是凹函数而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()() f x g x ≤ 【答案】D(3)设(),f x y是连续函数,则110(,)ydy f x y -=⎰⎰(A)11110(,)(,)x dx f x y dy dx f x y dy --+⎰⎰⎰.(B)1101(,)(,)xdx f x y dy dx f x y dy --+⎰⎰⎰⎰.(C )112cos sin 02(cos ,sin )(cos ,sin ).d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin ).d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰【解析】积分区域如图 0≤y ≤1.1x y ≤≤-用极坐标表示,即:D 1:,012r πθπ≤≤≤≤ D 2: 10,02cos sin r πθθθ≤≤≤≤+【答案】D (4)若{}2211,(cos sin )(cos sin )mina b Rx a x b x dx x a x b x dxππππ--∈--=--⎰⎰,则11cos sin a x b x +=(A )2sin x π.(B)2cos x .(C) 2sin x π. (D)2cos x π. 【解析】令2(,)(cos sin )Z a b x a x b x dx ππ-=--⎰2(cos sin )(cos )0(1)2(cos sin )(sin )0(2)a b Z x a x b x x dx Z x a x b x x dx ππππ--⎧'=---=⎪⎨'=---=⎪⎩⎰⎰由(1)得 202cos 0axdx π=⎰故10,0a a ==由(2)得 0120sin 22sin x xdx b b xdxππ===⎰⎰【答案】A(5)行列式00000000a b abc d c d= (A )(ad-bc )2(B )-(ad-bc )2。
2014年全国硕士研究生入学统一考试数学一试题

2014年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)下列曲线中有渐近线的是( )(A )sin y x x =+ (B )2sin y x x =+ (C )1siny x x =+ (D )21sin y x x=+ (2)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x ''≥时,()()f x g x ≥ (D )当()0f x ''≥时,()()f x g x ≤ (3)设(,)f x y 是连续函数,则21101(,)yy dy f x y dx ---=⎰⎰( )(A )21110010(,)(,)x x dx f x y dy dx f x y dy ---+⎰⎰⎰⎰(B )211011(,)(,)xx dx f x y dy dx f x y dy ----+⎰⎰⎰⎰(C )112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰(4)若{}2211,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ππππ--∈--=--⎰⎰,则11cos sin a x b x +=( )(A )2sin x (B )2cos x (C )2sin x π (D )2cos x π(5)行列式00000000a b abc d c d=( )(A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d -(6)设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的( )(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且3.0)(,5.0)(=-=B A P B P ,则=-)(A B P ( ) (A )0.1 (B)0.2 (C)0.3 (D)0.4(8)设连续型随机变量1X 与2X 相互独立且方差均存在,1X 与2X 的概率密度分别为1()f x 与2()f x ,随机变量1Y 的概率密度为)]()([21)(211y f y f y f Y +=,随机变量)(21212X X Y +=,则 (A )2121,DY DY EY EY >> (B )2121,DY DY EY EY == (C )2121,DY DY EY EY <= (B )2121,DY DY EY EY >=二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)曲面)sin 1()sin 1(22x y y x z -+-=在点)1,0,1(处的切平面方程为 . (10)设)(x f 是周期为4的可导奇函数,且()2(1)f x x '=-,[0,2]x ∈,则(7)f = .(11)微分方程0)ln (ln =-+'y x y y x 满足条件3)1(e y =的解为y = . (12)设L 是柱面122=+y x 与平面0=+z y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分Lzdx ydz +=⎰ .(13)设二次型3231222132142),,(x x x ax x x x x x f ++-=的负惯性指数为1,则a 的取值范围是 .(14)设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其他,02,32),(2θθθθx xx f ,其中θ是未知参数,n X X X ,,,21 为来自总体X 的简单随机样本,若∑=ni i X c 12为2θ的无偏估计,则c = .三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限)11ln(])1([lim2112xx dtt e t xtx +--⎰+∞→(16)(本题满分10分)设函数)(x f y =是由方程32260y xy x y +++=确定,求)(x f 的极值. (17)(本题满分10分)设函数)(u f 具有2阶连续导数,)cos (y e f z x=满足22222(4cos )x x z zz e y e x y∂∂+=+∂∂,若0)0(,0)0(='=f f ,求)(u f 的表达式. (18)(本题满分10分)设∑为曲面)1(22≤+=z y x z 的上侧,计算曲面积分dxdy z dzdx y dydz x I )1()1()1(33-+-+-=⎰⎰∑(19)(本题满分10分) 设数列}{},{n n b a 满足n n n n n b a a b a cos cos ,20,20=-<<<<ππ,且级数1n n b ∞=∑收敛.(I )证明:;0lim =∞→n n a(II )证明:级数∑∞=1n nnb a 收敛. (20)(本题满分11分)设E A ,302111104321⎪⎪⎪⎭⎫ ⎝⎛----=为3阶单位矩阵.(I )求方程组0=Ax 的一个基础解系; (II )求满足E AB =的所有矩阵B . (21)(本题满分11分)证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似 (22)(本题满分11分)设随机变量X 的概率分布为21}2{}1{====X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布)2,1)(,0(=i i U ,(I )求Y 的分布函数)(y F Y ; (II )求EY(23)(本题满分11分)设总体X 的分布函数21,0(;)0,0x e x F x x θθ-⎧⎪-≥=⎨⎪<⎩,其中θ是未知参数且大于零,12,,,n X X X 为来自总体X 的简单随机样本.(1)求EX 与2EX ;(2)求θ的最大似然估计量ˆnθ; (3)是否存在实数a ,使得对任何0ε>,都有{}ˆlim 0nn P a θε→∞-≥=?2017考研新大纲权威解析听3小时直播解析,横扫60+增&改考点。
2014年考研数学试题详解及评分参考

有
ò ò ò EY1 =
+¥ -¥
y
×
1 2
[
f1( y) +
f2 ( y)]dy
=
1 2
+¥ -¥
y
×
f1( y)dy
+
1 2
+¥ -¥
y
×
f2 ( y)dy
=
1 2
(m1
+
m2 ),
EY2
=
1 2
(EX1
+
EX 2
)
=
1 2
(m1
+
m2
)
,可见
EY1
=
EY2
;
ò ò ò 又 E(Y12 ) =
+¥ -¥
x + sin x
1 x
= 1,且 lim[(x+ sin x®=
0
,故
y
=
x
是其斜渐近线.
综上所述,应选 (C) .
(2) 设函数 f (x) 具有 2 阶导数, g(x) = f (0)(1- x) + f (1)x ,则在区间[0,1] 上
(A) 当 f ¢(x) ³ 0 时, f (x) ³ g(x)
y2
×
1 2
[
f1( y) +
f2 ( y)]dy=
1 2
+¥ -¥
y2
f1 (
y)dy
+
1 2
+¥ -¥
y2
f2
(
y)dy
=
1 2
(s12
+
m12 )
+
2014年考研数一真题及答案解析(完整版)

2014年考研数一真题及答案解析(完整版)2014年考研数一真题与答案解析数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)B(2)D(3)D(4)B (5)B (6)A (7)(B ) (8)(D )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)012=---z y x (10)11=-)(f(11)12+=x xyln (12)π (13)[-2,2] (14)25n三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)【答案】2121111111110202211212112=-=--=--=--=--=+--++→→+∞→+∞→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,xu x)e (x lim xtdtdt t )e (lim)xln(x dt ]t )e (t [limu u u u x x xx xx xxx 则令(16)【答案】020*********=+=+='++'⋅++')x y (y xy y y x xy y y x y y yx y )(y 20-==或舍。
xy 2-=时,21106606248062480633333223223-==⇒==+-=+-+-=+-⋅+⋅+-=+++y ,x x x x x x )x (x )x (x x y x xy y4914190141411202222222362222>=''=''=''+-''-''=''+'+'++''⋅+'⋅+'+'+''+')(y )(y )(y )(y )(y y x y x y x y y y x )y (x y y y y y y y )y (所以21-=)(y 为极小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南工业大学
2014年硕士研究生入学考试试题
考试科目: 数学分析 共 2 页(第 1 页) 注意:1、本试题纸上不答题,所有答案均写在答题纸上
2、本试题纸必须连同答题纸一起上交。
一、(24分,每小题8分) 计算下列极限: 1. 1211lim 1)n n n n
-→+∞+-( ;
2. 0lim 1cos x x →-;
3. lim sin sin sin ).n →+∞+++L 222
12n (n n n 二、( 48分,每小题12分) 计算下列各类积分: 1. 12sin I dx x π
π-=+⎰; 2. 2sin y x I dy dx x ππππ-=⎰⎰ ; 3. 第二型曲线积分22C xdy ydx x y -+⎰Ñ,其中C 为任意简单闭曲线,逆时针为正向;
4. 利用奥高公式计算
()()()s
I x y z dydz y z x dzdx z x y dxdy =-++-++-+⎰⎰Ò, 其中S 是八面体1x y z y z x z x y -++-++-+=的外侧.
三、(36分,每小题12分) 完成下列各题
1.(12分) 按步骤做出函数23(1)y x x =-的图像.
2. 求幂级数111(1)
(1)2n n n x n
∞=-+++∑L 的收敛域. 3. 设(,)z z x y =是由方程组
,,u v u v x e y e z uv +-===,
确定的函数,求当0,0u v == 时的2,dz d z .
共 2 页(第 2 页)
四、(42分) 完成下列证明题
1. (10分) 若函数()f x 在[,)a +∞上连续,lim ()x f x →+∞
存在,则()f x 在[,)a +∞上一致连续.
2. (10分) 设二元函数f 在圆周222:C x y a +=上连续,证明:存在C 的一条直径的
两个端点A 与B ,使得 ()()f A f B =.
3. (10分)
证明方程0ln x x e
π=-⎰在0+∞(,)内有且仅有两个实根. 4. (12分) 证明函数2222222,0(,)0,0x y x y x y
f x y x y ⎧+≠⎪+=⎨⎪+=⎩
在原点(0,0)处连续,且存在偏导数,但在(0,0)处不可微.。