过控课程设计 1
过程控制系统课设

过程控制系统课程设计一、设计任务书1. 题目PH控制系统2. 设计要求①设计义某化工过程中废液中和的pH控制系统;②对控制系统稳定性进行分析;③对控制系统的参数进行整定;④控制系统Simulink仿真。
3 . 仪器设备A3000现场控制系统,pH控制系统。
二、基本原理pH控制系统子工业,尤其是化工等行业,应用非常广泛。
利用pH控制可以实现化工过程的正常生产过程、造纸厂等化工厂废液达标排放等。
1. pH的特点PH控制系统的主要方式有:有一种碱(或酸)滴定另一种物质使pH值保持在某一值上;对两种分别呈酸性和碱性物质的流量进行控制使pH值保持在某一值上;控制两种物质使混合溶液保持在一定的pH值上。
PH控制和其他控制参数的不同主要有以下两点:●PH滴定曲线的高度非线性;●滴定过程的测量纯滞后特性。
图01为典型的酸碱滴定特性曲线。
从图01知,溶液的pH值随中和流量非线性变化。
图01 典型的酸碱滴定特性曲线显然在控制系统中将pH值的变化转化为中和反应酸碱的控制流量变化,是根据滴定特性曲线进行的。
将滴定特性曲线转化为酸碱流量变化规律的方法主要有三种:●利用非线性阀补偿过程的非线性;●采用三段式滴定调节器,用三条相接的线性段代替非线性滴定曲线;●采用滴定曲线的非线性调节器精确描述滴定曲线。
随着技术的进步,利用非线性阀补偿滴定曲线非线性用的越来越少;而基于计算机功能元器件或计算机的第二种方法和第三种方法应用越来越多。
对滞后的补偿常采用以下三种方法:●微分Smith补偿方法,由于该方法本身适应能力较差,较少使用;●改进的Smith补偿方法;●自适应方法,应用较多的是增益自适应的Smith法。
为了提高控制系统的误差跟踪能力,pH控制系统经常采用的控制策略是PI或PID,不能采用P调节。
2. 三段式非线性调节器和采用滴定曲线的非线性调节器(1)三段式非线性调节器实际中,酸碱中和后通过pH计测得pH值的大小,控制系统当前pH值大小折算成溶液中酸碱量的多少,并调节系统酸碱流量的大小实现要求的pH值。
过程控制理论课程设计

过程控制理论课程设计一、课程目标知识目标:1. 学生能理解过程控制理论的基本概念,掌握控制系统各组成部分的功能与相互关系。
2. 学生能够描述常见的过程控制算法,如PID控制,并解释其工作原理。
3. 学生能够运用数学工具分析控制系统的稳定性、准确性和鲁棒性。
技能目标:1. 学生能够运用所学的理论知识,设计简单的过程控制系统,并进行模拟。
2. 学生能够运用图表和计算工具对控制系统的性能进行分析和优化。
3. 学生通过小组合作,能够解决实际过程中可能遇到的控制问题,提高团队协作和问题解决能力。
情感态度价值观目标:1. 学生能够认识到过程控制在现代工业中的重要性,增强对工程技术的兴趣和认识。
2. 学生在学习过程中培养批判性思维和创新意识,敢于面对挑战,勇于尝试新方法。
3. 学生通过学习,认识到科技发展对社会进步的推动作用,形成积极向上的科学态度和社会责任感。
本课程针对高年级学生,考虑其已具备一定的工程基础和数学分析能力,课程性质偏重理论与实践相结合。
课程目标旨在使学生在掌握过程控制基本理论的同时,能够将其应用于实际问题的分析和解决,培养其成为具有实际操作能力和创新精神的工程技术人才。
通过具体可衡量的学习成果,教师可对学生的学习进度进行有效监控,并为后续教学提供指导依据。
二、教学内容1. 过程控制基本概念:控制系统定义、开环与闭环控制系统、控制系统的性能指标(稳定性、快速性、准确性)。
- 教材章节:第1章 过程控制概述2. 控制系统组件:控制器、执行器、传感器、被控对象等组成部分的作用和特性。
- 教材章节:第2章 控制系统组件3. 常见控制算法:PID控制算法、前馈控制、比例-积分-微分控制原理及应用。
- 教材章节:第3章 控制算法基础4. 控制系统数学模型:传递函数、状态空间方程,系统稳定性分析。
- 教材章节:第4章 控制系统数学模型5. 控制系统性能分析:稳态误差、动态性能指标、频域分析法、根轨迹分析。
过控课程设计乙苯

过控课程设计乙苯一、教学目标本章节的教学目标为:1.知识目标:学生能够理解乙苯的性质、制备方法和应用场景;掌握乙苯过控的基本原理和操作步骤。
2.技能目标:学生能够运用乙苯过控的原理和操作步骤,解决实际生产中遇到的问题;能够使用相关仪器和设备进行乙苯过控实验。
3.情感态度价值观目标:学生能够认识到乙苯过控在化工生产中的重要性,培养对化工行业的兴趣和责任感。
二、教学内容本章节的教学内容为:1.乙苯的性质:介绍乙苯的结构、物理性质和化学性质。
2.乙苯的制备方法:讲解乙苯的制备原理和工艺流程。
3.乙苯过控原理:阐述乙苯过控的基本原理和操作步骤。
4.乙苯过控应用:介绍乙苯过控在实际生产中的应用场景。
三、教学方法本章节的教学方法为:1.讲授法:讲解乙苯的性质、制备方法和应用场景。
2.讨论法:学生讨论乙苯过控的原理和操作步骤。
3.案例分析法:分析实际生产中遇到的乙苯过控问题,引导学生运用所学知识解决。
4.实验法:指导学生进行乙苯过控实验,巩固所学知识。
四、教学资源本章节的教学资源为:1.教材:乙苯过控相关章节。
2.参考书:乙苯过控的理论与应用。
3.多媒体资料:乙苯过控实验操作视频。
4.实验设备:乙苯过控实验装置。
五、教学评估本章节的教学评估方式为:1.平时表现:评估学生的课堂参与度、提问回答等情况,占总评的30%。
2.作业:布置相关作业,评估学生的理解和应用能力,占总评的30%。
3.考试:期末进行闭卷考试,评估学生对乙苯过控知识的掌握程度,占总评的40%。
六、教学安排本章节的教学安排如下:1.教学进度:共10课时,每课时45分钟。
2.教学时间:安排在每周三下午第三节课。
3.教学地点:教室201。
七、差异化教学针对不同学生的学习风格、兴趣和能力水平,本章节差异化教学措施如下:1.针对学习风格不同的学生,采用多样化的教学方法,如讲授、讨论、实验等。
2.针对兴趣不同的学生,引入相关案例和实际应用,激发学生学习兴趣。
过程控制的课程设计

过程控制的课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本概念,掌握其核心原理;2. 使学生能够运用所学知识,分析并解决实际过程中的控制问题;3. 引导学生了解过程控制在不同领域的应用,拓展知识视野。
技能目标:1. 培养学生运用数学模型描述实际过程的能力;2. 提高学生设计简单过程控制系统并进行仿真实验的能力;3. 培养学生运用现代工具对过程控制问题进行分析和解决的能力。
情感态度价值观目标:1. 培养学生对过程控制学科的兴趣和热情,激发求知欲;2. 引导学生树立正确的工程观念,认识到过程控制在国民经济发展中的重要作用;3. 培养学生的团队合作意识和严谨的科学态度,提高责任感。
课程性质:本课程为应用性较强的学科,旨在培养学生的实际操作能力和创新精神。
学生特点:学生具备一定的物理、数学基础,具有较强的逻辑思维能力和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,强调在实际问题中发现、分析、解决问题的能力。
通过课程学习,使学生能够将所学知识内化为具体的学习成果,为后续相关课程的学习和实际工作打下坚实基础。
二、教学内容1. 过程控制基本概念:控制系统组成、开环与闭环控制、控制系统的性能指标;2. 数学模型描述:传递函数、状态空间表示、线性系统的特性;3. 过程控制原理:PID控制算法、超前-滞后校正、串并行控制;4. 过程控制系统设计:系统建模、控制器设计、系统仿真;5. 过程控制应用案例分析:工业生产过程、生物医学工程、环境监测等领域的应用实例;6. 现代过程控制技术:智能控制、网络控制、大数据在过程控制中的应用。
教学大纲安排:第一周:过程控制基本概念及性能指标;第二周:数学模型描述及传递函数;第三周:过程控制原理及PID控制算法;第四周:过程控制系统设计及建模;第五周:过程控制应用案例分析;第六周:现代过程控制技术及其发展趋势。
教学内容与教材关联性:教学内容紧密结合教材章节,涵盖教材中过程控制的核心知识,注重理论与实践相结合,以提高学生的实际应用能力。
过控原理课程设计

过控原理课程设计一、教学目标本节课的教学目标是让学生掌握过控原理的基本概念、原理和应用。
具体包括:1.知识目标:a.了解过控原理的定义和发展历程;b.掌握过控原理的基本原理和关键技术;c.了解过控原理在工程应用中的广泛性。
2.技能目标:a.能够运用过控原理分析和解决实际问题;b.能够运用过控原理设计和优化控制系统;c.能够运用过控原理进行实验操作和数据分析。
3.情感态度价值观目标:a.培养学生的科学精神和创新意识;b.培养学生的团队合作能力和沟通交流能力;c.培养学生的社会责任感,使其认识到过控原理在工程应用中的重要性。
二、教学内容本节课的教学内容主要包括过控原理的基本概念、原理和应用。
具体包括:1.过控原理的定义和发展历程;2.过控原理的基本原理和关键技术;3.过控原理在工程应用中的广泛性;4.过控原理的实验操作和数据分析。
三、教学方法为了达到本节课的教学目标,我们将采用以下教学方法:1.讲授法:通过讲解过控原理的基本概念、原理和应用,使学生了解和掌握过控原理的基本知识。
2.案例分析法:通过分析实际案例,使学生了解过控原理在工程应用中的广泛性。
3.实验法:通过实验操作和数据分析,使学生掌握过控原理的实验方法和技巧。
四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:过控原理教材,用于为学生提供系统的学习材料;2.参考书:过控原理相关参考书籍,用于为学生提供更多的学习资源;3.多媒体资料:过控原理相关的视频、动画和图片,用于为学生提供直观的学习材料;4.实验设备:过控原理实验所需的仪器设备和工具,用于为学生提供实践操作的机会。
五、教学评估为了全面、客观地评估学生的学习成果,我们将采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。
2.作业:布置与课程内容相关的作业,要求学生在规定时间内完成,通过作业的完成质量评估学生的掌握程度。
过程控制课程设计

过程控制 课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本概念,掌握其原理和分类。
2. 使学生掌握过程控制系统中常用的数学模型及其应用。
3. 引导学生了解过程控制系统的设计方法和步骤。
技能目标:1. 培养学生运用数学模型分析和解决过程控制问题的能力。
2. 培养学生设计简单过程控制系统的能力,能根据实际需求选择合适的控制策略。
3. 提高学生运用现代工具(如计算机软件)进行过程控制系统仿真的技能。
情感态度价值观目标:1. 培养学生对过程控制学科的兴趣和热情,激发他们探索未知、勇于创新的科学精神。
2. 培养学生具备良好的团队合作意识,学会与他人共同分析问题、解决问题。
3. 引导学生认识到过程控制在工业生产、环境保护等领域的重要作用,增强他们的社会责任感和使命感。
分析课程性质、学生特点和教学要求,本课程目标旨在让学生掌握过程控制的基本知识和技能,培养他们解决实际问题的能力。
通过课程学习,学生将能够:1. 理论联系实际,运用所学知识分析、解决过程控制问题。
2. 掌握过程控制系统的设计方法和步骤,具备一定的控制系统设计能力。
3. 提高自身的科学素养,培养良好的团队合作精神和创新意识。
4. 关注过程控制在社会生产中的应用,为我国工业发展和环境保护做出贡献。
二、教学内容1. 过程控制基本概念:包括过程控制定义、分类、发展历程及其在工业中的应用。
教材章节:第一章 绪论2. 过程控制系统数学模型:介绍控制系统的传递函数、状态空间表达式、方块图及其相互转换。
教材章节:第二章 数学模型3. 过程控制策略:讲解比例、积分、微分控制规律,以及串级、比值、前馈等复合控制策略。
教材章节:第三章 控制策略4. 过程控制系统设计方法:阐述控制系统的设计原则、步骤和方法,包括稳定性分析、性能指标和控制器设计。
教材章节:第四章 系统设计与分析5. 过程控制系统仿真:介绍过程控制系统仿真软件及其应用,通过实例演示仿真过程。
教材章节:第五章 系统仿真与实现6. 过程控制案例分析:分析典型过程控制系统的实际问题,探讨解决方案。
过程控制与仪表课程设计

过程控制与仪表课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本概念,掌握仪表的种类、工作原理及其在工业中的应用。
2. 使学生掌握过程控制系统的数学模型,了解被控对象、控制器、执行器等组成部分的特性。
3. 让学生了解过程参数的检测与变送原理,掌握各类传感器的使用方法和调试技巧。
技能目标:1. 培养学生运用所学知识分析、解决实际过程控制问题的能力,能设计简单的过程控制系统。
2. 培养学生动手操作仪表,进行系统调试、故障排除的能力。
3. 提高学生的团队协作能力和沟通能力,能在小组合作中发挥各自优势,共同完成过程控制系统的设计与优化。
情感态度价值观目标:1. 培养学生对过程控制与仪表领域的兴趣,激发学生主动学习的积极性。
2. 培养学生严谨的科学态度,注重实践与理论相结合,提高学生的工程素养。
3. 引导学生关注过程控制技术在实际生产中的应用,认识到学习本课程的实际意义,增强学生的社会责任感。
课程性质:本课程为专业技术课程,旨在使学生掌握过程控制与仪表的基本理论、方法和技术,培养学生的实际操作能力和工程素养。
学生特点:高二年级学生,已具备一定的物理、数学基础,对工程技术有一定了解,具备初步的分析问题和动手能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强化学生的实际操作能力,提高学生解决实际问题的能力。
将课程目标分解为具体的学习成果,以便于教学设计和评估。
二、教学内容1. 过程控制基本概念:控制系统的分类、性能指标、稳定性与可控性。
2. 仪表及传感器:仪表的分类及工作原理,常见传感器(如温度、压力、流量传感器)的原理与应用。
3. 过程控制系统的数学模型:被控对象、控制器、执行器的数学描述,传递函数与方框图。
4. 控制器设计:PID控制算法,参数整定方法,串、并联控制系统的设计与分析。
5. 过程参数检测与变送:检测原理,变送器的种类及特性,信号处理与传输。
6. 过程控制系统的实现:控制系统硬件、软件组成,系统调试与优化。
过控原理课程设计

过控原理课程设计一、课程目标知识目标:1. 理解并掌握过控原理的基本概念,包括开环控制与闭环控制的特点及应用;2. 学会分析控制系统的性能,了解稳定性、快速性及准确性等评价指标;3. 掌握典型控制系统的数学模型及其建立方法。
技能目标:1. 能够运用所学的过控原理知识,进行控制系统的设计与仿真;2. 培养学生运用数学工具解决实际控制问题的能力;3. 提高学生团队协作和沟通交流的能力。
情感态度价值观目标:1. 培养学生对自动化控制技术的兴趣,激发学习热情;2. 引导学生认识到控制技术在国民经济发展中的重要性,增强社会责任感;3. 培养学生严谨、务实的科学态度,提高创新意识和实践能力。
课程性质分析:本课程为自动化及相关专业高年级学生设置,旨在使学生掌握过控原理的基础知识,提高解决实际控制问题的能力。
学生特点分析:高年级学生对专业知识有一定的基础,具有较强的学习能力和自主性,对实际应用有较高的兴趣。
教学要求:1. 结合实际案例,注重理论与实践相结合;2. 创设情境,引导学生主动参与,培养学生的创新精神和实践能力;3. 注重过程评价,关注学生的个体差异,提高教学质量。
二、教学内容1. 引言:介绍过控原理的概念、发展及应用领域,激发学生兴趣,为后续学习打下基础。
教材章节:第一章 绪论内容列举:控制系统的基本概念、发展历程、应用领域。
2. 控制系统的数学模型:讲解控制系统的数学描述方法,使学生掌握建模方法。
教材章节:第二章 控制系统的数学模型内容列举:微分方程、传递函数、状态空间模型。
3. 控制系统的性能分析:学习控制系统的稳定性、快速性及准确性等性能评价指标。
教材章节:第三章 控制系统的性能分析内容列举:稳定性分析、快速性分析、准确性分析。
4. 开环控制与闭环控制:对比分析开环控制与闭环控制的优缺点,了解其在实际应用中的选择。
教材章节:第四章 开环控制与闭环控制内容列举:开环控制原理、闭环控制原理、开环与闭环控制的区别与联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识并查阅相关书籍完成设计。
本设计的液料为液氨,它是一种无色液体。
氨作为一种重要的化工原料,应,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点用广泛。
分子式NH3-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。
蒸汽与空气混合物爆炸极限16~25%(最易引燃浓度17%)。
氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。
水溶液呈碱性。
液态氨将侵蚀某些塑料制品,橡胶和涂层。
遇热、明火,难以点燃而危险性较低; 但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。
设计基本思路:本设计综合考虑环境条件、介质的理化性质等因素,结合给定的工艺参数,机械按容器的选材、壁厚计算、强度核算、附件选择、焊缝标准的设计顺序,分别对储罐的筒体、封头、人孔接管、人孔补强、接管、管法兰、液位计、鞍座、焊接形式进行了设计和选择。
设备的选择大都有相应的执行标准,设计时可以直接选用符合设计条件的标准设备零部件,也有一些设备没有相应标准,则选择合适的非标设备。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
2 设计选材及结构2.1 工艺参数的设定2.1.1 设计压力根据《化学化工物性数据手册》查得40℃蒸汽压为1.555Mp(绝对压力),可以判断设计的容器为储存内压压力容器,按《压力容器安全技术监察规程》规定,盛装液化气体无保冷设施的压力容器,其设计压力应不低于液化气40℃时的饱和蒸汽压力,可取液氨容器的设计压力为Pc=1.1×1.555=1.7105 Mpa,属于中压容器。
而且查得当容器上装有安全阀时,取1.05~1.3倍的最高工作压力作为设计压力;所以取1.7105 Mpa的压力合适。
6.0Mpa≤Pc≤10Mpa属于中压容器。
2.1.2 筒体的选材及结构。
设计温度为40摄氏度,在-20~200℃条件下工作属于常温容器。
根据液氨的物性选择罐体材料,碳钢对液氨有良好的耐蚀性腐蚀率在0.1㎜/年以下,且又属于中压储罐,可以考虑20R和16MnR这两种钢材。
如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济。
所以在此选择16MnR钢板作为制造筒体和封头材料。
钢板标准号为GB6654-1996。
筒体结构设计为圆筒形。
因为作为容器主体的圆柱形筒体,制造容易,安装内件方便,而且承压能力较好,这类容器应用最广。
2.1.3 封头的结构及选材。
封头有多种形式,半球形封头就单位容积的表面积来说为最小,需要的厚度是同样直径圆筒的二分之一,从受力来看,球形封头是最理想的结构形式,但缺点是深度大,直径小时,整体冲压困难,大直径采用分瓣冲压其拼焊工作量也较大。
椭圆形封头的应力情况不如半球形封头均匀,但对于标准椭圆形封头与厚度相等的筒体连接时,可以达到与筒体等强度。
它吸取了蝶形封头深度浅的优点,用冲压法易于成形,制造比球形封头容易,所以选择椭圆形封头,结构由半个椭球面和一圆柱直边段组成。
查椭圆形封头标准(JB/T4737-95)表2.1 标准椭圆封头 公称直径DN曲面高度h1 直边高度h2 内表面积A/㎡ 溶剂V/m ³ 2600650 40 7.63 2.51封头取与筒体相同材料。
3 设计计算3.1 筒体壁厚计算查 《压力容器材料使用手册-碳钢及合金钢》得16MnR 的密度为7.85t/m3[]t σ,熔点为1430℃,许用应力列于下表:表3.1 16MnR 许用应力 钢号 板厚/mm在下列温度(℃)下的许用应力/Mpa≤20 100 150 200 250 300 16MnR 6~16170 170 170 170 156 144 16~36163 163 163 159 147 134 36~60157 157 157 150 138 125 >60~100153 153 150 141 128 116圆筒的计算压力为1.7105 Mpa,容器筒体的纵向焊接接头和封头的拼接接头都采用双面焊或相当于双面焊的全焊透的焊接接头,取焊接接头系数为1.00,全部无损探伤。
取许用应力为170 Mpa 。
壁厚: (3—1)钢板厚度负偏差C1=0,查材料腐蚀手册得40℃下液氨对钢板的腐蚀速率小于0.05㎜/年,所以双面腐蚀取腐蚀裕量C2=2㎜。
[]mm p D p c t i c 1.137.10.1170226007.12=-⨯⨯⨯=-=φσδ所以设计厚度为:δn =δ +C1+C2 +Δ=15.1mm 近似为16mm故取dn =16mm 厚的16MnR 钢板制作罐体。
3.2 封头壁厚计算标准椭圆形封头a:b=2:1 封头计算公式 :(3-2)可见封头厚度近似等于筒体厚度,则取同样厚度。
因为封头壁厚<20㎜则标准椭圆形封头的直边高度h0=40㎜,则δn=16mm3.3 压力试验水压试验,液体的温度不得低于5℃; 试验方法:试验时容器顶部应设排气口,充液时应将容器内的空气排尽,试验过程中,应保持容器外表面的干燥。
试验时压力应缓慢上升,达到规定试验压力后,保压时间一般不少于30min 。
然后将压力降至规定试验压力的80%,并保持足够长的时间以便对所有焊接接头和连接部位进行检查。
如有渗漏,修补后重新试验。
水压试验时的压力[][]pa 14.27105.125.125.1tM p Pt =⨯=∂∂= (3—3) de= dn -C1-C2 =16-0-1=15mmδs=345 MPa(3-4)水压试验的应力校核:水压试验时的应力 0.9*φ*δs=0.9x1.0x345 =310.5MPa水压试验时的许用应力为 故筒体满足水压试验时的强度要求。
MPa D p e e i T T 5.186152)152600(14.22)(=⨯+⨯=+=δδδ[]mm p D p c t i c 3.135.07.10.1170226007.15.02=⨯-⨯⨯⨯=-=φσδ4 附件选择4.1 人孔选择人孔的作用:为了检查压力容器在使用过程中是否产生裂纹、变形、腐蚀等缺陷。
人孔的结构:既有承受压力的筒节、端盖、法兰、密封垫片、紧固件等受压元件,也有安置与启闭端盖所需要的轴、销、耳、把手等非受压件。
人孔类型:从是否承压来看有常压人孔和承压人孔。
从人孔所用法兰类型来看,承压人孔有板式平焊法兰人孔、带颈平焊法兰人孔和带颈对焊法兰人孔,在人孔法兰与人孔盖之间的密封面,根据人孔承压的高低、介质的性质,可以采用突面、凹凸面、榫槽面或环连接面。
从人孔盖的开启方式及开启后人孔盖的所处位置看,人孔又可分为回转盖人孔、垂直吊盖人孔和水平吊盖人孔三种。
人孔标准HG21524-95规定PN≥1.0Mpa时只能用带颈平焊法兰人孔或带颈对焊法兰人孔。
容器上开设人孔规定当Di>1000时至少设一个人孔,压力容器上的开孔最好是圆形的,人孔公称直径最小尺寸为φ400㎜。
综合考虑选择水平吊盖带颈对焊法兰人孔(HG21524-95),公称压力PN1.7、公称直径DN450、H1=320、RF型密封面、采用Ⅵ类20R材料、垫片采用外环材料为低碳钢、金属带为0Cr19Ni9、非金属带为柔性石墨、C型缠绕垫。
标记为:人孔RFⅥ(W·C-1220)450-2.5HG21524-95总质量为256kg.法兰标准号为HGJ50~53-91,垫片标准号为HGJ69~72-91,法兰盖标准HGJ61~65-91材料为20R,螺柱螺母标准HGJ75-91螺柱材料40Cr螺母材料45,吊环转臂和材料Q235-A·F,垫圈标准为GB95-85材料100HV,螺母标准GB41-86,吊钩和环材料Q235-A·F,无缝钢管材料为20,支承板材料为20R。
尺寸表如图表4.1 人孔标准尺寸表密封面形式PN/Mpa DN dw×s d D1 D2 H1 H2总质量Kg突面 1.7 450 480×12 450 484 760 320 214 2564.2 人孔补强的计算开孔补强结构:压力容器开孔补强常用的形式可分为补强圈补强、厚壁管补强、整体锻件补强三种。
补强圈补强是使用最为广泛的结构形式,它具有结构简单、制造方便、原材料易解决、安全、可靠等优点。
在一般用途、条件不苛刻的条件下,可采用补强圈补强形式。
但必须满足规定的条件。
压力容器开孔补强的计算方法有多种,为了计算方便,采用等面积补强法,即壳体截面因开孔被削弱的承载面积,必须由补强材料予以等面积的补偿。
当补强材料与被削弱壳体的材料相同时,则补强面积等于削弱的面积。
补强材料采用16MnR 。
1、内压容器开孔后所需的补强面积)1(2r et f d A -+=δδδ (4-1) 式中开孔直径mm C d d i 469224652=⨯+=+= (4-2) 强度消弱系数[][]78.0170/133===t t n r f σσ(4-3) 壳体开孔处的计算厚度13.1mm接管有效厚度mm c en et10212=-=-=δδ (4-4)则 9.6200)170/1331(101.1321.13469=-⨯⨯⨯+⨯=A (4-5)2、有效补强面积即已有的加强面积 壳体开孔后,在有效补强范围内,可作为补强的截面积(包括来自壳体、接管、焊缝金属、补强元件)321A A A A e ++=(4-6) 筒体上多余金属面积)1)((2))((1r e et e f d B A -----=δδδδδ(4-7) 有效补偿宽度 B=2d筒体的有效厚度 14216=-=e δ所以18.418)170/1331()1.1314(102)1.1314(4691=-⨯-⨯⨯--⨯=A m ㎡ (4-8)人孔接管上多余的面积r et r t et f C h f h A )(2)(22212-+-=δδδ (4-9)外侧有效高度02.75469121=⨯==d h nt δ内侧有效高度即实际内伸高度2h =0接管计算厚度[]00.371.111332)16480(71.12=-⨯⨯-⨯=-=c t n i c t p d p φσδ (4-10) 69.821170/133)310(4691222=⨯-⨯⨯⨯=A (4-11)焊缝金属截面积 231441212212mm A =⨯⨯⨯= 所以232178.138314469.82118.418mm A A A A e =++=++=(4-12) 比较e A A >满足以下条件的可选用补强圈补强:刚材的标准常温抗拉强度b σ≤540Mpa ;补强圈厚度应小于或等于壳体壁厚的1.5倍;壳体名义厚度n δ≤38㎜;设计压力<4Mpa ;设计温度≤350℃。