江苏省南通市启东中学2020-2021学年高一上学期10月月考数学试题(PDF版含答案)

合集下载

2020-2021学年第一学期10月份第一次月考试卷答案

2020-2021学年第一学期10月份第一次月考试卷答案

2020-2021学年第一学期10月份第一次月考试卷高一数学试卷参考答案2020.10考试范围:人教A 版必修第一册第一、二章考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 解析:由(6)(1)0x x -+<,得16x -<<,从而有{}16B x x =-<<,所以{}14A B x x ⋂=-<<,故选:D .2.B 解析:集合{}0,1,2,3,4,5A =,{{}2B x y x x ===≥,所以{}U 2B x x =<ð.图中阴影部分表示的集合为(){}U 0,1A B ⋂=ð.故选:B 3.A 解析:因为甲是乙的充要条件,所以乙⇔甲;又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒丙.综上,丙⇒甲,但甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件.故选A .4.A 解析:因为全称命题的否定是特称命题,所以命题“[]1,3x ∀∈-,2320x x -+≤”的否定为“[]01,3x ∃∈-,200320x x -+>”.故选A .5.B 解析:对于A ,若22ac bc >,则0c ≠,2222ac bc c c >,即a b >,故正确;对于B ,根据不等式的性质,若0a b <<,不妨取2,1a b =-=-,则22a b >,故题中结论错误;对于C ,若0a b >>,则a b ab ab>,即11a b <,故正确;对于D ,若0a b <<,0c d >>,则0a b ->->,故ac bd ->-,ac bd <,故正确.故选B .6.B 解析:0a > ,0b >,且21a b +=,120b a ∴=->,解得102a <<.∴12122(1)1212122(1)(2321111a a a a a a a a b a a a a a a a a ---+=+=+-=+-+-=++-+----11+=+ ,当且仅当1a =,3b =-时取等号.∴12aa a b++有最小值1+.故选:B .7.C 解析:解:不等式210x mx -+<的解集为空集,所以0∆≤,即240m -≤,解得22m -≤≤.故选:C .8.B 解析:依题意2() 4.914.717h t t t =-++234.928.0252t ⎛⎫=--+ ⎪⎝⎭,故当32t =时,()max 28.02528m h t =≈.故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.ABD 解析:由于M N ⊆,即M 是N 的子集,故M N M ⋂=,M N N ⋃=,从而M M N ⊆⋂(),()M N N ⋃⊆.故选ABD .10.AC 解析:对于选项A ,由327x =-得293x x =-⇒=,但是3x =适合29x =,推出32727x =≠-,故A 正确;对于选项B ,在ABC ∆中,222AB AC BC ABC +=⇒∆为直角三角形,但ABC ∆为直角三角形222AB AC BC ⇒+=或222AB BC AC +=或2221BC AC AB +=,故B 错误;对于选项C ,由220,a b a b +≠⇒不全为0,反之,由a ,b 不全为2200a b ⇒+≠,故D 正确;对于选项D ,结论“四边形是菱形”推不出条件“四边形是正方形”,因此必要条件不成立.故选:AC .11.AB 解析:对A ,2211224a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12a b ==时取等号.故A 正确.对B ,22a b a b a b =+++++=≤,当且仅当12a b ==时取等号.故B 正确.对C ,()1111224b a a b a b a b a b ⎛⎫+=++=++≥+⎝= ⎪⎭.当且仅当12a b ==时取等号.所以11a b+有最小值4.故C 错误.对D ,()222121a b a ab b +=⇒++=≤2a +()222a b b ++,即2212a b +≥,故22a b +有最小值12.故D 错误.故选:AB 12.ABD 解析:由23344x x b -+≤得23121640x x b -+-≤,又1b <,所以()4810b ∆=-<,从而不等式23344a x x b ≤-+≤的解集为∅,故A 正确.当1a =时,不等式23344a x x ≤-+就是2440x x -+≥,解集为R ,当4b =时,不等式23344x x b -+≤就是240x x -≤,解集为{}04x x ≤≤,故B 正确.由23344a x x b ≤-+≤的解集为{}x a x b ≤≤,知min a y ≤,即1a ≤,因此当x a =,x b =时函数值都是b .由当x b=时函数值是b ,得23344b b b -+=,解得43b =或4b =.当43b =时,由2343443a a b -+==,解得43a =或83a =,不满足1a ≤,不符合题意,故C 错误.当4b =时,由233444a ab -+==,解得0a =或4a =,0a =满足1a ≤,所以0a =,此时404b a -=-=,故D 正确.故选:A B D三、填空题:本题共4小题,每小题5分,共20分.13.4解析:由题得满足关系式{}{}2,31,2,3,4A ⊆⊆的集合A 有:{2,3},{1,2,3},{2,3,4},{1,2,3,4}.所以集合A 的个数为4.故答案为414.充分非必要解析:令命题:2p x y +≠-,命题:q x ,y 不都为1-;:2p x y ⌝+=-,:q x ⌝,y 都是1-,则当x ,y 都是1-时,满足2x y +=-,反之当1x =,3y =-时,满足2x y +=-,但x ,y 都是1-不成立,即q ⌝是p ⌝充分非必要条件,则根据逆否命题的等价性知p 是q 的充分非必要条件,故答案为:充分非必要.15.16解析:0a >,1b >且210a b b +=⇒->且()11a b +-=∴()()91919111010616111b a a b a b a b a b -⎛⎫+=++-=++≥+=⎡⎤ ⎪⎣⎦---⎝⎭当且仅当()911b a a a -=-取等,又2a b +=,即34a =,54b =时取等号,故所求最小值16.故答案为:1616.0解析:由根与系数的关系可知()11{0,01m m m b b m m a++=∴==+=四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.解:(1)若1A ∈,则210,1m m -+=∴=1a ∉ ,∴实数m 的取值范围为:{}1m m ∈≠R ……………4分(2)选①:若A =∅,则关于x 的方程2210mx x -+=没有实数解,所以0m ≠,且440m ∆=-<,所以1m >……………10分选②:若A 恰有两个子集,则A 为单元素集,所以关于x 的方程2210mx x -+=恰有一个实数解,讨论:①当0m =时,12x =,满足题意;②当0m ≠时,Δ440m =-=,所以1m =.综上所述,m 的集合为{}0,1……………10分选③:若1,22A ⎛⎫⋂≠∅ ⎪⎝⎭,则关于x 的方程221mx x =-在区间1,22⎛⎫ ⎪⎝⎭内有解,等价于当1,22x ⎛⎫∈ ⎪⎝⎭时,求2221111m x x x ⎛⎫=-=-- ⎪⎝⎭的值域,所以](0,1m ∈……………10分18.解:(1)122x x +>-等价于()()12220x x x ⎧+->⎨-≠⎩,解得25x <<:25p x ∴<<,由p ⌝为真知:2x ≤或5x ≥……………6分(2)q ⌝是p ⌝的充分不必要条件,则q 是p 的必要不充分条件.故2:50q x ax -+>对于任意25x <<恒成立,故5a x x<+,由基本不等式可知5x x+≥x =a <……12分19.解:(1)因为0x >,0y >,所以x y +≥,由2x y xy +=,得2xy ≥1≥,1xy ≥,当且仅当1x y ==时,等号成立……………6分(2)由2x y xy +=得112x y+=.2111223222x x x y y y x x x x y x x ⎛⎫+=++=++≥+≥ ⎪⎝⎭.当且仅当2x y x=,且0x <时,两个等号同时成立.即当且仅当12x =-且14y =,2y x x +的最小值是32……………12分20.(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤,所以,每吨二氧化碳的平均处理成本为1800002002y x x x =+-,由基本不等式可得200200y x ≥=(元),当且仅当1800002x x=时,即当400x =时,等号成立,因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低……………6分(2)()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭400600x ≤≤ ,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-.所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损……12分21.解:(1)()()2210⎡⎤-+-=---≤⎣⎦x x a a x a x a ,当1a a <-(12a <)时,不等式解集为{|1}x a x a ≤≤-;当1a a >-(12a >)时,不等式解集为{|1}x a x a -≤≤;当1a a =-(12a =)时,不等式解集为1{|}2x x =.所以,当1 2a <时,不等式解集为{|1}A x a x a =≤≤-;当1 2a =时,不等式解集为12A ⎧⎫=⎨⎬⎩⎭;当1 2a >时,不等式解集为{|1}A x a x a =-≤≤……………8分(2)由上(1),1 2a >时,() {|1}1,1A x a x a =-≤≤⊆-,所以111a a ->-⎧⎨<⎩,得1a <,所以,实数a 的取值范围112a <<……………12分22.解:(1)函数24y x mx =++的图象开口向上,对称轴为2m x =-,在区间[]1,2上的最大值,分两种情况:①322m -<(3m >-)时,根据图象知,当2x =时,函数取得最大值82max y m =+;②322m -≥(3m ≤-)时,当1x =时,函数取得最大值5max y m =+.所以,当3m >-时,82max y m =+;当3m ≤-时,5max y m =+……………7分(2)[] 1,20x y ∈<,恒成立,只需在区间[]1,2上的最大值0max y <即可,所以(1)0(2)0f f <⎧⎨<⎩,得45m m <-⎧⎨<-⎩,所以实数m 的取值范围是5m <-……………12分。

江苏启东中学2020-2021学年度第一学期高三数学检测试卷

江苏启东中学2020-2021学年度第一学期高三数学检测试卷

2020/2021学年度第一学期质量检测试卷 高三数学 2020.09一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:p x R ∃∈,使sin x =;命题:q x R ∀∈,都有210x x ++>.给出下列结论:①命题“p q ∧”是真命题 ②命题“p q ∧⌝”是假命题 ③命题“p q ⌝∨”是真命题 ④命题“p q ⌝∨⌝”是假命题其中正确的是 ( ) A .①②③B .②③C .②④D .③④2.设)2,4(=a ,),6(y b =,且//,则=y ( ) A .3 B .12 C .12- D .3-3.将函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位,所得的图象对应的函数解析式是 ( )A 、sin2y x =B 、cos2y x =C 、 2sin 23y x π⎛⎫=+ ⎪⎝⎭D 、sin 26y x π⎛⎫=- ⎪⎝⎭4.已知集合P={65|<<-x x },Q={065|2≤--x x x },则P ⋂Q=____( )A 、{61|<<-x x }B 、{61|≤≤-x x }C 、{61|<≤-x x } D 、{61|≤<-x x }5.已知P 为抛物线C :24y x 上一点,F 为C 的焦点,若4PF ,则ΔOPF 的面积为 ( )B. 3C. 46. f(x)与g(x)是定义在R 上的两个可导函数,若f(x),g(x)满足,则f(x)与g(x)满足 ( )A .f(x)=g(x)B .f(x)=g(x)=0C .f(x)-g(x)为常数函数D .f(x)+g(x)为常数函数7.已知正四面体ABCD ,则AB 与平面BCD 所成角的余弦值为( )A.12 B. 23 C. 138.设锐角△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且c =1,A =2C ,则△ABC 周长的取值范围为 ( ) A .(0,2)B .(0,3]C .(2,3)D .(2,3]二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9. 在100件产品中,有98件合格品,2件不合格品.从这100件产品中任意抽出3件,则下列结论正确的有 ( )A .抽出的3件产品中恰好有1件是不合格品的抽法有12298C C 种 B .抽出的3件产品中恰好有1件是不合格品的抽法有12299C C 种 C .抽出的3件中至少有1件是不合格品的抽法有2212988129C C C C +种 D .抽出的3件中至少有1件是不合格品的抽法有3310098C C -种10.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则 ( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2B .把C 1上各点的横坐标缩短到原来的12倍,级坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 211.若函数()f x 对∀a ,b ∈R ,同时满足:(1)当a +b =0时有()()0f a f b +=;(2)当a +b >0时有()()0f a f b +>,则称()f x 为Ω函数.下列函数中是Ω函数的有 ( )A .()e e x x f x -=+B .()e e x x f x -=-C .()sin f x x x =-D .00()10x f x x x=⎧⎪=⎨-≠⎪⎩,,12. 已知ABC ∆中,1=AB ,4=AC ,13=BC ,D 在BC 上,AD 为BAC ∠的角平分线,E 为AC 中点.下列结论正确的是 ( )A.3=BEB.ABC ∆的面积为13C.534=AD D.P 在ABE ∆的外接圆上,则PE PB 2+的最大值为72三、填空题:本大题共4小题,每小题5分,计20分13.设函数f (x )(a >0且a ≠1),若f (2)=4,则f (﹣2020)= 14.函数f (x )=ln(-2x -3)的单调递减区间为______________15.已知集合2{|10},{|20}A x mx B x Z x x =-==∈+≤,若A B A =,则满足条件的实数m 的值为____ 。

江苏省启东中学2020-2021学年度第一学期10月月考高二数学(PDF版含答案)

江苏省启东中学2020-2021学年度第一学期10月月考高二数学(PDF版含答案)

主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,
曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.
其前 10 项依次是 0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是
A. 此数列的第 20 项是 200
B. 此数列的第 19 项是 182
A. 665 729
B. 486 665
C. 665 243
7.已知 a, b, c, d 均为实数,则下列命题正确的是(
65
D.
9

A.若 a b, c d ,则 ac bd
B.若
ab0, bc来自ad0,则
c a
d b
0
C.若 a b, c d 则 a d b c
D.若
a
b, c
d
0
D.35
2. 已知等差数列 an 中, a2 6, a5 15 .若 bn a2n ,则数列 bn 的前 5 项和等于
A.186
B. 90
C.45
3. 若 a>b>0,则下列不等式中一定成立的是
D.30
A.a+1>b+1 ba
B.b>b+1 a a+1
C.a-1>b-1 ba
D.2a+b>a a+2b b
在① a3 5 , a2 a5 6b2 ;② b2 2 , a3 a4 3b3 ;③ S3 9 , a4 a5 8b2 这三个
Sn
2an
1 ,数列
an
2n an 1
的前
n

和为 Tn , n N* ,则下列选项正确的为
A.数列an 1 是等差数列 C.数列an 的通项公式为 an 2n 1

2021年高一上学期10月份月考数学试题 Word版含答案

2021年高一上学期10月份月考数学试题 Word版含答案

2021年高一上学期10月份月考数学试题 Word版含答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡...相应位置上......1.若用列举法表示集合,则集合2.下列各式中,正确的序号是②④⑤①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}{1,2,3};⑤{a,b}{a,b}.3.已知全集,集合,,则集合4.已知全集,集合,,那么集合=.或5.下列函数中(2)与函数是同一个函数(1);(2);(3)(4).6.函数的定义域为7.设函数则的值为8.若函数,则使得函数值为的的集合为9.已知是奇函数,则实数=____________010.函数函数的单调增区间是11.如图,函数的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则_________212.下列两个对应中是集合A到集合B的映射的有(1)(3)(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则;(2)设,,对应法则(3)设,对应法则除以2所得的余数;(4),对应法则13.已知奇函数在定义域R上是单调减函数,且,则的取值范围是14. 已知函数是(-∞,+∞)上的单调减函数,那么实数的取值范围是(0,2]二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(1)设A={-4,2a-1,a2},B={a-5,1-a,9},已知A∩B={9},求a的值,并求出A∪B.(2)已知集合{}{},1x=mm≤-xx≤BxA满足5=|23,-≤≤|+求实数的取值范围.解(1)∵A∩B={9},∴9∈A,所以a2=9或2a-1=9,解得a=±3或a=5.当a=3时,A={9,5,-4},B={-2,-2,9},B中元素违背了互异性,舍去.当a=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,故A∪B={-7,-4,-8,4,9}.当a=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去.综上所述,a=-3,A∪B={-7,-4,-8,4,9}.(2)由题意知,要满足必须,即16.已知函数,x∈[3,5].(1) 判断函数的单调性,并证明;(2) 求函数的最大值和最小值.解:(1) 任取x1,x2∈[3,5]且x1<x2.f(x1)-f(x2)=-=,因为3≤x1<x2≤5,所以x1-x2<0,(x1+2)(x2+2)>0.所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)在[3,5]上为增函数.(2) 由(1)知f(x)max=f(5)=,f(x)min=f(3)=.17.已知函数(1)求在区间[0,3]上的最大值和最小值;(2)若在[2,4]上是单调函数,求的取值范围.解(1)∵, x∈[0,3],对称轴,开口向下,∴f (x )的最大值是f (1)=3,又f (0)=2,f (3)=,所以f (x )在区间[0,3]上的最大值是3,最小值是.(2)∵,函数对称轴是,开口向下,又在[2,4]上是单调函数∴≤2或≥4,即或.故m 的取值范围是或.18.已知定义域为的奇函数,当 时,.(1)当时,求函数的解析式;(2)求函数解析式;(3)解方程.解: (1)当时,, 所以22()()()()3()3(0);f x f x f x f x x f x x x ∴-=-∴-=-∴=-+<是奇函数 ………… 5分 (2)因为函数是定义域为的奇函数,所以,则 ………10分 (3) 当时,方程即,解之得;当时,方程即,解之得();当时,方程即,解之得().综上所述,方程的解为,或,或. ………16分19.设函数,().(1) 求证:是偶函数;(2) 画出函数的图象,并指出函数的单调区间,并说明在各个单调区间上是单调递增还是单调递减;(3) 求函数的值域.解: (1) 因为,所以f(x)的定义域关于原点对称.对定义域内的每一个x,都有f(-x)=f(x),所以f(x)是偶函数.(2) 当0≤x≤4时,f(x)=x 2-2x-3=(x-1)2-4;当-4≤x<0时,f(x)=x 2+2x-3=(x+1)2-4.函数f(x)的图象如图所示.由图知函数f(x)的单调区间为[-4,-1),[-1,0),[0,1),[1,4].f(x)在区间[-4,-1)和[0,1)上单调递减,在[-1,0)和[1,4]上单调递增.(3) 当x≥0时,函数f(x)=(x-1)2-4的最小值为-4,最大值为f(4)=5;当x<0时,函数f(x)=(x+1)2-4的最小值为-4,最大值为f(-4)=5.故函数f(x)的值域为[-4,5].20. 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中x 是仪器的月产量).(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)解:(1)f (x )=⎩⎪⎨⎪⎧ -12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000. ∴当x =300时,有最大值为25 000;当x >400时,f (x )=60 000-100x 是减函数,f (x )<60 000-100×400=20 000<25 000.∴当x =300时,f (x )的最大值为25 000,即每月生产300台仪器时,利润最大,最大利润为25 000元.}27285 6A95 檕25052 61DC 懜k&@Y31750 7C06 簆.*29155 71E3 燣 f 33982 84BE 蒾。

江苏省启东中学高一数学月考试卷答案

江苏省启东中学高一数学月考试卷答案

江苏省启东中学高一数学月考试卷答案1、72、32π 3、10 4、007515或 5、 -n+3 6、156 7、直角三角形 8、3 9、1 10、338≤<d 11、 ③ 12、 3 13、⎪⎩⎪⎨⎧>+≤+)21()24()21()32(22k k k k ππ 14、2002 15.8616.解(1)由(3)23n n m S ma m -+=+,得11(3)23,n n m S ma m ++-+=+两式相减,得1(3)2,(3)n n m a ma m ++=≠-12,3n n a m a m +∴=+ {}n a ∴是等比数列. 111111112(2)1,(),2,3233()22311133.311{}131121,333.2n n n n n n n n n n n n n m b a q f m n N n m b b f b b b b b b b b b n n b b n ------====∈≥+==⋅++=⇒-=∴-+∴=+==+由且时,得是为首项为公差的等差数列,故有 17.(1)0120;(2)10;(3)23 18.解:(1)依题意,10,1001091212==+=a a a a 故,…………………………2分当109,21+=≥-n n S a n 时 ① 又1091+=+n n S a ②…………………………………4分②-①整理得:}{,101n nn a a a 故=+为等比数列,且n a q a a n n n n =∴==-log ,1011 *1}{lg ,1)1(lg lg N n a n n a a n n n ∈=-+=-∴+即是等差数列.…………………6分(2)由(1)知,)1(1321211(3+++⋅+⋅=n n T n ………………………………8分133)1113121211(3+-=+-++-+-=n n n ……………………………………10分,23≥∴n T 依题意有,61),5(41232<<-->m m m 解得 故所求最大正整数m 的值为5.……………………………………………………15分19.解:(1)为了计算前三项321,,a a a 的值,只要在递推式1,)1(2≥-+=n a S n n n 中,对n 取特殊值1,2,3n =,就可以消除解题目标与题设条件之间的差异.由111121,1;a S a a ==-=得由2122222(1),0;a a S a a +==+-=得由31233332(1), 2.a a a S a a ++==+-=得……………………………6分(2)为了求出通项公式,应先消除条件式中的n S .事实上当2≥n 时,有,)1(2)(211n n n n n n a a S S a -⨯+-=-=--即有 ,)1(2211---⨯+=n n n a a从而 ,)1(22221----⨯+=n n n a a32322(1),n n n a a ---=+⨯-…….2212-=a a接下来,逐步迭代就有122111)1(2)1(2)1(22-----⨯++-⨯+-⨯+=n n n n n a a ].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n n n n n n n经验证a 1也满足上式,故知 .1],)1(2[3212≥-+=--n a n n n 其实,将关系式1122(1)n n n a a --=+⨯-和课本习题1n n a ca d -=+作联系,容易想到:这种差异的消除,只要对1122(1)n n n a a --=+⨯-的两边同除以(1)n -,便得1122(1)(1)n n n n a a --=-⋅---. 令,(1)n n na b =-就有122n n b b -=--,于是 1222()33n n b b -+=-+, 这说明数列23n b ⎧⎫+⎨⎬⎩⎭是等比数列,公比2,q =- 首项11b =-,从而,得 111221()(2)()(2)333n n n b b --+=+⋅-=-⋅-, 即121()(2)(1)33n n n a -+=-⋅--,故有.1],)1(2[3212≥-+=--n a n n n 20.解:(1)设}{n a 的公差为d ,由题意0>d ,且⎩⎨⎧=++=+28)2)(3(52111d a d a d a 2分 11,2a d ==,数列}{n a 的通项公式为12-=n a n ………………4分(2)由题意)11()11)(11(12121n n a ++++≤ 对*N n ∈均成立 …5分 记)11()11)(11(121)(21n a a a n n F ++++= 则1)1(2)1(21)1(4)1(2)32)(12(22)()1(2=++>-++=+++=+n n n n n n n n F n F ()0F n > ,∴(1)()F n F n +>,∴()F n 随n 增大而增大 ……8分 ∴()F n 的最小值为332)1(=F∴a ≤a 的最大值为332 …………………9分 (3)12-=n a n∴在数列}{n b 中,m a 及其前面所有项之和为22)222()]12(531[212-+=++++-++++-m m m m …11分 21562211200811222210112102=-+<<=-+ ,即11102008a a <<12分又10a 在数列}{n b 中的项数为:521221108=++++ … 14分且244388611222008⨯==-, 所以存在正整数964443521=+=m 使得2008=m S。

江苏省南通中学2020-2021学年高一上学期10月阶段性质量检测数学试题 Word版含答案

江苏省南通中学2020-2021学年高一上学期10月阶段性质量检测数学试题 Word版含答案
15.最新版高中数学教材必修第一册 的(探究题)告诉我们:任何一个正实数N可以表示成 ,此时 ,当 时,N是 位数.据此,可判断数 的位数是______.(取 ).
16.实数x,y满足 ,则 的最大值为______.
四、解答题
17.已知集合 , .
(1)若 时,求 , .
(2)若 ,求实数a的取值范围.
15.【答案】因为 ,所以 ,
所以,数 的位数是309.
16.【答案】因为 , , ,
所以
当且仅当 , 时取“=”,
所以 的最大值为14.
另解:因为 ,
由三元柯西不等式

即,
所以 ,故 的最大值为14.
四、解答题
【解析】(1) 时, , ,

18.【解析】①,即 是 的充分不必要条件,则 则 ,
即 ,解得 ,且 两个等号不同时成立,
江苏省南通中学2020学年第一学期
高一阶段性质量检测答案
数学
一、单项选择题
1.集合 的真子集个数是()
A.8B.7C.4D.3.
2.下列表述正确的是()
A. B. C. D.
3.已知集合 ,若 ,则实数a的值为()
A.-1B.-3C.-3或-1D.无解
4.如图,U是全集,集合A、B是集合U的两个子集,则图中阴影部分所表示的集合是()
21.【解析】(1)当 , 时, .
当 时, ,当且仅当 即 时取“=”;
当 时, , ,
当且仅当 ,即 时取“=”.
综上, ;
(2)当 时,对任意的 都有 恒成立,即 对任意的 恒成立,
即 .
因为 ,所以 .
当且仅当 即 时取“=”,所以 ,
又 ,所以 .

最新2022-2021年江苏省高一(上)10月月考数学试卷(解析版)

最新2022-2021年江苏省高一(上)10月月考数学试卷(解析版)

高一(上)10月月考数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一个选项是符合题目要求.1.设集合A={x|x=2k+1,k∈Z},则()A.3∉A B.3∈A C.3⊆A D.3⊊A2.函数f(x)=a x(a>1)的大致图象为()A.B.C.D.3.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.已知集合A={1,2},集合B满足A∪B={1,2},则这样的集合B有()A.4个 B.3个 C.2个 D.1个5.下列各组函数中的两个函数是相等函数的是()A.f(x)=(x﹣1)0与g(x)=1 B.f(x)=|x|与g(x)=C.f(x)=x与g(x)=()2 D.f(x)=•与g(x)=6.下列函数中,在区间(0,+∞)上是增函数的是()A.y=x2+1 B.y=3﹣2x C.D.y=﹣x2+17.函数y=的定义域为()A.(﹣B.C.D.8.已知集合A={x|﹣1≤x<3},B={x|2<x≤5},则A∪B=()A.{x|2<x<3}B.{x|﹣1≤x≤5}C.{x|﹣1<x<5}D.{x|﹣1<x≤5} 9.下列各式比较大小正确的是()A.1.72.5>1.73B.0.6﹣1>0.62C.1.70.3<0.93.1 D.0.8﹣0.1>1.250.210.f(x)=是定义在(﹣∞,+∞)上是减函数,则a的取值范围是()A.[,)B.[0,]C.(0,)D.(﹣∞,]11.已知f(x)是偶函数,对任意的x1,x2∈(﹣∞,﹣1],都有(x2﹣x1)(f (x2)﹣f(x1))<0,则下列关系式中成立的是()A.f(﹣)<f(﹣1)<f(2)B.f(﹣1)<f(﹣)<f(2)C.f(2)<f(﹣1)<f(﹣)D.f(2)<f(﹣)<f(﹣1)12.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.函数f(x)=则f(f(4))=.14.已知指数函数f(x)=(2a﹣1)x在(﹣∞,+∞)内是增函数,则实数a的取值范围是.15.已知函数f(x)是偶函数,且f(x)在[0,+∞)上的解析式是f(x)=2x+1,则f(x)在(﹣∞,0)上的解析式为.16.奇函数f(x)满足:①f(x)在(0,+∞)内单调递增;②f(1)=0;则不等式(x﹣1)f(x)>0的解集为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知全集U={x∈N|1≤x≤10},A={1,2,3,5,8},B={1,3,5,7,9}.(Ⅰ)求A∩B;(Ⅱ)求(∁U A)∩(∁U B).18.计算下列各题:(1);(2)若10x=3,10y=4,求102x﹣y的值.19.已知集合A={x|x2﹣ax+a2﹣12=0},B={x|x2﹣2x﹣8=0},C={x|mx+1=0}.(Ⅰ)若A=B,求a的值;(Ⅱ)若B∪C=B,求实数m的值组成的集合.20.已知函数.(Ⅰ)画出f(x)的图象(无需列表),并写出函数的单调递减区间;(Ⅱ)若x∈[0,a],求f(x)的最大值.21.已知二次函数f(x)满足f(0)=1且f(x+1)﹣f(x)=2x+2.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=2f(x),x∈[﹣1,1],求g(x)的值域.22.已知函数f(x)=是定义在[﹣1,1]上的奇函数,且f()=.(1)求f(x)的解析式;(2)判断f(x)在[﹣1,1]上的单调性并证明;(3)当存在x∈[,1]使得不等式f(mx﹣x)+f(x2﹣1)>0恒成立,请同学们探究实数m的所有可能取值.高一(上)10月月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一个选项是符合题目要求.1.设集合A={x|x=2k+1,k∈Z},则()A.3∉A B.3∈A C.3⊆A D.3⊊A【考点】元素与集合关系的判断.【分析】判断3是否属于集合A,把3代入x=2k+1后看能不能求得整数k.【解答】解:由2k+1=3,得k=1∈Z,所以3∈A.故选B.2.函数f(x)=a x(a>1)的大致图象为()A.B.C.D.【考点】函数的图象.【分析】根据指数函数的图象和性质进行判断.【解答】解:当a>1时,指数函数f(x)=a x,单调递增,排除A,C.又因为函数的定义域为R,所以排除D.故选B.3.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】集合的确定性、互异性、无序性.【分析】根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,则△ABC不会是等腰三角形.【解答】解:根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,故△ABC一定不是等腰三角形;选D.4.已知集合A={1,2},集合B满足A∪B={1,2},则这样的集合B有()A.4个 B.3个 C.2个 D.1个【考点】并集及其运算.【分析】根据题意得到集合B是集合A的子集,所以求出集合A子集的个数即为集合B的个数.【解答】解:因为A∪B={1,2}=A,所以B⊆A,而集合A的子集有:∅,{1},{2},{1,2}共4个,所以集合B有4个.故选A5.下列各组函数中的两个函数是相等函数的是()A.f(x)=(x﹣1)0与g(x)=1 B.f(x)=|x|与g(x)=C.f(x)=x与g(x)=()2 D.f(x)=•与g(x)=【考点】判断两个函数是否为同一函数.【分析】分别判断两个函数定义域和对应法则是否一致即可.【解答】解:A.函数f(x)=(x﹣1)0=1的定义域{x|x≠1},两个函数的定义域不相同,不是相等函数.B.g(x)==|x|,两个函数的对应法则和定义域相同,是相等函数.C.函数g(x)=()2=x,函数f(x)的定义域为[0,+∞),两个函数的定义域不相同,不是相等函数.D.由,解得x≥1,即函数f(x)的定义域为{x|x≥1},由x2﹣1≥0,解得x≥1或x≤﹣1,即g(x)的定义域为{x|x≥1或x≤﹣1},两个函数的定义域不相同,不是相等函数.故选:B.6.下列函数中,在区间(0,+∞)上是增函数的是()A.y=x2+1 B.y=3﹣2x C.D.y=﹣x2+1【考点】函数单调性的判断与证明.【分析】根据基本初等函数的图象与性质,对选项中的函数在区间(0,+∞)上的单调性判定即可.【解答】解:对于A,二次函数y=x2+1的图象是开口向上的抛物线,最新x=0对称,在区间(0,+∞)上是增函数,符合题意;对于B,一次函数y=3﹣2x的一次项系数k=﹣2为负数,∴函数y=3﹣2x在区间(0,+∞)上是减函数,不符合题意;对于C,反比例函数y=图象在一、三象限,在每一个象限内均为减函数,不符合题意;对于D,二次函数y=﹣x2+1的图象是开口向下的抛物线,最新x=0对称,在区间(0,+∞)上是减函数,不符合题意.故选:A.7.函数y=的定义域为()A.(﹣B.C.D.【考点】函数的定义域及其求法.【分析】两个被开方数都需大于等于0;列出不等式组,求出定义域.【解答】解:要使函数有意义,需,解得,故选B.8.已知集合A={x|﹣1≤x<3},B={x|2<x≤5},则A∪B=()A.{x|2<x<3}B.{x|﹣1≤x≤5}C.{x|﹣1<x<5}D.{x|﹣1<x≤5}【考点】并集及其运算.【分析】分别把两集合的解集表示在数轴上,根据数轴求出两集合的并集即可【解答】解:把集合A={x|﹣1≤x<3},B={x|2<x≤5},表示在数轴上:则A∪B=[﹣1,5].故选B9.下列各式比较大小正确的是()A.1.72.5>1.73B.0.6﹣1>0.62C.1.70.3<0.93.1 D.0.8﹣0.1>1.250.2【考点】指数函数的单调性与特殊点.【分析】根据指数函数的单调性判断数的大小即可.【解答】解:对于指数函数y=a x,当a>1时,函数为增函数,故A错误,当0<a<1时,函数为减函数,故B正确,由于1.70.3>1,0.93.1<1,故C错误,由于0.8﹣0.1=1.250,1,对于指数函数y=a x,当a>1时,函数为增函数,故D错误,故选:B10.f(x)=是定义在(﹣∞,+∞)上是减函数,则a的取值范围是()A.[,)B.[0,]C.(0,)D.(﹣∞,]【考点】函数单调性的性质.【分析】由题意可得3a﹣1<0、﹣a<0、且﹣a≤3a﹣1+4a,解由这几个不等式组成的不等式组,求得a的范围.【解答】解:由题意可得,求得≤a<,故选:A.11.已知f(x)是偶函数,对任意的x1,x2∈(﹣∞,﹣1],都有(x2﹣x1)(f (x2)﹣f(x1))<0,则下列关系式中成立的是()A.f(﹣)<f(﹣1)<f(2)B.f(﹣1)<f(﹣)<f(2)C.f(2)<f(﹣1)<f(﹣)D.f(2)<f(﹣)<f(﹣1)【考点】函数奇偶性的性质.【分析】由于对任意的x1,x2∈(﹣∞,﹣1],都有(x2﹣x1)(f(x2)﹣f(x1))<0,可得函数f(x)在x∈(﹣∞,﹣1]上单调递减,即可得出.【解答】解:∵对任意的x1,x2∈(﹣∞,﹣1],都有(x2﹣x1)(f(x2)﹣f(x1))<0,∴函数f(x)在x∈(﹣∞,﹣1]上单调递减,∴,又∵f(x)是偶函数,∴f(﹣2)=f(2).∴f(﹣1)<f(﹣)<f(2).故选:B.12.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时【考点】指数函数的实际应用.【分析】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.【解答】解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e22k==e11k=e b=192当x=33时,e33k+b=(e k)33•(e b)=()3×192=24故选:C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13.函数f(x)=则f(f(4))=0.【考点】函数的值.【分析】先根据对应法则求出f(4),然后根据f(4)的大小关系判断对应法则,即可求解【解答】解:∵4>1∴f(4)=﹣4+3=﹣1∵﹣1≤1∴f(﹣1)=0故答案为:014.已知指数函数f(x)=(2a﹣1)x在(﹣∞,+∞)内是增函数,则实数a的取值范围是(1,+∞).【考点】指数函数的单调性与特殊点;函数单调性的性质.【分析】利用指数函数f(x)=(2a﹣1)x在(﹣∞,+∞)内是增函数可知2a ﹣1>1,从而可求实数a的取值范围.【解答】解:∵指数函数f(x)=(2a﹣1)x在(﹣∞,+∞)内是增函数,∴2a﹣1>1,∴a>1,∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).15.已知函数f(x)是偶函数,且f(x)在[0,+∞)上的解析式是f(x)=2x+1,则f(x)在(﹣∞,0)上的解析式为f(x)=﹣2x+1.【考点】函数解析式的求解及常用方法.【分析】利用函数是偶函数,f(﹣x)=f(x),f(x)在[0,+∞)上的解析式是f(x)=2x+1,当x<0时,则﹣x>0,可求f(x)在(﹣∞,0)上的解析式.【解答】解:由题意,函数是偶函数,f(﹣x)=f(x),当x≥0时,f(x)=2x+1,那么:f(﹣x)=﹣2x+1=f(x),∴f(x)=﹣2x+1,故答案为:f(x)=﹣2x+1.16.奇函数f(x)满足:①f(x)在(0,+∞)内单调递增;②f(1)=0;则不等式(x﹣1)f(x)>0的解集为:(﹣∞,﹣1)∪(0,1)∪(1,+∞).【考点】其他不等式的解法.【分析】分类讨论,当x>1时,f(x)在(0,+∞)内单调递增,又f(1)=0,则f(x)>0,当0<x<1时,f(x)<0,又函数f(x)为奇函数,求出此时不等式的解集,进而求出不等式(x﹣1)f(x)>0的解集.【解答】解:分类讨论,当x>1时,f(x)在(0,+∞)内单调递增,又f(1)=0,则f(x)>0,当0<x<1时,f(x)<0,又函数f(x)为奇函数,则f(﹣1)=0且f(x)在(﹣∞,0)内单调递增,则当﹣1<x<0时,f(x)>0,当x<﹣1时,f(x)<0故答案为:(﹣∞,﹣1)∪(0,1)∪(1,+∞).三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知全集U={x∈N|1≤x≤10},A={1,2,3,5,8},B={1,3,5,7,9}.(Ⅰ)求A∩B;(Ⅱ)求(∁U A)∩(∁U B).【考点】交、并、补集的混合运算.【分析】(Ⅰ)用列举法写出全集U,根据交集的定义写出A∩B;(Ⅱ)根据补集的定义写出∁U A和∁U B,再根据交集的定义写出(∁U A)∩(∁U B).【解答】解:全集U={x∈N|1≤x≤10}={1,2,3,4,5,6,7,8,9,10},A={1,2,3,5,8},B={1,3,5,7,9};(Ⅰ)A∩B={1,3,5};(Ⅱ)∁U A={4,6,7,9,10},∁U B={2,4,6,8,10},∴(∁U A)∩(∁U B)={4,6,10}.18.计算下列各题:(1);(2)若10x=3,10y=4,求102x﹣y的值.【考点】有理数指数幂的化简求值.【分析】(1)利用有理数指数幂的性质、运算法则直接求解.(2)利用有理数指数幂的性质、运算法则直接求解.【解答】解:(1)==8.(2)∵10x=3,10y=4,∴102x﹣y===.19.已知集合A={x|x2﹣ax+a2﹣12=0},B={x|x2﹣2x﹣8=0},C={x|mx+1=0}.(Ⅰ)若A=B,求a的值;(Ⅱ)若B∪C=B,求实数m的值组成的集合.【考点】并集及其运算;集合的相等.【分析】(Ⅰ)根据A=B,求出a的值化简;(Ⅱ)由B与C的并集为B,得到C为B的子集,确定出m的范围即可.【解答】解:(Ⅰ)∵A={x|x2﹣ax+a2﹣12=0},B={x|x2﹣2x﹣8=0}={x|(x﹣4)(x+2)=0}={﹣2,4},且A=B,∴﹣2和4为A中方程的解,即﹣2+4=a,解得:a=2;(Ⅱ)∵B∪C=B,∴C⊆B,当C=∅时,方程mx+1=0无解,即m=0;当C≠∅时,x=﹣2或x=4为方程mx+1=0的解,把x=﹣2代入方程得:m=;把x=4代入方程得:m=﹣,则实数m的值组成的集合为{﹣,0, }.20.已知函数.(Ⅰ)画出f(x)的图象(无需列表),并写出函数的单调递减区间;(Ⅱ)若x∈[0,a],求f(x)的最大值.【考点】函数的图象;函数的最值及其几何意义;分段函数的应用.【分析】(Ⅰ)根据函数的解析式,可得函数的图象;数形结合,可得函数的单调递减区间;(Ⅱ)数形结合,对a进行分类讨论,可得x∈[0,a]时f(x)的最大值的表达式.【解答】解:(Ⅰ)函数的图象如下图所示:由图可得:函数的单调递减区间为(﹣∞,0]和[1,+∞);(Ⅱ)若x∈[0,a],当a∈(0,1)时,f(x)max=﹣a2+2a,当a∈[1,+∞)时,f(x)max=1,综上可得:f(x)max=.21.已知二次函数f(x)满足f(0)=1且f(x+1)﹣f(x)=2x+2.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=2f(x),x∈[﹣1,1],求g(x)的值域.【考点】二次函数的性质;抽象函数及其应用.【分析】(Ⅰ)设f(x)=ax2+bx+c,由f(0)=1得c=1,由f(x+1)﹣f(x)=2x+2,得2ax+a+b=2x+2,解方程组求出a,b的值,从而求出函数的解析式;(Ⅱ)f(x)=x2+x+1的图象是开口朝上,且以直线x=﹣的抛物线,先求出f(x),x∈[﹣1,1]的最值,进而可得g(x),x∈[﹣1,1]的最值,进而得到答案.【解答】解:(Ⅰ)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.因为f(x+1)﹣f(x)=2x+2,所以a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=2x+2.即2ax+a+b=2x+2,∴2a=a+b=2,解得:a=1,b=1,∴f(x)=x2+x+1(Ⅱ)f(x)=x2+x+1的图象是开口朝上,且以直线x=﹣的抛物线,由x∈[﹣1,1]得:当x=﹣时,f(x)取最小值,此时g(x)=2f(x)取最小值,当x=1时,f(x)取最大值3,此时g(x)=2f(x)取最大值8,故g(x)的值域为[,8]22.已知函数f(x)=是定义在[﹣1,1]上的奇函数,且f()=.(1)求f(x)的解析式;(2)判断f(x)在[﹣1,1]上的单调性并证明;(3)当存在x∈[,1]使得不等式f(mx﹣x)+f(x2﹣1)>0恒成立,请同学们探究实数m的所有可能取值.【考点】函数恒成立问题.【分析】(1)根据条件建立方程关系即可确定f(x)的解析式;(2)根据函数单调性的定义即可判断f(x)的单调性并用定义证明;(3)利用函数奇偶性和单调性之间的关系即mx﹣x>1﹣x2,即存在x∈[,1]使mx﹣x>1﹣x2成立即﹣1≤mx﹣x≤1成立.【解答】解:(1)∵函数f(x)=是定义在[﹣1,1]上的奇函数,∴b=0,f(x)=,而f()=,即=,解得:a=1,故f(x)=;(2)函数f(x)=在[﹣1,1]上为增函数;下证明:设任意x1,x2∈[﹣1,1]且x1<x2则f(x1)﹣f(x2)=﹣=,因为x1<x2,所以x1﹣x2<0,又因为x1,x2∈[﹣1,1],所以1﹣x1x2>0即<0,即f(x1)<f(x2),故函数f(x)在[﹣1,1]上为增函数;(3)因为f(mx﹣x)+f(x2﹣1)>0,所以f(mx﹣x)>﹣f(x2﹣1),即f(mx﹣x)>f(1﹣x2),又由(II)函数y=f(x)在[﹣1,1]上为增函数,所以mx﹣x>1﹣x2,即存在x∈[,1]使mx﹣x>1﹣x2成立即﹣1≤mx﹣x≤1成立,即存在x∈[,1]使m>﹣x++1成立且1﹣≤m≤1+成立,得:m>1且﹣1≤m≤2,故实数m的所有可能取值{m|1<m≤2}.。

2021年高一上学期第一次(10月)月考数学试题含答案

2021年高一上学期第一次(10月)月考数学试题含答案

2021年高一上学期第一次(10月)月考数学试题含答案一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}2.f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点在函数f (x )图象上的是( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)3.下列函数中,值域为(0,+∞)的是( )A .y =xB .y =1x C .y =1x D .y =x 2+1 4.二次函数y =x 2-4x +3在区间(1,4]上的值域是( ).A .[-1,+∞)B .(0,3]C .[-1,3]D .(-1,3]5.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .96.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -47.设f (x )=⎩⎨⎧x +3 (x >10),f (x +5) (x ≤10),则f (5)的值为( ) A .16 B .18 C .21 D .248.设T ={(x ,y )|ax +y -3=0},S ={(x ,y )|x -y -b =0},若S ∩T ={(2,1)},则a ,b 的值为( )A .a =1,b =-1B .a =-1,b =1C .a =1,b =1D .a =-1,b =-19.下列四个函数在(-∞,0)上为增函数的是( )①y =|x |+1;②y =|x |x ;③y =-x 2|x |;④y =x +x |x |. A .①② B .②③ C .③④ D .①④10.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数,若x 1<0,且x 1+x 2>0,则( )A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小二、填空题(本大题共5小题,每小题5分,共25分.)11.若f (x )-12f (-x )=2x (x ∈R ),则f (2)=______. 12.函数y =x +1x 的定义域为________.13.f (x )=⎩⎨⎧x 2+1 (x ≤0),-2x (x >0),若f (x )=10,则x =________. 14.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.15.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则不等式f (x )<0的解集为________.三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.17.(本小题满分12分)设函数f (x )=1+x 21-x 2. (1)求f (x )的定义域;(2)判断f (x )的奇偶性;(3)求证:f ⎝ ⎛⎭⎪⎫1x +f (x )=0.18.(本小题满分12分)已知函数f (x )=x +m x ,且此函数的图象过点(1,5).(1)求实数m 的值;(2)判断f (x )的奇偶性;(3)讨论函数f (x )在[2,+∞)上的单调性,证明你的结论.19.(本小题满分12分)已知函数f (x )=2x +1x +1, (1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.20.(本小题满分13分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30404550y 6030150(1)(x,y)的对应点,并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?21.(本小题满分14分)已知函数f(x)=x2+|x-a|+1,a∈R.(1)试判断f(x)的奇偶性;(2)若-12≤a≤12,求f(x)的最小值.数学月考答案一、选择题:DABCC BBCCC二、填空题:11.8312.{x|x≥-1,且x≠0} 13.-314.-2x 2+4 15.{x |-2<x <2}三、解答题:16.解 (1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.[来∁U A ={x |x <2,或x >8}.∴(∁U A )∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,∴a <8.17.解 (1)由解析式知,函数应满足1-x 2≠0,即x ≠±1.∴函数f (x )的定义域为{x ∈R |x ≠±1}.(2)由(1)知定义域关于原点对称,f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ). ∴f (x )为偶函数.(3)证明:∵f ⎝⎛⎭⎫1x =1+⎝⎛⎭⎫1x 21-⎝⎛⎭⎫1x 2=x 2+1x 2-1, f (x )=1+x 21-x 2, ∴f ⎝⎛⎭⎫1x +f (x )=x 2+1x 2-1+1+x 21-x 2=x 2+1x 2-1-x 2+1x 2-1=0. 18.解:(1)∵f (x )过点(1,5),∴1+m =5⇒m =4.(2)对于f (x )=x +4x,∵x ≠0, ∴f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∴f (-x )=-x +4-x=-f (x ). ∴f (x )为奇函数.(3)证明:设x 1,x 2∈[2,+∞)且x 1<x 2,则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-4)x 1x 2. ∵x 1,x 2∈[2,+∞)且x 1<x 2,∴x 1-x 2<0,x 1x 2>4,x 1x 2>0.∴f (x 1)-f (x 2)<0.∴f (x )在[2,+∞)上单调递增.19.解 (1)函数f (x )在[1,+∞)上是增函数.证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),∵x 1-x 2<0,(x 1+1)(x 2+1)>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在[1,+∞)上是增函数.(2)由(1)知函数f (x )在[1,4]上是增函数,最大值f (4)=95,最小值f (1)=32. 20.解 (1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y =kx +b ,则⎩⎪⎨⎪⎧ 50k +b =0,45k +b =15,⇒⎩⎪⎨⎪⎧ k =-3,b =150.∴y =-3x +150(0≤x ≤50,且x ∈N *),经检验(30,60),(40,30)也在此直线上. ∴所求函数解析式为y =-3x +150(0≤x ≤50,且x ∈N *).(2)依题意P =y (x -30)=(-3x +150)(x -30)=-3(x -40)2+300.∴当x =40时,P 有最大值300,故销售单价为40元时,才能获得最大日销售利润.21.解 (1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1,f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x )为非奇非偶函数.(2)当x ≤a 时,f (x )=x 2-x +a +1=⎝⎛⎭⎫x -122+a +34; ∵a ≤12,故函数f (x )在(-∞,a ]上单调递减, 从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1.当x ≥a 时, f (x )=x 2+x -a +1=⎝⎛⎭⎫x +122-a +34, ∵a ≥-12,故函数f (x )在[a ,+∞)上单调递增, 从而函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1.综上得,当-12≤a ≤12时,函数f (x )的最小值为a 2+1.23049 5A09 娉B40547 9E63 鹣o 21878 5576 啶38230 9556 镖033765 83E5 菥33849 8439 萹, g24919 6157 慗'。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.根据下述事实,得到含有量词的全称量词命题或存在量词命题为_______________.
13+23=(1+2)3, 13+23+33=(1+2+3)3, 13+23+33+43=(1+2+3+4)3, 13+23+33+43+53=(1+2+3+4+5)3,
……
2
16.函数 f(x)=[x]的函数值表示不超过 x 的最大整数,例如:[-3.5]=-4,[2.1]=2.若 A ={y|y=[x]+[2x]+[3x],0≤x≤1},则 A 中元素个数是______个,所有元素的和为 ____________.
C.∃x0∈R,x20+2x0+2=0 10.下列各组函数是同一个函数的是
B.所有的正方形都是矩形
D.至少有一个实数 x,使 x3+1=0


A.f(x)=x2-2x-1 与 g(t)=t2-2t-1
B.f(x)=x0

g(x)=
1 x0
C.f(x)= 1 与 g(x)= 2
x
x
D.f(x)=2x-1(xZ)与 g(x)=2x+1(xZ)
D. [-3,10]
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.已知函数 y=f(x)用列表法表示如下表,则 f(f(2))=________.
x
0
1
2
f(x)
2
0
1
14.设α:x≤-5 或 x>1,β:x≤-2m-3 或 x≥-2m+1,m R,α是β的充分不必要条件,则
实数 m 的取值范围是______.
,使得

成立,求 的取值范围;
恒有
,求实数 的取值范围;

同时成立,求实数 的取值范围.
4
答案
一、BCDBC,BBD
二、9. AC ; 10. AB; 11. BD; 12. AC
三、13. 0 ;
14. [0,1];
15. n N*,13 23 33 n3 (1 2 3 n)3 ; 16. 5,12.
四、解答题 17.解:(1){2};(2)(-4,-2).
18.解:(1)(- ,1)∪[ 3 ,+ );(2){-1}∪[0,2];(3)[ 3 ,+ )
2
2
19.解:(1)m>2;(2)a≤0
20.解略
21.解:(1)
B. -2 3
C. ±2 3
D. 以上都不对
7.已知 R 是实数集,集合 A={x|1<x<2},B={x|0<x< 3 },则阴影部分表示的集合是 2
()
A. [0,1]
B. (0,1]
C. [0,1)
D. (0,1)
8.“a,b 为正实数”是“a+b>2 ab ”的( )
A. 充分不必要条件 C. 充要条件
11.若 a > b >0,d < c < 0,则下列不等式成立的
A. ac > bc
B. a-d > b-c
C. 1 1 dc


D. a3 > b3
12.已知 f(x)=x2-2x-3,x[0,a],a 为大于 0 的常数,则 f(x)的值域可能为(

ቤተ መጻሕፍቲ ባይዱ
A. [-4,-3]
B. R
C. [-4,10] 第Ⅱ卷(非选择题共 90 分)
y
v2
700v 2v
900
(v
0)

(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?
(保留分数形式)
(2)若要求在该时段内车流量超过 10(千辆/小时),则汽车的平均速度应在什么
范围内?
22.(本小题满分 12 分)
设函数

(1)对于任意
都有
(2)当 时对任意
(3)若存在
四、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 10 分)
已知全集 U=R,A={x|x2-4≤0},B={x|x2+2x-8≥0},求: (1)A∩B; (2)(∁ UA)∩(∁ UB).
18.(本小题满分 12 分) 解下列不等式:
(1)
B. 必要不充分条件 D. 既不充分也不必要条件
1
二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的四个选项中,
有多项符合题目要求,全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分.
9.下列命题的否定中,是全称命题且为真命题的有


A.∃x0∈R,x20-x0+1<0 4
2x x 1
1;
(2)x(x-2)(x+1)2≤0;(3)|3-2x|≤2x-3.
19.(本小题满分 12 分) 已知命题 p:方程 x2-2mx+m2-4=0 有两个正根为真命题. (1)求实数 m 的取值范围;
(2)命题 q:1-a<m<1+a,是否存在实数 a 使得 p 是 q 的充分不必要条件,若存
江苏省启东中学 2020-2021 学年度第一学期第一次月考 高一数学
一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中, 只有一项符合题目要求.
1.若集合 P={-1,0,1,2},Q={0,2,3},则 P∩Q 的元素个数为( )
A. 1
B. 2
2.若|a-4|=|a|+|-4|,则 a 的值是
C. 3
D. 4 ()
A. 任意有理数
B. 任意一个非负数
C. 任意一个非正数
D. 任意一个负数
3.已知命题
p:
x0
R,
x02
x0
1 4
0
,则
p

()
A.
x0
R,
x02
x0
1 4
0
B.
x0
R,
x02
x0
1 4
0
C. x R, x2 x 1 0 4
D. x R, x2 x 1 0 4
4.下面关于集合的表示:①{2,3}≠{3,2};②{(x,y)|x+y=1}={y|x+y=1};③{x|x>1}={y|y>1};
在,求出实数 a 取值范围;若不存在,说明理由.
3
20.(本小题满分 12 分)
设 a、b、cR.证明:a2+b2+c2=ab+bc+ca 的充要条件是 a=b=c.
21.(本小题满分 12 分)
经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆/小时)与汽车的
平均速度
v(千米/小时)之间的函数关系为:
④ ={0},正确的个数是
()
A. 0
B. 1
C. 2
D. 3
5.已知正数 a、b 满足 a+b=1,则 ab 有
()
A. 最小值 1 2
B. 最小值 2 2
C. 最大值 1 2
D. 最大值 2 2
6.已知 m,n 是方程 x2+5x+3=0 的两根,则 m n +n m的值为 ( )
m
n
A. 2 3
相关文档
最新文档