信号与系统实验报告六
大连理工大学 信号与系统实验实验6 Simulink仿真连续时间系统 实验报告

大连理工大学实验报告
学院(系):电信专业:电子信息工程班级:姓名:学号:组:
实验时间:实验室:创新园C221 实验台:
指导教师签字:成绩:
实验六:Simulink仿真连续时间系统
一、实验结果与分析
1.用Simulink仿真载波为简单正弦信号的幅度调制和相干解调。
解:Simulink模块图为
其中,Sine wave产生调制信号,Sine wave1产生直流信号,Sine wave2产生载波信号,Ran-dom Source产生噪声,Digital Filter Design为带通滤波器,Sine wave3产生本地载波信号,Digital Filter Design1为低通滤波器。
主要模块的参数为
主要模块的波形图和频谱图为
二、讨论、建议、质疑
Simulink为我们提供了一个非常直观的解决途径,只要我们能够得到系统函数,画出相应的方框图,就可以方便地描述整个系统,获得需要的信息。
比如在完成简单正弦信号的幅度调制和相干解调时,如果利用MATLAB编写程序,需要调用函数buttord和butter去构建带通和低通滤波器,这是非常繁琐的。
但是Simulink提供了滤波器模块,我们只需要改变其参数,这大大简化了整个过程。
但是在实验中也遇到了一些问题。
因为对Simulink并不是特别熟悉,所以在设计滤波器的时候会觉得很盲目。
比如在完成简单正弦信号的幅度调制和相干解调时,如果稍微改变滤波器的参数,得到的结果就与正确结果大相径庭。
信号与系统软件实验实验报告

信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。
二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。
计算机配置为_____处理器,_____内存,_____硬盘。
三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。
对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。
2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。
输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。
3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。
通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。
4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。
采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。
四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。
2、按照实验内容的要求,依次进行各项实验操作。
在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。
然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。
对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。
通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。
在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。
通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。
信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统综合实验报告

信号与系统综合实验报告实验一常用信号的观察一、任务与目标1. 了解常用信号的波形和特点。
2. 了解相应信号的参数。
3. 学习函数发生器和示波器的使用。
二、实验过程1.接通函数发生器的电源。
2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。
三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x-π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。
2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案。
二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线。
四、实验报告上图为零输入响应、零状态响应和完全响应曲线。
五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。
因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。
实验五无源与有源滤波器一、实验原理实验指导书P14二、实验目的1.了解无源和有源滤波器的种类、基本结构及其特性;2.分析和对比无源和有源滤波器的滤波特性;3.掌握无源和有源滤波器参数的设计方法。
信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.实验目的
1.复习采样定理
2.掌握应用matlab 函数设计模拟滤波器的方法
3.掌握系统性能分析的方法
4.结合实际综合应用信号与系统的基础理论
二.实验原理
在数字语音系统中,需首先对语音信号(模拟信号)采样,语音信号频率范围[-fh ,fh],信号中一般含有干扰噪声,其频带宽度远大于fh 。
本次实验以电话系统中的语音信号采样系统为对象,设计语音信号采样前滤波器。
数字电话系统结构框图如图8.1,电话系统中一般要保证4kHz 的音频带宽,即取fh =4kHz ,但送话器发出的信号的带宽比fh
大很多。
因此在A/D 转换之前需对其进行模拟预滤波,以防止采样后发生频谱混叠失真。
为使信号采集数量尽量少,设模数转换器的采样频率为8kHz 。
图8.1 数字电话系统结构框图
滤波器的定义
在信号处理时,通常都会遇到有用信号中混入(叠加)噪声的问题,消除或减弱噪声对信号的干扰,是信号处理中的一种最基本且重要的技术。
根据有用信号与噪声不同的特性,抑制不需要的噪声或干扰,
提取出有用信号的过程称为滤波,实现滤波功能的装置称为滤波器。
在A/D 变换前,常常需要设置一个模拟滤波器进行预滤波以限 制信号带宽,去掉高于1/2抽样频率以上的高频分量,防止频谱 混叠现象的发生,称为抗混叠滤波器或预抽样滤波器 模拟滤波器的设计
模拟滤波器的理论和设计方法已发展得相当成熟,且有若干典型的模拟滤波器供我们选择,这些滤波器都有严格的设计公式、现成的曲线和图表供设计人员使用。
典型的模拟滤波器
巴特沃斯 Butterworth 滤波器 幅频特性单调下降 切比雪夫 Chebyshev 滤波器
幅频特性在通带或者在阻带有波动 贝塞尔 Bessel 滤波器
通带内有较好的线性相位持性 椭圆 Ellipse 滤波器
以这些数学函数命名的滤波器是低通滤波器的原型
模拟滤波器按幅度特性可分成低通、高通、带通和带阻滤波器,它们的理想幅度特性如图所示。
模拟低通滤波器的设计指标有αp, Ωp,αs 和Ωs 。
Ωp ;通带截止频率 Ωs :阻带截止频率 αp :通带中最大衰减系数 αs ;阻带最小衰减系数
αp 和αs 一般用dB 数表示。
对于单调下降的幅度特性,可表示成:
222
2
(0)
(0)
10lg
10lg
()
()
a a p s a s a p H j H j H j H j αα==ΩΩ
三.实验内容
1.设计任务即是模拟预滤波系统,要求能够防止语音信号采样后发生频谱混叠失真,语音信号采样频率为8kHz。
实际的话音信号在3.4kHz以内,要保证4kHz的音频带宽,因干扰噪声存在的缘故,实际送话器发出的信号的带宽要大很多,因此需设计模拟低通滤波器,设计指标请根据要求自行选取。
2.性能测试:自制带噪声的话音信号(信号文件dsp01_noise),将wav波形信号作为系统测试信号,测试所设计模拟预滤波系统的滤波性能,对输入及输出信号作频谱分析。
四.实验分析
1、滤波器设计程序:
3、思路分析
1.滤波器设计思路
实际的话音信号在3.4kHz以内,要保证4kHz的音频带宽,因干扰噪声存在的缘故,实际送话器发出的信号的带宽要大很多,因此需设计模拟低通滤波器,通带截止频率为3.4kHz,衰减小于2dB,阻带截止频率为4kHz,衰减小于30dB。
巴特沃斯(butterworth)型模拟滤波器是幅频特性单调下降的模拟低通滤波器,故应选择这种滤波器。
2.语音信号频率分析思路
先读取wav文件得到输入语音信号,再对读入的数据滤波得到输出语音信号。
对这两个语音信号采取相同的分析思路。
使用downsample函数对语音信号进行抽样,再选取其中的前4096*12个点进行快速傅立叶变换(FFT),将快速傅立叶变换的结果取模可得到语音信号的幅频特性。
幅频特性图的最后一点对应的频率就是经过抽样之后的语音信号的频率。
3.结果分析
经过滤波之后得到的wav文件的没有了刺耳的噪声,声音比滤波之前的wav文件要低沉。
对比输入语音频谱与输出语音频谱,可知该低通滤波器将语音信号中的较高频段全部滤去,因此起到了去
除噪声的作用,也能够防止语音信号采样后发生频谱混叠失真,但是同样是由于较高频段被全部滤去,滤波之后的语音明显比滤波之前的语音低沉。
五.实验总结
通过这次实验,我初步掌握了应用matlab函数设计模拟滤波器的方法,初步掌握了系统性能分析的方法,还复习了采样定理。
在这次试验中我也初步掌握了downsample,fft,wavread,buttord,butter等函数的基本使用方法。
同时我也感到了自己知识的不足,所以自己还需要不断的努力学习。