2021高考数学新高考版一轮习题:专题4 第36练 三角函数中的易错题 (含解析)
高三数学易错三角函数与解三角形多选题 易错题自检题检测试题

高三数学易错三角函数与解三角形多选题 易错题自检题检测试题一、三角函数与解三角形多选题1.知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭,则下述结论中正确的是( )A .若()f x 在[]0,2π有且仅有4个零点,则()f x 在[]0,2π有且仅有2个极小值点B .若()f x 在[]0,2π有且仅有4个零点,则()f x 在20,15π⎛⎫⎪⎝⎭上单调递增 C .若()f x 在[]0,2π有且仅有4个零点,则ω的范是1519,88⎡⎫⎪⎢⎣⎭D .若()f x 的图象关于4x π=对称,且在5,1836ππ⎛⎫⎪⎝⎭单调,则ω的最大值为9 【答案】ACD 【分析】 令4t x πω=+,由[]0,2x π∈,可得出,244t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin y t =在区间,244ππωπ⎡⎤+⎢⎥⎣⎦上的图象,可判断A 选项正误;根据已知条件求出ω的取值范围,可判断C 选项正误;利用正弦型函数的单调性可判断B 选项的正误;利用正弦型函数的对称性与单调性可判断D 选项的正误. 【详解】 令4t x πω=+,由[]0,2x π∈,可得出,244t ππωπ⎡⎤∈+⎢⎥⎣⎦, 作出函数sin y t =在区间,244ππωπ⎡⎤+⎢⎥⎣⎦上的图象,如下图所示:对于A 选项,若()f x 在[]0,2π有且仅有4个零点,则()f x 在[]0,2π有且仅有2个极小值点,A 选项正确;对于C 选项,若()f x 在[]0,2π有且仅有4个零点,则4254ππωππ≤+<,解得151988ω<≤,C 选项正确; 对于B 选项,若151988ω<≤,则2192154604πππππω≤+<+,所以,函数()f x 在区间20,15π⎛⎫⎪⎝⎭上不单调,B 选项错误; 对于D 选项,若()f x 的图象关于4x π=对称,则()442k k Z ωππππ+=+∈,()14k k Z ω∴=+∈.52361812T ππππω∴=≥-=,12ω∴≤,()41k k Z ω=+∈,max 9ω∴=. 当9ω=时,()sin 94f x x π⎛⎫=+ ⎪⎝⎭,当5,1836x ππ⎛⎫∈⎪⎝⎭时,339442x πππ<+<, 此时,函数()f x 在区间5,1836ππ⎛⎫⎪⎝⎭上单调递减,合乎题意,D 选项正确. 故选:ACD. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.2.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x fθ=,()y g θ=,则下列说法正确的是( )A .()x f θ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1fg θθ+≥在02πθ⎛⎤∈ ⎥⎝⎦,上恒成立;D .函数()()22t f g θθ=+.【答案】ACD 【分析】依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B ;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解.【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos fθθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos fθθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫ ⎪⎝⎭为增函数,在,2ππ⎛⎫ ⎪⎝⎭为减函数,故B 错误;对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 2sin [1,2]4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确;对于D ,函数()()222cos sin2t fg θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+, 令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫⎪⎝⎭上单调递减, 当6πθ=即1sin 2θ=,3cos 2θ=时,函数取得极大值31333222t =⨯+⨯⨯=, 又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=, 所以函数()()22t f g θθ=+取得最大值332,故D 正确.故选:ACD. 【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.3.如图,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a b =,且()3cos cos 2sin a C c A b B +=,D 是ABC 外一点,1DC =,3DA =,则下列说法正确的是( )A .ABC 是等边三角形B .若AC =A ,B ,C ,D 四点共圆C .四边形ABCD 面积最大值为32+D .四边形ABCD 3 【答案】AC 【分析】利用三角函数恒等变换化简已知等式可求sin B ,再利用a b =,可知ABC 为等边三角形,从而判断A ;利用四点A ,B ,C ,D 共圆,四边形对角互补,从而判断B ;设AC x =,0x >,在ADC 中,由余弦定理可得2106cos x D =-,利用三角形的面积公式,三角函数恒等变换的,可求ABCD S 四边形,利用正弦函数的性质,求出最值,判断CD .【详解】由正弦定理2sin ,2sin ,2sin a R A b R B c R C ===,(sin cos sin cos )2sin sin A C C A B B +=⋅,2sin ,sin 2B B =∴=, a b =,B 是等腰ABC 的底角,(0,)2B π∴∈,,3B ABC π∴=∴△是等边三角形,A 正确;B 不正确:若,,,A BCD 四点共圆,则四边形对角互补, 由A 正确知21,cos 32D D π∠==-,但由于1,3,DC DA AC ===2222221311cos 221332DC DA AC D DA DC +-+-===-≠-⋅⋅⨯⨯,∴B 不正确. C 正确,D 不正确:设D θ∠=,则2222cos 106cos AC DC DA DC DA θθ=+-⋅⋅=-,(106cos )cos 422ABC S θθ∴=⋅-=-△, 3sin 2ADC S θ=△,3sin 2ABCADCABCD S SSθθ∴=+=-+四边形13(sin cos 2θθ=⋅-+,3sin()3πθ=-+(0,),sin()(32πθπθ∈∴-∈-,3ABCD S <≤+四边形,∴C 正确,D 不正确; 故选:AC.. 【点睛】本题主要考查正弦定理,余弦定理,三角函数恒等变换,正弦函数的图象和性质在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.4.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( ) A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-,解得3cos 5A ≥,故C 错误;对于D ,2222213cos 4442c c BAD c c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠,所以(0,)2BAD π∠∈,又cos 2BAD ∠≥,所以BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.5.已知2π-<θ2π<,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .﹣3 B .13C .13-D .12-【答案】CD 【分析】先由已知条件判断cos 0θ>,sin 0θ<,得到sin 1tan 0cos θθθ-<=<,对照四个选项得到正确答案. 【详解】∵sin θ+cos θ=a ,其中a ∈(0,1),∴两边平方得:1+22sin cos =a θθ,∴21sin cos =02a θθ-<,∵22ππθ-<<,∴可得cos 0θ>,sin 0θ<,∴sin tan 0cos θθθ=<, 又sin θ+cos θ=a 0>,所以cos θ>﹣sin θ,所以sin tan 1cos θθθ=>- 所以sin 1tan 0cos θθθ-<=<, 所以tan θ的值可能是13-,12-.故选:CD 【点睛】关键点点睛:求出tan θ的取值范围是本题解题关键.6.设函数()()31sin sin 022f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭ 【答案】AD 【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误. 【详解】()3131sin sin sin cos sin 222226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+>⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误;对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<, 此时,函数()f x 在区间0,2π⎛⎫⎪⎝⎭上不单调,C 选项错误. 故选:AD. 【点睛】关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.7.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC 【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD. 【详解】 A.A B >,a b ∴>,根据正弦定理sin sin a bA B=,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-<⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确. 故选:ABC 【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.8.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x xπππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭ 由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).二、数列多选题9.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( ) A .公比大于1的等比数列一定是“间隔递增数列” B .若()21nn a n =+-,则{}n a 是“间隔递增数列”C .若(),2n ra n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD 【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误. 【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n k n n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦, 当n 是奇数时,()211k n k n a a k +=---+,则存在1k 时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211k n k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<.又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确.故选:BCD.【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.10.设数列{}n a 前n 项和n S ,且21n n S a =-,21log n n b a +=,则( )A .数列{}n a 是等差数列B .12n n aC .22222123213n n a a a a -++++= D .122334111111n n b b b b b b b b +++++< 【答案】BCD【分析】利用n S 与n a 的关系求出数列{}n a 的通项公式,可判断AB 选项的正误;利用等比数列的求和公式可判断C 选项的正误;利用裂项求和法可判断D 选项的正误.【详解】对任意的n *∈N ,21n n S a =-.当1n =时,11121a S a ==-,可得11a =;当2n ≥时,由21n n S a =-可得1121n n S a --=-,上述两式作差得122n n n a a a -=-,可得12n n a a -=,所以,数列{}n a 是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,A 选项错误,B选项正确;()221124n n n a --==,所以,22221231441143nn n a a a a --==-++++,C 选项正确; 212log log 2n n n b a n +===,()1111111n n b b n n n n +==-++, 所以,12233411111111111111112233411n n b b b b b b b b n n n +++++=-+-+-++-=-<++, D 选项正确.故选:BCD.【点睛】 方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。
高三数学易错三角函数与解三角形多选题 易错题难题提高题学能测试

高三数学易错三角函数与解三角形多选题 易错题难题提高题学能测试一、三角函数与解三角形多选题1.设函数()2sin 1xf x x x π=-+,则( )A .()43f x ≤B .()5f x x ≤C .曲线()y f x =存在对称轴D .曲线()y f x =存在对称中心【答案】ABC 【分析】 通过()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭可发现函数()y f x =具有对称轴及最大值,再利用函数对称中心的特点去分析()y f x =是否具有对称中心,再将()5f x x ≤化为32sin 555x x x x π≤-+,通过数形结合判断是否成立.【详解】函数解析式可化为:()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭,因为函数sin y x =π的图象关于直线12x =对称,且函数21324y x ⎛⎫=-+ ⎪⎝⎭的图象也关于直线12x =对称,故曲线()y f x =也关于直线12x =对称,选项C 正确; 当12x =时,函数sin y x =π取得最大值1,此时21324y x ⎛⎫=-+ ⎪⎝⎭取得最小值34,故()14334f x ≤=,选项A 正确; 若()5f x x ≤,则32sin 555x x x x π≤-+,令()32555g x x x x =-+,则()()221510553210g x x x x x '=-+=-+>恒成立,则()g x 在R 上递增,又()00g =,所以当0x <时,()00g <;当0x >时,()0g x >; 作出sin x π和32555x x x -+的图象如图所示:由图象可知32sin 555x x x x π≤-+成立,即()5f x x ≤,选项B 正确;对于D 选项,若存在一点(),a b 使得()f x 关于点(),a b 对称,则()()2f a x f a x b -++=,通过分析发现()()f a x f a x -++不可能为常数,故选项D 错误. 故选:ABC. 【点睛】本题考查函数的综合应用,涉及函数的单调性与最值、对称轴于对称中心、函数与不等式等知识点,难度较大. 对于复杂函数问题一定要化繁为简,利用熟悉的函数模型去分析,再综合考虑,注意数形结合、合理变形转化.2.(多选题)如图,设ABC 的内角、、A B C 所对的边分别为a b c 、、,若a b c 、、成等比数列,、、A B C 成等差数列,D 是ABC 外一点,1,3DC DA ==,下列说法中,正确的是( )A .3B π=B .ABC 是等边三角形C .若A B CD 、、、四点共圆,则13AC =D .四边形ABCD 面积无最大值 【答案】ABC 【分析】根据等差数列的性质和三角形内角和可得3B π=,根据等比中项和余弦定理可得a c =,即ABC 是等边三角形,若A B C D 、、、四点共圆,根据圆内接四边形的性质可得23D π=,再利用余弦定理可求13AC =211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+和2222cos AC AD CD AD CD D 可得3sin 3sin()23S D D D π=-+=-+. 【详解】由、、A B C 成等差数列可得,2A+C =B ,又A B C π++=, 则3B π=,故A 正确;由a b c 、、成等比数列可得,2b ac =,根据余弦定理,2222cos b a c ac B =+-,两式相减整理得,2()0a c -=,即a c =,又3B π=,所以,ABC 是等边三角形,故B 正确;若A B C D 、、、四点共圆,则B D π+=,所以,23D π=, ADC 中,根据余弦定理,2222cos AC AD CD AD CD D ,解得AC =C 正确; 四边形ABCD 面积为:211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+23sin 2D AC = 又2222cos 106cos AC AD CD AD CD D D =+-⋅=-,所以,3sin 3sin()23S D D D π==-+因为(0,)D π∈,当四边形面积最大时,sin()13D π-=,此时max 32S =+,故D 错误. 故选:ABC 【点睛】本题考查解三角形和平面几何的一些性质,同时考查了等差等比数列的基本知识,综合性强,尤其是求面积的最大值需要一定的运算,属难题.3.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( ) A .若sin sin a bB A=,则ABC 为等腰三角形 B .若cos cos a bB A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形D .若sin cos a b C c B =+,则4C π∠=【答案】ACD 【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断; 对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断; 对于D :利用正弦定理判断得cos sin C C =求出角C . 【详解】对于A :∵由正弦定理得:sin sin a bA B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a bA B=, ∴若cos cos a bB A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误; 对于C :∵A+B+C=π,∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,, ∴tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C++ sin cos sin cos sin =cos cos cos A B B A CA B C ++sin sin =cos cos cos C CA B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭ sin sin sin =cos cos cos A B CA B C.∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>>∴cos cos cos A B C 、、必有一个小于0,∴ABC 为钝角三角形. 故C 正确;对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+, 即sin cos sin cos sin sin sin cos B C C B B C C B +=+ ∴cos sin C C = ∵()0,C π∈∴4C π.故D 正确. 故选:ACD 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.4.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭ B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确;求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.5.对于函数()sin cos 2sin cos f x x x x x =++,下列结论正确的是( ) A .把函数f (x )的图象上的各点的横坐标变为原来的12倍,纵坐标不变,得到函数g (x )的图象,则π是函数y =g (x )的一个周期 B .对123,,2x x ππ⎛⎫∀∈ ⎪⎝⎭,若12x x <,则()()12f x f x < C .对,44x f x f x ππ⎛⎫⎛⎫∀∈-=+ ⎪ ⎪⎝⎭⎝⎭R 成立D .当且仅当,4x k k Z ππ=+∈时,f (x )1【答案】AC 【分析】根据三角函数的变换规则化简即可判断A ;令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,()21f t t t =+-,判断函数的单调性,即可判断B ;代入直接利用诱导公式化简即可;首先求出()f t 的最大值,从而得到x 的取值; 【详解】解:因为()2()sin cos 2sin cos sin cos sin cos 1f x x x x x x x x x =++=+++-,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以t ⎡∈⎣,所以()21f t t t =+-, 对于A :将()sin cos 2sin cos f x x x x x =++图象上的各点的横坐标变为原来的12倍,则()sin 2cos 22sin 2cos 2g x x x x x =++,所以()()()()()sin 2cos22sin 2cos2g x x x x x πππππ+=++++++()sin 2cos22sin 2cos2x x x x g x =++=,所以π是函数y =g (x )的一个周期,故A 正确;对于B :因为3,2x ππ⎛⎫∈ ⎪⎝⎭,所以57,444x πππ⎛⎫+∈ ⎪⎝⎭,则)14t x π⎛⎫⎡=+∈- ⎪⎣⎝⎭在5,4ππ⎛⎫ ⎪⎝⎭上单调递减,在53,42ππ⎛⎫⎪⎝⎭上单调递增, 又()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,对称轴为12t =-,开口向上,函数()21f t t t =+-在)1⎡-⎣上单调递减, 所以函数()f x 在5,4ππ⎛⎫ ⎪⎝⎭上单调递增,在53,42ππ⎛⎫⎪⎝⎭上单调递减,故B 错误; 对于C :sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=----⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭c 2424242sin os 2sin cos 4x x x x ππππππππ⎥++⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4444sin cos 2sin cos 4x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----=- ⎪ ⎪ ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭⎝⎭⎝+⎭+,故C 正确;因为()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,t ⎡∈⎣,当t =时()f t 取得最大值()max 1f t =,令4t x π⎛⎫=+= ⎪⎝⎭sin 14x π⎛⎫+= ⎪⎝⎭,所以2,42x k k Z πππ+=+∈,解得2,4x k k Z ππ=+∈,即当2,4x k k Z ππ=+∈时,函数()f x1,故D 错误;故选:AC 【点睛】本题考查三角函数的综合应用,解答的关键是换元令sin cos t x x =+,将函数转化为二次函数;6.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+ 【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.7.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos α=B .sin cos αα-=C .34πβα-= D .cos cos αβ= 【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.8.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 的外接圆半径是3【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D.【详解】依题意,设4,5,6b c k c a k a b k +=+=+=,所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==,故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯= 222222.5 1.5 3.515028k k +-==-<, 故选项B 不正确;若6c =,则4k =,所以14,10a b ==, 所以222106141cos 21062A +-==-⨯⨯,所以sin 2A =,故ABC 的面积是:11sin 610222bc A =⨯⨯⨯= 故选项C 正确;若8+=b c ,则2k =,所以7,5,3a b c ===, 所以2225371cos 2532A +-==-⨯⨯,所以sin 2A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin 3a A ⨯=, 故选项D 正确;故选:ACD.【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.二、数列多选题9.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( ) A .101a <<B.11b << C .22n n S T < D .22n n S T ≥ 【答案】ABC【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案.【详解】因为数列{}n a 为递增数列,所以123a a a <<,所以11222a a a <+=,即11a <,又22324a a a <+=,即2122a a =-<,所以10a >,即101a <<,故A 正确;因为{}n b 为递增数列,所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++ = 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==, 因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n n b b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n >-=-,当n =1时,222,S T =>,所以22T S >,故D 错误;当2n ≥时假设当n=k时,21)2k k ->21)k k ->,则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确故选:ABC【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.10.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( )A .24a =B .2n n S =C .38n T ≥D .12n T < 【答案】ACD【分析】在1+14,()n n a S a n N *==∈中,令1n =,则A 易判断;由32122S a a =+=,B 易判断;令12(1)n n n b n n a ++=+,138b =, 2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,裂项求和3182n T ≤<,则CD 可判断.【详解】解:由1+14,()n n a S a n N *==∈,所以2114a S a ===,故A 正确;32212822S a a =+==≠,故B 错误;+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,12n na a +=, 所以2n ≥时,2422n n n a -=⋅=, 令12(1)n n nb n n a ++=+,12123(11)8b a +==+, 2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅, 1138T b ==,2n ≥时,()()23341131111111118223232422122122n n n n T n n n ++=+-+-++-=-<⨯⋅⋅⋅⋅+⋅+⋅所以n *∈N 时,3182n T ≤<,故CD 正确; 故选:ACD.【点睛】方法点睛:已知n a 与n S 之间的关系,一般用()11,12n nn a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和.。
高三数学易错三角函数与解三角形多选题 易错题难题自检题学能测试

高三数学易错三角函数与解三角形多选题 易错题难题自检题学能测试一、三角函数与解三角形多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确; 对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确; 故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.3.已知2π-<θ2π<,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .﹣3 B .13C .13-D .12-【答案】CD 【分析】先由已知条件判断cos 0θ>,sin 0θ<,得到sin 1tan 0cos θθθ-<=<,对照四个选项得到正确答案. 【详解】∵sin θ+cos θ=a ,其中a ∈(0,1),∴两边平方得:1+22sin cos =a θθ,∴21sin cos =02a θθ-<,∵22ππθ-<<,∴可得cos 0θ>,sin 0θ<,∴sin tan 0cos θθθ=<, 又sin θ+cos θ=a 0>,所以cos θ>﹣sin θ,所以sin tan 1cos θθθ=>- 所以sin 1tan 0cos θθθ-<=<, 所以tan θ的值可能是13-,12-.故选:CD 【点睛】关键点点睛:求出tan θ的取值范围是本题解题关键.4.对于函数()sin cos 2sin cos f x x x x x =++,下列结论正确的是( ) A .把函数f (x )的图象上的各点的横坐标变为原来的12倍,纵坐标不变,得到函数g (x )的图象,则π是函数y =g (x )的一个周期 B .对123,,2x x ππ⎛⎫∀∈ ⎪⎝⎭,若12x x <,则()()12f x f x < C .对,44x f x f x ππ⎛⎫⎛⎫∀∈-=+ ⎪ ⎪⎝⎭⎝⎭R 成立D .当且仅当,4x k k Z ππ=+∈时,f (x )1【答案】AC 【分析】根据三角函数的变换规则化简即可判断A ;令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,()21f t t t =+-,判断函数的单调性,即可判断B ;代入直接利用诱导公式化简即可;首先求出()f t 的最大值,从而得到x 的取值; 【详解】解:因为()2()sin cos 2sin cos sin cos sin cos 1f x x x x x x x x x =++=+++-,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以t ⎡∈⎣,所以()21f t t t =+-, 对于A :将()sin cos 2sin cos f x x x x x =++图象上的各点的横坐标变为原来的12倍,则()sin 2cos 22sin 2cos 2g x x x x x =++,所以()()()()()sin 2cos22sin 2cos2g x x x x x πππππ+=++++++()sin 2cos22sin 2cos2x x x x g x =++=,所以π是函数y =g (x )的一个周期,故A 正确;对于B :因为3,2x ππ⎛⎫∈ ⎪⎝⎭,所以57,444x πππ⎛⎫+∈ ⎪⎝⎭,则)14t x π⎛⎫⎡=+∈- ⎪⎣⎝⎭在5,4ππ⎛⎫ ⎪⎝⎭上单调递减,在53,42ππ⎛⎫⎪⎝⎭上单调递增, 又()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,对称轴为12t =-,开口向上,函数()21f t t t =+-在)1⎡-⎣上单调递减, 所以函数()f x 在5,4ππ⎛⎫ ⎪⎝⎭上单调递增,在53,42ππ⎛⎫⎪⎝⎭上单调递减, 故B 错误; 对于C :sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=----⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭c 2424242sin os 2sin cos 4x x x x ππππππππ⎥++⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4444sin cos 2sin cos 4x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----=- ⎪ ⎪ ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭⎝⎭⎝+⎭+,故C 正确;因为()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,2,2t ⎡⎤∈-⎣⎦,当2t =时()f t 取得最大值()max 21f t =+,令2sin 24t x π⎛⎫=+= ⎪⎝⎭,则sin 14x π⎛⎫+= ⎪⎝⎭,所以2,42x k k Z πππ+=+∈,解得2,4x k k Z ππ=+∈,即当2,4x k k Z ππ=+∈时,函数()f x 取得最大值21+,故D 错误;故选:AC 【点睛】本题考查三角函数的综合应用,解答的关键是换元令sin cos t x x =+,将函数转化为二次函数;5.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(3代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心.【详解】由图可知2sin ϕ=sin ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.6.设函数()()1sin 0222f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD 【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误. 【详解】()3131sin sin sin cos sin 222226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+>⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误; 对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<, 此时,函数()f x 在区间0,2π⎛⎫⎪⎝⎭上不单调,C 选项错误. 故选:AD. 【点睛】关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.7.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC 【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD. 【详解】 A.A B >,a b ∴>,根据正弦定理sin sin a bA B=,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-<⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确. 故选:ABC 【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.8.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示,则下列正确的是( )A .2()2sin 23f x x π⎛⎫=+⎪⎝⎭B .(2021)1f π=C .函数|()|y f x =为偶函数D .,066x f x f x ππ⎛⎫⎛⎫∀∈++-=⎪ ⎪⎝⎭⎝⎭R 【答案】AD 【分析】先利用图象得到2A =,T π=,求得2ω=,再结合12x π=-时取得最大值求得ϕ,得到解析式,再利用解析式,结合奇偶性、对称性对选项逐一判断即可. 【详解】由图象可知,2A =,5212122T πππ=+=,即2T ππω==,2ω=, 由12x π=-时,()2sin 2212f x =πϕ⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦,得22,122=k k Z ππϕπ⎛⎫⨯-++∈ ⎪⎝⎭, 即22,3=k k Z πϕπ+∈,而0ϕπ<<,故2=3πϕ,故2()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,A 正确;22(2021)2sin 22021=2sin =333f ππππ⎛⎫=⨯+ ⎪⎝⎭B 错误; 由2()2sin 23y f x x π⎛⎫==+⎪⎝⎭知,222sin 2=2sin 233x x ππ⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭不是恒成立,故函数|()|y f x =不是偶函数,故C 错误; 由6x π=时,22sin 22sin 0663f =ππππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,故06π⎛⎫⎪⎝⎭,是2()2sin 23f x x π⎛⎫=+⎪⎝⎭的对称中心,故,066x f x f x ππ⎛⎫⎛⎫∀∈++-= ⎪ ⎪⎝⎭⎝⎭R ,故D 正确. 故选:AD. 【点睛】 方法点睛:三角函数模型()sin()f x A x b ωϕ=++求解析式时,先通过图象看最值求A ,b ,再利用特殊点(对称点、对称轴等)得到周期,求ω,最后利用五点特殊点求初相ϕ即可.二、数列多选题9.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n f 称为斐波那契数列. 并将数列{}n f 中的各项除以4所得余数按原顺序构成的数列记为{}n g ,则下列结论正确的是( ) A .20192g = B .()()()()222123222022210f f f f f f -+-=C .12320192688g g g g ++++=D .22221232019201820202f f f f f f ++++=【答案】AB 【分析】由+2+1+n n n f f f =可得()2+112121n n n n n n n n f f f f f f f f +++++=-=-,可判断B 、D 选项;先计算数列{}n g 前几项可发现规律,使用归纳法得出结论:数列{}n g 是以6为最小正周期的数列,可判断A 、C 选项. 【详解】 对于A 选项:12345678910111211,2,3,1,0,1,12310g g g g g g g g g g g g ============,,,,,,,所以数列{}n g 是以6为最小正周期的数列,又20196336+3=⨯,所以20192g =,故A 选项正确;对于C 选项:()()12320193361+1+2+3+1+0+1+1+22692g g g g ++++=⨯=,故C 选项错误;对于B 选项:斐波那契数列总有:+2+1+n n n f f f =,所以()()22222232122232221f f f f f f f f =-=-,()()22121222021222120f f f f f f f f =-=-, 所以()()()()222123222022210f f f f f f -+-=,故B 正确; 对于D 选项:()212+2+1112+n n n f f f f f f f f ==∴=,,,()222312321f f f f f f f f =-=-, ()233423432f f f f f f f f =-=-,,()2+112121n n n n n n n n f f f f f f f f +++++=-=-。
专题04 三角函数-备战2021年新高考数学纠错笔记 (原卷版)

专题04 三角函数易错点易错点1 对象限角理解不正确确定kα,αk (k ∈N *)的终边位置的方法:先用终边相同角的形式表示出角α的范围,再写出kα或αk 的范围,然后根据k 的可能取值讨论确定kα或αk的终边所在位置.【例1】已知α为第二象限的角,问2α是第几象限角? 【错解】∵α为第二象限的角,∴2παπ<<,∴422παπ<<,则2α是第一象限角. 【错因分析】错因是认为α为第二象限的角,则2παπ<<,而忽视了终边相同的角有无数个.【正解】∵α为第二象限的角,∴22()2k k k Z ππαππ+<<+∈,∴()422k k k Z παπππ+<<+∈,当k 为偶数时,2α是第一象限角. 当k 为奇数时,2α是第三象限角. 故2α是第一或第三象限角. 【巩固练习1】已知角α为第三象限角,试确定2α的终边所在的象限. 易错点二 忽视对参数的讨论任意角的三角函数定义:设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=yx ,它们都是以角为自变量,以比值为函数值的函数.例2.已知角θ的终边上一点(3,4)(0)P a a a ≠,求θ角的正弦、余弦和正切值.【错解】∵3,4x a y a ==,∴5r a ==,则44sin 55y a r a θ===, 33cos 55x a r a θ===,44tan 33y a x a θ===. 【错因分析】错解原因是未对参数a 的取值情况进行讨论,默认为0a >,从而导致出错. 【正解】∵3,4x a y a ==,∴5||r a ==, ○1当0a >时,5r a =,则44sin 55y a r a θ===,33cos 55x a r a θ===, 44tan 33y a x a θ===. ○2当0a <时,5r a =-,则44sin 55y a ra θ===--,33cos 55x a r a θ===--,44tan 33y a x a θ===. 【巩固练习2】已知角α的终边在直线3x +4y =0上,求sin α, cos α, tan α的值. 易错点三 不能准确运用诱导公式进行化简求值(1)利用诱导公式化简三角函数式的思路: ①分析结构特点,选择恰当公式; ②利用公式化成单角三角函数; ③整理得最简形式.(2)巧用相关角的关系能简化解题的过程.常见的互余关系有π3α-与π6α+,π3α+与π6α-,π4α+与π4α-等; 常见的互补关系有π3θ+与2π3θ-,π4θ+与3π4θ-等. 【例3】若33sin =θ,求cos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值.A .0B .1C .6D .6-【错解】选A.原式=cos cos (sin 1)θθθ--+cos θcos θsin θ+cos θ=-cos θcos θsin θ+cos θ+cos θcos θsin θ+cos θ=0. 【错因分析】错解中混淆了诱导公式sin(3π2-θ)=-cos θ,sin(3π2+θ)=-cos θ,cos(π-θ)=-cos θ,cos(π+θ)=-cos θ.【正解】原式=cos cos (cos 1)θθθ---+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=2sin 2θ,因为sin θ=33,所以所求三角函数式的值为6=. 【答案】C【巩固练习3】化简:=++⋅-++-⋅+)sin()2cos()sin()cos()2cos()2sin(απαπαπαπαπαπ________. 易错点四 忽略隐含条件致错【例4】已知θ∈(0,π),sin θ+cos θ=3-12,则tan θ的值为__________. 【错解】将sin θ+cos θ=3-12两边平方,得1+2sin θcos θ=1-32,即sin θcos θ=-34,易知θ≠π2. 故sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θ1+tan 2θ=-34,解得tan θ=-3或tan θ=-33. 【错因分析】题设条件sin θ+cos θ=3-12隐含sin θ>-cos θ这一条件,结合所得sin θcos θ=-34<0可进一步得到θ的范围,错解忽略了这一点,从而造成增解.【正解】同错解,解得tan θ=-3或tan θ=-33. ∵θ∈(0,π),sin θcos θ=-34<0,∴θ∈(π2,π), 由sin θ+cos θ=3-12>0可得sin θ>-cos θ,即|sin θ|>|cos θ|, 故θ∈(π2,3π4),则tan θ<-1,∴tan θ=-3.【巩固练习4】已知sin αcos α=18,且π<α<5π4,则cos α-sin α的值为 .易错点五 不能正确理解三角函数图象变换规律函数图象的平移变换解题策略:(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平 移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|.(2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. 【例5】为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象 A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位【错解】选B.y =cos(2x +π3)=sin(2x +π3+π2)=sin2(x +5π12),因此向右平移5π12个长度单位,故选B .【错因分析】没有注意到变换方向导致了错解,目标是y =cos(2x +π3)的图象.【正解】)125(2sin )232sin()32cos(ππππ+=++=+=x x x y ,所以将函数y =cos(2x +π3)的图象向左平移125π个单位长度即可.故选A.【巩固练习5】为了得到函数sin y x =的图像,只需将函数sin 26y x π⎛⎫=+⎪⎝⎭的图像( ) A .横坐标伸长为原来的两倍,纵坐标不变,再向右平移6π个单位 B .横坐标伸长为原来的两倍,纵坐标不变,再向左平移6π个单位 C .横坐标缩短为原来的12,纵坐标不变,再向右平移6π个单位D .横坐标缩短为原来的12,纵坐标不变,再向左平移6π个单位易错点六 错用函数的定义域求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图像来求解. 【例6】求函数y =1+2cos x +lg(2sin x +3)的定义域.【错解】要使函数有意义,则需满足1+2cos x ≥0且2sin x +3>0,即cos x ≥-12,且sin x >-32.所以2k π+4π3≤x ≤2k π+8π3且2k π-π3<x <2k π+4π3,其中k ∈Z.其交集为空集,故无定义域.【错因分析】因两个不等式中的k 各自独立,因此上述两集合是有公共部分的,如图所示. 【正解】要使函数有意义,则需同时满足1+2cos x ≥0且2sin x +3>0, 即cos x ≥-12,且sin x >-32.由cos x ≥-12,知2k π-2π3≤x ≤2k π+2π3,k ∈Z .由sin x >-32,知2n π-π3<x <2n π+4π3,n ∈Z , ∴x 的取值范围是{x |2k π-π3<x ≤2k π+2π3,k ∈Z}.【巩固练习6】函数y =sin x -cos x 的定义域为________. 易错点七 因忽视换元前后变量范围的区别与联系而致错求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.【例7】求函数x x x x y cos sin cos sin -+=(R x ∈)的值域.【错解】令t x x =-cos sin ,则由()22cos sin 21cos sin t x x x x =-=-得x x cos sin 212t -=,所以()11212122+--=+-=t t t y ,∵R t ∈,∴(]1,∞-∈y . 【错因分析】上述错解的根本原因在于忽略了t 的正确范围.【正解】因为=-=x x t cos sin []224sin 2,-∈⎪⎭⎫ ⎝⎛-πx ,所以当2-=t ,即ππk x 24+-=(Z k ∈)时,=min y 212--;当1=t ,即()[]411ππk k x -++=(Z k ∈)时,1max =y ,因此函数=y x x x x y cos sin cos sin -+=的值域应为⎥⎦⎤⎢⎣⎡--1212,. 【巩固练习7】函数y =cos 2x +2sin x 的最大值为________.易错点八 错用两角差的正弦公式两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.【例8】已知函数f (x )=cos2x -3sin2x ,求f (x )图象的对称轴方程. 【错解】f (x )=cos2x -3sin2x =2(cos2x sin π6-sin2x cos π6)=2sin(2x -π6).令2x -π6=k π+π2,k ∈Z ,解得x =k π2+π3,k ∈Z ,∴f (x )图象的对称轴方程为x =k π2+π3,k ∈Z .【错因分析】错用两角差的正弦公式,忽视了公式中名称的问题,变形错误,导致函数式错误.f (x )=2sin(π6-2x ).【正解】 f (x )=cos2x -3sin2x =2(cos2x cos π3-sin2x sin π3)=2cos(2x +π3).令2x +π3=k π,k ∈Z ,解得x =k π2-π6,k ∈Z ,∴f (x )图象的对称轴方程为x =k π2-π6,k ∈Z .【巩固练习8】如果函数y =3sin(2x +φ)的图象关于直线x =π6对称,则|φ|的最小值为( )A.π6B.π4C.π3D.π2易错点九 弄不清角的范围【例9】已知,(0,)2παβ∈,1tan 7α=,sin β=,则2παβ--的值为 .【错解】因为,(0,)2παβ∈,所以cos β===1tan 3β=,所以3tan 24β=,则tan tan 2tan(2)11tan tan 2αβαβαβ++==-⋅, 由,(0,)2παβ∈,所以3022παβ<+<,故24παβ+=或54π.【错因分析】仅从,(0,)2παβ∈得到3022παβ<+<,范围过宽,而条件隐含了1tan (0,73α=∈,1sin (0,)2β=,即得,(0,)6παβ∈.【正解】因为,(0,)2παβ∈,所以cos β===1tan 3β=, 所以3tan 24β=,则tan tan 2tan(2)11tan tan 2αβαβαβ++==-⋅,由,(0,)2παβ∈,又1tan 7α=∈,1sin (0,)2β= , 所以,(0,)6παβ∈,所以022παβ<+<,所以24παβ+=,故324ππαβ--=. 【答案】43π 【巩固练习9】若0<α<π2,-π2<β<0,cos )4(απ+=13,sin )24(βπ-=33,则cos )2(βα+=( )A.33 B .-33 C.63D .-69高考链接1.【2020年高考全国I 卷】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )B.23C.13D.92.【2020年高考全国Ⅰ卷】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f(x)的最小正周期为( )A.10π9 B.7π6 C. 4π3D.3π23.【2020年高考全国II 卷】若α为第四象限角,则( )A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<04.【2020年高考全国III 卷】已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2 B. –1 C. 1D. 25.【2020年高考山东卷】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D. 5πcos(2)6x - 6.【2020年高考天津卷】已知函数()sin 3f x x π⎛⎫=+⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是A. ①B. ①③C. ②③D. ①②③7.【2019年高考全国Ⅰ卷】关于函数()sin |||sin |f x x x =+有下述四个结论:①f(x)是偶函数 ②f(x)在区间(2π,π)单调递增③f(x)在[,]-ππ有4个零点 ④f(x)的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③8.【2019年高考全国Ⅱ卷】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f(x)=|cos2x|B .f(x)=|sin2x|C .f(x)=cos|x|D .f(x)=sin|x|9.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( )A .15B 5C .3D .510.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是( ) A .①④ B .②③ C .①②③D .①③④11.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫=⎪⎝⎭38f π⎛⎫= ⎪⎝⎭( )A .2-B .CD .212.【2020年高考北京卷】若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________. 13.【2020年高考全国III 卷】关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 14.【2020年高考江苏卷】已知2sin ()4πα+ =23,则sin 2α的值是____. 15.【2020年高考江苏卷】将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.16.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.17.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 模拟演练1.【上海市交大附中检测】要得到函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数3sin 2y x =的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 2.【湖北省十堰市检测】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4π B .2π C .34π D .π3.【天津滨海新区三校高考督导】如果函数y =3cos (2x +φ)的图象关于点(43π,0)中心对称,那么|φ|的最小值为( )A .6π B .4π C .3π D .2π 4.【山西省运城市调研测】如图是函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象,则其解析式是( )A .()3sin 3f x x π⎛⎫=+⎪⎝⎭B .()3sin 6f x x π⎛⎫=+⎪⎝⎭C .()3sin 23f x x π⎛⎫=-⎪⎝⎭D .()3sin 23f x x π⎛⎫=+⎪⎝⎭5.【山东省威海荣成市2020届高三考试】点P 从(0 1)-,出发,沿单位圆顺时针方向运动83π弧长到达点Q ,则点Q 的坐标( )A .1( 22-, B .1( 22-, C .1( )22-, D .1()22-, 6.【广东省中山市2020检测】已知角α的顶点在坐标原点O ,始边与x 轴的非负半轴重合,将α的终边按顺时针方向旋转4π后经过点(3,4),则sin 2α=( )A .1225-B .725-C .725D .24257.【湖北省荆门市龙泉中学2020届高三考试】黄金三角形有两种,其中底和腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,正五角星由5个黄金三角形和一个正五边形组成,如图所示,在一个黄金三角形ABC 中,12BC AC =,根据这些信息,可得sin 234︒=( )A .14- B . C .38+-D .48+-8.【2020安徽省皖西南名校联考】已知1sin 35πθ⎛⎫-= ⎪⎝⎭,则sin 26πθ⎛⎫-= ⎪⎝⎭( ) A .225-B .2325-C .225D .23259.【四川省成都市第七中学2021届高三考试】已知函数()sin()f x x ωϕ=+,其中0>ω,0ϕπ<<,()4f x f π⎛⎫ ⎪⎝⎭恒成立,且()f x 在区间0,4π⎛⎫⎪⎝⎭上恰有两个零点,则ω的取值范围是( )A .(6,10)B .(6,8)C .(8,10)D .(6,12)10.【2020黑龙江省大庆市第四中学检测】若sin cos 1sin cos 3αααα+=-,则tan α等于( )A .2-B .34 C .43-D .211.【山东省泰安第二中学2020届高三测试】sin 3αα+=,则cos 23πα⎛⎫-= ⎪⎝⎭__________.12.【2020广东省江门市第二中学】已知函数()sin 6f x x π⎛⎫=+⎪⎝⎭,其中,3x a π⎡⎤∈-⎢⎥⎣⎦.若()f x 的值域是1,12⎡⎤-⎢⎥⎣⎦,则实数a 的最小值为______,最大值为______. 13.【江苏省南京市高三学情调研】已知向量m =(cos x ,sin x ),n =(cos x ,﹣sin x ),函数1()2f x m n =⋅+. (1)若()12x f =,x ∈(0,π),求tan(x +4π)的值;(2)若1()10f α=-,α∈(2π,34π),sin =β,β∈(0,2π),求2αβ+的值.14.【2020山西省运城市调研测试】已知()1,cos a x =,1,sin 3b x ⎛⎫= ⎪⎝⎭,()0,x π∈.(1)若//a b ,求sin cos cos sin x xx x+-的值;(2)若a b ⊥,求cos sin x x -的值.15.【2020广东省东莞市检测】已知cos 10α=-,,2παπ⎛⎫∈ ⎪⎝⎭.(1)求sin 4πα⎛⎫- ⎪⎝⎭的值;(2)求cos 26πα⎛⎫+⎪⎝⎭的值. 纠错心得________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________。
高三数学易错三角函数与解三角形多选题 易错题学能测试试题

高三数学易错三角函数与解三角形多选题 易错题学能测试试题一、三角函数与解三角形多选题1.已知函数()(|sin |cos )(sin cos )f x x x x x =-+,x ∈R ,则( )A .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减B .()f x 是周期为2π的函数C .()f x 有对称轴D .函数()f x 在(0,2)π上有3个零点【答案】BD 【分析】先判断出()f x 是周期为2π的函数,再在给定的范围上研究()f x 的单调性和零点,从而可判断BCD 的正误,再利用反证法可判断C 不正确. 【详解】因为[][]()(2)|sin(2)|cos(2)(sin(2)cos(2))f x x x x x f x πππππ+=+-+⋅+++=, 故()f x 是周期为2π的函数,故B 正确. 当0,3x π⎛⎫∈ ⎪⎝⎭时,22()sin cos cos 2f x x x x =-=-, 因为220,3x π⎛⎫∈ ⎪⎝⎭,而cos y u =-在20,3π⎛⎫ ⎪⎝⎭为增函数, 故()cos2f x x =-在0,3π⎛⎫⎪⎝⎭为增函数,故A 错误.由(sin cos )(sin cos )002x x x x x π⎧-+=⎨<<⎩可得4x π=或34x π=或74x π=,故D 正确.若()f x 的图象有对称轴x a =,因为()f x 的周期为2π,故可设[)0,2a π∈, 则()()2f x f a x =-对任意的x ∈R 恒成立,所以()()02f f a =即1(|sin 2|cos 2)(sin 2cos 2)a a a a -=-+①, 也有222f f a ππ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭即1(|cos 2|sin 2)(cos 2sin 2)a a a a =--+②, 也有222f f a ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即1(|cos 2|sin 2)(cos 2sin 2)a a a a -=+-③, 由②③可得cos 2sin 20cos 2sin 2cos 2sin 2a a a a a a -≠⎧⎨+=-⎩, 故sin 20a =,由①②可得cos21a =-,故π2a或32a π=.若π2a,则21116222f π⎛⎛⎛⎫-=-+=- ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,而2711162226f f ππ⎛⎛⎛⎫⎛⎫=-=-+≠- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,若32a π=,则21911162226f f ππ⎛⎛⎛⎫⎛⎫=+-=-+≠-⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这与()()2f x f a x =-对任意的x ∈R 恒成立矛盾, 故D 不成立. 故选:BD. 【点睛】方法点睛:与三角函数相关的函数性质的研究,应该依据一定次序,比如先研究函数的奇偶性或周期性,再根据前者把函数的研究限制在一定的范围内进行讨论.2.(多选题)已知22tan 2tan 10x y --=,则下列式子成立的是( ) A .22sin 2sin 1y x =+ B .22sin 2sin 1y x =-- C .22sin 2sin 1y x =-D .22sin 12cos y x =-【答案】CD 【分析】对原式进行切化弦,整理可得:222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,结合因式分解代数式变形可得选项. 【详解】∵22tan 2tan 10x y --=,2222sin sin 210cos cos x yx y-⋅-=, 整理得222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,∴()()()22222221cos 1sin sin cos cos sin cos x x y x y y x ---⋅=+, 即22222221cos sin sin cos sin cos cos x y y x y x x --+⋅-⋅=, 即222sin 12cos 2sin 1y x x =-=-,∴C 、D 正确. 故选:CD 【点睛】此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.3.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭;由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.4.已知函数()22sin cos f x x x x =+,则下列结论中正确的是( )A .()f x 的图象是由y= 2sin2x 的图象向左移3π个单位得到的 B .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的对称中心的坐标是(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭D .函数()()g x f x =[]0,10内共有8个零点 【答案】BCD 【分析】A.化简得()2sin(2)3f x x π=+,利用函数的图象变换得该选项错误;B.利用复合函数的单调性原理分析得该选项正确;C. 由2,3x k k Z ππ+=∈得该选项正确;D.解方程sin 232x π⎛⎫+= ⎪⎝⎭得该选项正确. 【详解】()2π2sin cos sin 222sin 22sin 236f x x x x x x x x π⎛⎫⎛⎫=+-=+=+=+ ⎪ ⎪⎝⎭⎝⎭,把2sin 2y x =的图象向左平移6π个单位,得到()f x ,所以选项A 不正确;设23t x π=+,则t 在,03π⎡⎤-⎢⎥⎣⎦上单调增, ,03x π⎡⎤∈-⎢⎥⎣⎦2,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦,,33t ππ⎡⎤∴∈-⎢⎥⎣⎦又sin y t =在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增, ()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭在,03π⎡⎤-⎢⎥⎣⎦上单调递增,所以选项B 正确;由2,3x k k Z ππ+=∈得对称中心为(),062k k Z ππ⎛⎫-+∈ ⎪⎝⎭,所以选项C 正确;由sin 232x π⎛⎫+= ⎪⎝⎭得2233x k πππ+=+或222,33x k k Z πππ+=+∈ 解得x k π=或,6x k k Z ππ=+∈,又[]0,10,x ∈0,1,2,3k ∴=时,713190,,,,2,,3,6666x πππππππ=,共8个零点,所以选项D 正确. 故选:BCD 【点睛】方法点睛:函数的零点问题的研究,常用的方法有:(1)方程法(解方程即得解);(2)图象法(直接画出函数的图象得解);(3)方程+图象法(令()=0f x 得()()g x h x =,再分析函数(),()g x h x 的图象得解). 要根据已知条件灵活选择方程求解.5.设函数()sin()(0)4f x x πωω=+>,已知()f x 在[]02π,有且仅有5个零点,则下列结论成立的有( )A .()1y f x =+在()02π,有且仅有2个零点 B .()f x 在023π⎛⎫⎪⎝⎭,单调递增C .ω的取值范围是192388⎡⎫⎪⎢⎣⎭,D .将()f x 的图象先右移4π个单位,再纵坐标不变,横坐标扩大为原来的2倍,得到函数1()sin()2g x x ω=【答案】BC 【分析】首先利用图象直接判断A 选项;再利用函数()f x 在[]02π,有且仅有5个零点,求得ω的范围,并利用整体代入的方法判断B 选项;最后利用图象的变换规律,求得变换之后的解析式,判断D. 【详解】A.如图,[]0,2π上函数仅有5个零点,但有3个最小值点,这3个最小值点就是()1y f x =+在()0,2π上的3个零点;B.[]0,2x π∈时,,2444t x πππωωπ⎡⎤=+∈⋅+⎢⎥⎣⎦ 若函数()f x 在[]02π,有且仅有5个零点,则5264ππωππ≤⋅+<,得192388ω≤<,当023x π⎛⎫∈ ⎪⎝⎭,时,,448t x πππω⎛⎫=+∈ ⎪⎝⎭,此时函数单调递增,故BC 正确; D. 函数()f x 的图象先右移4π个单位后得到sin sin 4444y x x ππωππωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标扩大为原来的2倍,得到()1sin 244g x x ωππω⎛⎫=-+ ⎪⎝⎭,故D 不正确;故选:BC 【点睛】关键点点睛:本题的关键是求出ω的取值范围,首先根据函数在区间[]0,2π有5个零点,首先求4t x πω=+的范围,再分析sin y t =的图象,求得ω的范围.6.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(3代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin 3ϕ=3sin 2ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫ ⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.7.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos 10α=- B .sin cos 5αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()0αβ+=<,所以5342ππαβ≤+≤,解得sin()10αβ+=-,所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.8.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC 【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD. 【详解】 A.A B >,a b ∴>,根据正弦定理sin sin a bA B=,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确. 故选:ABC 【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.二、数列多选题9.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( ) A .公比大于1的等比数列一定是“间隔递增数列” B .若()21nn a n =+-,则{}n a 是“间隔递增数列”C .若(),2n ra n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD 【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误. 【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n kn n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦,当n 是奇数时,()211kn k n a a k +=---+,则存在1k时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211kn k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<.又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确.故选:BCD.【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.10.将()23n n ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221n S n n =+- 【答案】ACD【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D.【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确; ()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确; ()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n n n n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD.【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.。
高三数学易错三角函数与解三角形多选题 易错题难题同步练习试题

高三数学易错三角函数与解三角形多选题 易错题难题同步练习试题一、三角函数与解三角形多选题1.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +的最大值为3B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为223+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 的面积为31- 【答案】ACD 【分析】利用三角形面积公式,余弦定理基本不等式,以及三角换元,数形结合等即可判断选项A ;利用勾股定理的逆定理即可判断选项B ;利用正弦定理和三角恒等变换公式即可判断选项C ;由已知条件可得ABC 是直角三角形,从而可以求出其内切圆的半径,即可得AOB 的面积即可判断选项D. 【详解】 对于选项A :2221sin 1sin 222cos 2222cos bc AS A b c a bc b c bc A bc Ac b==⨯++-+++- 1sin 4cos 2A A ≤-⨯-(当且仅当b c =时取等号).令sin A y =,cos A x =,故21242S ya bc x ≤-⨯+-, 因为221x y +=,且0y >,故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-上,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =时,取得最小值-故可得,023yz x ⎡⎫=∈-⎪⎢⎪-⎣⎭,又21242S yx bc x ≤-⨯+-,故可得2124S a bc ⎛≤-⨯= +⎝⎭, 当且仅当60A =,b c =,即三角形为等边三角形时,取得最大值,故选项A 正确; 对于选项B :因为sin 2sin B C =,所以由正弦定理得2b c =,若b 是直角三角形的斜边,则有222a c b +=,即2244c c +=,得c =,故选项B 错误; 对于选项C ,由2A C =,可得π3B C =-,由sin 2sin B C =得2b c =,由正弦定理得,sin sin b c B C=,即()2sin π3sin c c C C =-, 所以sin32sin C C =,化简得2sin cos 22cos sin 2sin C C C C C +=, 因为sin 0C ≠,所以化简得23cos 4C =,因为2b c =,所以B C >,所以cos C =,则1sin 2C =,所以sin 2sin 1B C ==,所以π2B =,π6C =,π3A =,因为2a =,所以3c =,b =,所以ABC 的周长为2+,故选项C 正确; 对于选项D ,由C 可知,ABC 为直角三角形,且π2B =,π6C =,π3A =,3c =,b =,所以ABC 的内切圆半径为1212333r ⎛⎫=+-=- ⎪ ⎪⎝⎭,所以ABC 的面积为11122cr ⎛== ⎝⎭所以选项D 正确, 故选:ACD 【点睛】关键点点睛:本题的关键点是正余弦定理以及面积公式,对于A 利用面积公式和余弦定理,结合不等式得21sin 1sin 224cos 222cos S A Ab c a bc A A c b=⨯≤-⨯+-++-,再利用三角换元、数形结合即可得证,综合性较强,属于难题.2.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x fθ=,()y g θ=,则下列说法正确的是( )A .()x f θ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1fg θθ+≥在02πθ⎛⎤∈⎥⎝⎦,上恒成立; D .函数()()22t f g θθ=+的最大值为2.【答案】ACD 【分析】依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos 2θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解. 【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos fθθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos f θθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫⎪⎝⎭为增函数,在,2ππ⎛⎫⎪⎝⎭为减函数,故B 错误; 对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确;对于D ,函数()()222cos sin2t fg θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+,令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫⎪⎝⎭上单调递减, 当6πθ=即1sin 2θ=,3cos 2θ=时,函数取得极大值31333222t =⨯+⨯⨯=, 又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=, 所以函数()()22t f g θθ=+取得最大值332,故D 正确.故选:ACD. 【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.3.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心 C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可.【详解】 因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z , 令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确.故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.4.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭; 由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值;(2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.5.已知函数22()(sin cos )2cos f x x x x =++,则( ) A .()f x 的最小正周期是πB .()f x 的图像可由函数()22g x x =+的图像向左平移8π个单位而得到 C .4x π=是()f x 的一条对称轴D .()f x 的一个对称中心是,08π⎛⎫- ⎪⎝⎭【答案】AB 【分析】首先化简函数()224f x x π⎛⎫=++ ⎪⎝⎭,再根据三角函数形式的公式,以及代入的方法判断选项. 【详解】()1sin 2cos 21224f x x x x π⎛⎫=+++=++ ⎪⎝⎭,A.函数的最小正周期22T ππ==,故A 正确;B.根据图象的平移变换规律,可知函数()22g x x =+的图像向左平移8π个单位而得到()222284f x x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,故B 正确;C.当4x π=时,32444πππ⨯+=,不是函数的对称轴,故C 不正确; D.当8x π=-时,2084ππ⎛⎫⨯-+= ⎪⎝⎭,此时函数值是2,故函数的一个对称中心应是,28π⎛⎫- ⎪⎝⎭,故D 不正确. 故选:AB 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.6.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()αβ+= )A .cos α=B .sin cos αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]55βααβα⎛⎛⎫-=+-=-+⨯= ⎪ ⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.7.设函数()()1sin 0222f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD 【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误. 【详解】()3131sin sin sin cos sin 2226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+>⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误; 对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<,此时,函数()f x 在区间0,2π⎛⎫⎪⎝⎭上不单调,C 选项错误. 故选:AD. 【点睛】关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.8.已知函数()()cos 22f x x πϕϕ⎛⎫=+<⎪⎝⎭,()()1324F x f x f x π⎛⎫=+ ⎪⎝⎭为奇函数,则下述四个结论中说法正确的是( ) A .3tan ϕ=B .()f x 在[],a a -上存在零点,则a 的最小值为6π C .()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增 D .()F x 的图象可由()f x 的图象向左平移2π个单位得到 【答案】ABC【分析】首先得到()()124F x f x f x π⎛⎫=++ ⎪⎝⎭的解析式,再根据函数的奇偶性求出参数ϕ,最后结合三角函数的性质一一验证即可.【详解】 解:因为()cos(2)f x x ϕ=+,所以11()()+cos(2)sin(2)cos 2224223F x f x f x x x x ππϕϕϕ⎛⎫⎛⎫=+=+-+=++ ⎪ ⎪⎝⎭⎝⎭, 因为()F x 为奇函数,则(0)0F =,即cos 03πϕ⎛⎫+= ⎪⎝⎭,所以32k ππϕπ+=+,k Z ∈,因为||2ϕπ<,所以6π=ϕ;对于A ,tan tan 6πϕ==,故A 正确; 对于B ,令()cos 206f x x π⎛⎫=+= ⎪⎝⎭,得26k x ππ=+,k ∈Z ,若()f x 在[,]a a -上存在零点,则0a >且a 的最小值为6π,故B 正确; 对于C ,()cos 2sin 263F x x x ππ⎛⎫=++=- ⎪⎝⎭,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,2,232x ππ⎛⎫∈ ⎪⎝⎭,则()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增,故C 正确. 对于D ,因为()cos 26f x x π⎛⎫=+ ⎪⎝⎭, ()cos 266F x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,根据“左加右减”,()F x 的图象可由()f x 的图象向左平移6π个单位得到,故D 错误. 故选:ABC .【点睛】关键点点睛:本题解答的关键是先根据()()1224F x f x f x π⎛⎫=++ ⎪⎝⎭为奇函数,确定参数ϕ的值,再结合三角函数的性质逐一判断即可.二、数列多选题9.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112d a =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d + 【答案】AB【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案;对于D ,根据112n n b b a a d d +-=可得答案.【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.10.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD【分析】 由已知可得11222n n n n S n S n S n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D.【详解】因为121n n S S n +=+-,所以11222n n n n S n S n S n S n++++==++. 又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2n n S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++- ()()()23122412122...2212...224122n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD .【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S n S n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,。
专题04 三角函数 -备战2021年高考数学(理)之纠错笔记系列 Word版含解析
专题04 三角函数易错点1 不能正确理解三角函数的定义角α的终边落在直线y =2x 上,则sin α的值为A .-55 B .55 C .255D .±255【错解】选C.在角的终边上取点P (1,2),∴r =|OP |=12+22=5,∴sin α=y r =25=255,故选C .【错因分析】当角的终边在一条直线上时,应注意到角的终边为两条射线,所以应分两种情况处理,而错解中没有对两种情况进行讨论导致错误.【试题解析】当角的终边在第一象限时,在角的终边上取点P (1,2), 由r =|OP |=12+22=5,得sin α=25=255.当角的终边在第三象限时,在角的终边上取点Q (-1,-2),∴22(1)(2)5r OQ =-+-==∴sin α=-25=-255.故选D . 【参考答案】D1.定义设α是一个任意角,它的顶点与原点重合,始边与x 轴非负半轴重合,点(),P x y 是角α的终边上任意一点,P 到原点的距离()0OP r r =>,那么角α的正弦、余弦、正切分别是sin ,cos ,tan y x y r r xααα===.注意:正切函数tan y x α=的定义域是ππ,2k k αα⎧⎫≠+∈⎨⎬⎩⎭Z ,正弦函数和余弦函数的定义域都是R .2.三角函数值在各象限内的符号三角函数值在各象限内的符号口诀:一全正、二正弦、三正切、四余弦.1.在平面直角坐标系中,角α以x 轴非负半轴为始边,终边在射线2(0)y x x =≥上,则tan α的值是A .2B .−2C .12D .12-【答案】A【解析】由题意,在平面直角坐标系中,角α以x 轴非负半轴为始边,终边在射线2(0)y x x =≥上,设终边上的点(1,2)P ,根据三角函数的定义可得2tan 21α==,故选A . 【名师点睛】本题主要考查了三角函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与运算能力,属于基础题.易错点2 利用同角三角函数基本关系式时忽略参数取值已知cos θ=t ,求sin θ、tan θ的值.【错解】①当0<t <1时,θ为第一或第四象限角. θ为第一象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t; θ为第四象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t. ②当-1<t <0时,θ为第二或第三象限角. θ为第二象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t; θ为第三象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t. 综上,sin θθθ=⎪⎩为第一、二象限角为第三、四象限角,tan t θθθ=⎨⎪-⎪⎩为第一、二象限角为第三、四象限角. 【错因分析】上述解法注意到了θ的余弦值含有参数t ,根据余弦函数的取值范围对t 进行分类讨论,但上述讨论不全面,漏掉了很多情况,如t =-1,t =0,t =1. 【试题解析】①当t =-1时,sin θ=0,tan θ=0; ②当-1<t <0时,θ为第二或第三象限角. 若θ为第二象限角,则sin θ=1-t 2,tan θ=1-t 2t ; 若θ为第三象限角,则sin θ=-1-t 2,tan θ=-1-t 2t. ③当t =0时,sin θ=1,tan θ不存在或sin θ=-1,tan θ不存在. ④当0<t <1时,θ为第一或第四象限角. 若θ为第一象限角,则sin θ=1-t 2,tan θ=1-t 2t; 若θ为第四象限角,则sin θ=-1-t 2,tan θ=-1-t 2t. ⑤当t =1时,sin θ=0,tan θ=0.综上得:【参考答案】见试题解析.1.①利用22sin +cos 1αα=可以实现角α的正弦、余弦的互化; ②利用sin cos tan ααα=可以实现角α的弦切互化. 2.同角三角函数基本关系式的变形(1)平方关系的变形:2222sin 1cos ,cos 1sin αααα=-=-;(2)商的关系的变形:sin sin tan cos ,cos tan αααααα=⋅=; (3)2222111tan 1,1cos sin tan αααα-=-=. 3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.2.已知0,2απ⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα=+,则sin α=AB .15C D 【答案】A【解析】2sin 2cos21α=α+,24sin cos 2cos ααα∴=,0,2απ⎛⎫∈ ⎪⎝⎭,cos 0α∴>,sin 0α>,2sin cos αα∴=,又22sin cos 1αα+=,5sin α∴=, 故选A.【名师点睛】本题考查三角函数中二倍角公式、同角三角函数基本关系式的应用,易错点是忽略角所处的范围,造成符号错误.易错点3 不能准确运用诱导公式进行化简求值若sin θ=33,求cos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值.A .0B .1C .6D .6-【错解】选A. 原式=cos cos (sin 1)θθθ--+cos θcos θsin θ+cos θ=-cos θcos θsin θ+cos θ+cos θcos θsin θ+cos θ=0.【错因分析】错解中混淆了诱导公式sin(3π2-θ)=-cos θ,sin(3π2+θ)=-cos θ,cos(π-θ)=-cos θ,cos(π+θ)=-cos θ. 【试题解析】原式=cos cos (cos 1)θθθ---+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=2sin 2θ,因为sin θ=33,所以所求三角函数式的值为263()=. 【参考答案】C1.应用诱导公式,重点是“函数名称”与“正负号”的正确判断.求任意角的三角函数值的问题,都可以通过诱导公式化为锐角三角函数的求值问题,具体步骤为“负角化正角”→“正角化锐角”→求值.2.使用诱导公式时一定要注意三角函数值在各象限的符号,特别是在具体题目中出现类似πk α±的形式时,需要对k 的取值进行分类讨论,从而确定出三角函数值的正负.3.利用诱导公式化简三角函数式的思路: (1)分析结构特点,选择恰当公式; (2)利用公式化成单角三角函数; (3)整理得最简形式.利用诱导公式化简三角函数式的要求: (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值. 4.巧用相关角的关系能简化解题的过程. 常见的互余关系有π3α-与π6α+,π3α+与π6α-,π4α+与π4α-等; 常见的互补关系有π3θ+与2π3θ-,π4θ+与3π4θ-等.3.若角θ的终边经过点(1,2)-,则sin()cos()tan()2θθθπ+π+-++π+= A .2B .12-C .2-D .12【答案】C【解析】由诱导公式可得sin()cos()tan()sin sin tan tan 2θθθθθθθπ+π+-++π+=-++=, 又角θ的终边经过点(1,2)-, 所以tan 2θ=-, 所以sin()cos()tan()tan 22θθθθπ+π+-++π+==-.故选C .要作出正确选择,需认真选择诱导公式,不能错用公式.对于n π+α,若n 是偶数,则角n π+α的三角函数值等于角α的同名三角函数值;若n 为奇数,则角n π+α的三角函数值等于角π+α的同名三角函数值.易错点4 不能正确理解三角函数图象变换规律为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位【错解】选B.y =cos(2x +π3)=sin(2x +π3+π2)=sin2(x +5π12),因此向右平移5π12个长度单位,故选B .【错因分析】没有注意到变换方向导致了错解,目标是y =cos(2x +π3)的图象.【试题解析】y =cos(2x +π3)=sin(2x +π3+π2)=sin(2x +5π6)=sin2(x +5π12),因此将函数y =sin2x的图象向左平移5π12个长度单位即可.故选A .【参考答案】A函数图象的平移变换解题策略(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|.(2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.4.函数()sin()f x A x ωϕ=+(其中0A >,0>ω)的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度,得到()y g x =的图象,则下列说法正确的是A .函数()g x 为奇函数B .函数()g x 为偶函数C .函数()g x 的图象的对称轴为直线()6x k k π=π+∈Z D .函数()g x 的单调递增区间为5[,]()1212k k k ππ-+π+π∈Z 【答案】D【解析】由函数()()sin f x A x ωϕ=+(其中0A >,0ω>)的部分图象. 可知3A =,由35341234T πππ⎛⎫=--= ⎪⎝⎭,得=T π, 所以22===2T ωπππ, 代入点5,312π⎛⎫ ⎪⎝⎭得533sin 212ϕπ⎛⎫=⨯+ ⎪⎝⎭, 解得23k ϕπ=π-,取0k =,得3ϕπ=- 可得()3sin 23f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移3π个单位长度, 得()3sin 23sin 2333y g x x x ⎡⎤πππ⎛⎫⎛⎫==+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象, 由函数解析式可以验证只有()g x 的单调递增区间为()5,1212k k k ππ⎡⎤-+π+π∈⎢⎥⎣⎦Z 正确. 故选D.【名师点睛】根据y =A sin(ωx +φ)+k 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即; ②k 的确定:根据图象的最高点和最低点,即;③ω的确定:结合图象,先求出周期T ,然后由(ω>0)来确定ω;④φ的确定:由函数y =A sin(ωx +φ)+k 最开始与x 轴的交点(最靠近原点)的横坐标为 (即令ωx +φ=0,x =)确定φ.易错点5 注意符号对三角函数性质的影响已知函数()=2cos()32xf x π-. (1)求f (x )的单调递增区间;(2)若x ∈[-π,π],求f (x )的最大值和最小值. 【错解】(1)由-π≤π3-x 2≤0得,2π3≤x ≤8π3,∴f (x )的单调递增区间为⎣⎡⎦⎤2π3,8π3. (2)∵-1≤cos ⎝⎛⎭⎫π3-x 2≤1, ∴[f (x )]max =2,[f (x )]min =-2.【错因分析】(1)忽略了函数f (x )的周期性;(2)忽略了x ∈[-π,π]对函数f (x )的最值的影响.【试题解析】(1)∵f (x )=2cos ⎝⎛⎭⎫π3-x 2=2cos ⎝⎛⎭⎫x 2-π3.由2k π-π≤x 2-π3≤2k π得,4k π-4π3≤x ≤4k π+2π3(k ∈Z ).故f (x )的单调增区间为[4k π-4π3,4k π+2π3](k ∈Z ). (2)由-π≤x ≤π⇒-5π6≤x 2-π3≤π6.当x 2-π3=0,即x =2π3时,f (x )max =2, 当x 2-π3=-5π6,即x =-π时,f (x )min =- 3. 【参考答案】(1)函数()f x 的单调递增区间为[4k π-4π3,4k π+2π3](k ∈Z );(2)f (x )max =2,f (x )min =- 3.1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解三角函数的值域(最值)常见到以下几种类型的题目及求解方法(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).3.三角函数单调性问题的常见类型及解题策略 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数:先求出函数的单调区间,然后利用集合间的关系求解.(3)利用三角函数的单调性求值域(或最值):形如y =A sin (ωx +φ)+b 或可化为y =A sin (ωx +φ)+b 的三角函数的值域(或最值)问题常利用三角函数的单调性解决. 4.三角函数的奇偶性、周期性、对称性的处理方法(1)求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)的形式,再分别应用公式T =2||ωπ,T =2||ωπ,T =||ωπ求解. (2)对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验 f (x 0)的值进行判断.(3)若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2π(k ∈Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0.5.对函数()21cos cos 2f x x x x =+-的表述错误的是 A .最小正周期为πB .函数sin2y x =向左平移12π个单位可得到()f x C .()f x 在区间,36ππ⎛⎫-⎪⎝⎭上递增D .点,06π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】D 【解析】因为()2131cos213sin cos cos sin 22226x f x x x x x x +⎛⎫=+-=+-=+ ⎝π⎪⎭, 所以最小正周期为22π=π, sin2y x =向左平移12π个单位可得到sin 2sin 2126y x x ⎛⎫ππ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为,36x ππ⎛⎫∈-⎪⎝⎭,所以2,622x πππ⎛⎫+∈- ⎪⎝⎭,即()f x 单调递增,因为6x π=时,sin 216x π⎛⎫+= ⎪⎝⎭,所以点,06π⎛⎫⎪⎝⎭不是()f x 的对称中心,综上,选D.【名师点睛】本题考查二倍角公式、辅助角公式以及正弦函数性质,考查基本分析求解能力,属基础题.易错点6 三角恒等变换中忽略角的范围致误已知α、β为三角形的两个内角,cos α=17,sin (α+β)=53,则β= A .3πB .23π C .233ππ或 D .34ππ或 【错解】选C. ∵0<α<π,cos α=17,∴sin α21431()7-=. 又∵sin (α+β53,∴cos (α+β253111().1414-- ∴sin β=sin[(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α=32.又∵0<β<π,∴β=233ππ或. 【错因分析】(1)不能根据题设条件缩小α、β及α+β的取值范围,在由同角基本关系式求sin (α+β)时不能正确判断符号,产生两角.(2)结论处应由cos β的值确定β的取值,由sin β确定结论时易出现两解而造成失误.【试题解析】因为0<α<π,cos α=17,所以sin α=32αππ<<,又因为0<α+β<π,sin (α+β)=142<,所以0<α+β<3π或32π<α+β<π.由3π<α<2π知32π<α+β<π,所以cos (α+β1114, 所以cos β=cos[(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=12. 又0<β<π,所以β=3π. 【参考答案】A利用三角函数值求角时,要充分结合条件,确定角的取值范围,再选取合适的三角函数进行求值,最后确定角的具体取值.1.给角求值给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解. 2.给值求值已知三角函数值,求其他三角函数式的值的一般思路: (1)先化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手). (3)将已知条件代入所求式子,化简求值. 3.给值求角通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是π(0,)2,则选正、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为ππ(,)22-,则选正弦较好. 4.常见的角的变换 (1)已知角表示未知角 例如:()()ααββββα=+-=--,()()()()2,2ααβαββαβαβ=++-=+--,(2)αβαβα+=++,(2)αβαβα-=-+,22αβαβα+-=+,22αβαββ+-=-.(2)互余与互补关系 例如:π3π()()π44αα++-=,πππ()()362αα++-=. (3)非特殊角转化为特殊角 例如:15°=45°−30°,75°=45°+30°.6.(1)在中,,则这个三角形的形状为 A .锐角三角形 B .钝角三角形 C .直角三角形D .等腰三角形(2)若,且,则 A .B .C .D .【答案】(1)B ;(2)C. (1)【解析】在中, , ,三角形是钝角三角形,故选B.【点睛】本题考查三角形的形状,两角和的余弦函数的应用,属于中档题. 判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)确定一个内角为钝角进而知其为钝角三角形. (2)【解析】两边平方得可得 , 解得, . 则 则 故选C.易错点7 求函数sin()y A x ωϕ=+的性质时出错函数y =5sin(x +20°)+4cos(x +50°)的最大值为 . 【错解】41函数的最大值为52+42=41.【错因分析】形如y =a sin x +b cos x 的函数的最大值为a 2+b 2,而函数y =5sin(x +20°)+4cos(x +50°)不符合上述形式.【试题解析】y =5sin(x +20°)+4cos(x +50°) =5sin(x +20°)+4cos[(x +20°)+30°]=5sin(x +20°)+4cos(x +20°)cos30°-4sin(x +20°)sin30° =5sin(x +20°)+23cos(x +20°)-2sin(x +20°) =3sin(x +20°)+23cos(x +20°), ∴22max 3(23)21y =+=【参考答案】211.三角恒等变换与三角函数的图象及性质相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的形式. (2)利用公式2π(0)T ωω=>求周期.(3)根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值. (4)根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的单调区间.2.研究y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的性质时,一定要先利用诱导公式把ω化为正数后求解.7.已知)22()2sin cos cos sin f x x x x x =-. (1)求函数()y f x =的最小正周期和对称轴方程; (2)若50,12x π⎡⎤∈⎢⎥⎣⎦,求()y f x =的值域. 【答案】(1)对称轴为()212k x k ππ=+∈Z ,最小正周期T =π;(2)()[1,2]f x ∈-.【解析】(1))22()2sin cos cos sin f x x x x x =-sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,令2()32x k k ππ+=π+∈Z ,则 ()f x 的对称轴为()212k x k ππ=+∈Z ,最小正周期T =π; (2)当50,12x π⎡⎤∈⎢⎥⎣⎦时,72,336x πππ⎡⎤+∈⎢⎥⎣⎦, 因为sin y x =在,32ππ⎡⎤⎢⎥⎣⎦单调递增,在7,26ππ⎡⎤⎢⎥⎣⎦单调递减,在2x π=取最大值,在76x π=取最小值, 所以1sin 2,132x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()[1,2]f x ∈-.【名师点睛】本题考查正弦函数图象的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.求三角函数的性质时,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)的形式,再结合正弦函数y =sin x ,y =cos x ,y =tan x 的性质研究其相关性质.易错点8 解三角形时忽略角的取值范围致误在ABC △中,若3C B =,则cb的取值范围为 A .(0,3) B .(1,3) C .(0,3]D .(1,3]【错解】选A. 由正弦定理,可得2222sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin 0cos 1,14cos 13,0,0,0 3.c C B B B B B B B B b B B BcB B b c b+===+=-≤<∴-≤-<>><<,由可得【错因分析】错解中没有考虑角B 的取值范围,误认为角B 的取值范围为()0,180︒︒. 【试题解析】由正弦定理可得222sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin 180,3,045,cos 1,214cos 13,1 3.c C B B B B B B B B b B B B A B C C B B B c B b+===+=-++=︒=∴︒<<︒<<∴<-<<<,即【参考答案】B1.利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置. (2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. 2.常见结论:(1)三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C+=-等. (2)三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sincos 22A B C +=; cos sin 22A B C+=.8.在ABC △中,内角,,A B C 的对边分别为,,a b c ,且60b c C ===︒,则角B = A .45︒B .30C .45︒或135︒D .30或150︒【答案】A【解析】由正弦定理得sin sin b c B C=,得sin B =sinB = 又b <c ,∴B <C ,∴B =45°, 故选:A .【名师点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.一、三角函数的基本概念、同角三角函数的基本关系与诱导公式 1.角的有关概念(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎧⎨⎩按旋转方向不同分为正角、负角、零角按终边位置不同分为象限角和轴线角. (3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合·3{,|60S k ββα==+︒ }k ∈Z .终边与坐标轴重合的角的集合为π,2k k αα⎧⎫=∈⎨⎬⎩⎭Z . 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式lrα=(弧长用l 表示)角度与弧度的换算180π180πrad ,1rad =57.3,1=rad π180⎛⎫︒=︒≈︒︒ ⎪⎝⎭弧长公式 弧长l r α=扇形面积公式21122S lr r α==3.任意角的三角函数(1)定义:设α是一个任意角,它的顶点与原点重合,始边与x 轴非负半轴重合,点(),P x y 是角α的终边上任意一点,P 到原点的距离()0OP r r =>,那么角α的正弦、余弦、正切分别是sin ,cos ,tan y x yr r xααα===. (2)三角函数值在各象限内的符号:(3)各象限内的三角函数线如下: 角所在的象限第一象限第二象限第三象限第四象限图形(4)特殊角的三角函数值:4.同角三角函数的基本关系式(1)平方关系:22sin cos 1αα+=. (2)商的关系:sin cos tan ααα=. 5.三角函数的诱导公式 二、三角函数的图象与性质1.正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质2.函数sin()y A x ωϕ=+的图象与性质(1)图象变换:由函数sin y x =的图象通过变换得到sin()y A x ωϕ=+(A >0,ω>0)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.如下图.由此可得五个关键点;③描点画图,再利用函数的周期性把所得简图向左右分别扩展,从而得到sin()y A x ωϕ=+的简图.(2)函数sin()y A x ωϕ=+(A >0,ω>0)的性质:①奇偶性:=k ϕπ时,函数sin()y A x ωϕ=+为奇函数;=2k ϕππ+时,函数sin()y A x ωϕ=+为偶函数.②周期性:sin()y A x ωϕ=+存在周期性,其最小正周期为T =2ωπ.③单调性:根据y =sin t和t =x ωϕ+的单调性来研究,由+22,22k x k k ωϕππ-π≤+≤+π∈Z 得单调增区间;由+22,22k x k k ωϕπ3ππ≤+≤+π∈Z 得单调减区间. ④对称性:利用y =sin x 的对称中心为(,0)()k k π∈Z 求解,令x k k ωϕ+=π(∈)Ζ,求得x .利用y =sin x 的对称轴为()2x k k π=π+∈Z 求解,令+2x k k ωϕπ+=π(∈)Ζ,得其对称轴.三、三角恒等变换1.两角和与差的正弦、余弦、正切公式(1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ-(5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z2.二倍角公式(1)2S α:sin2α=2sin cos αα(2)2C α:cos2α=2222cos sin 12sin 2cos 1αααα-=-=- (3)2T α:tan 2α=22tan πππ(π,)k k k ααα≠+≠+∈Z 且)(1tan tan αtan tan tan()αβαβ--α;2cos α3.半角公式(1)sin2α=(2)cos2α=(3)tan2α=sin 1cos 1cos sin αααα-==+此公式不用死记硬背,可由二倍角公式推导而来,如下图:四、正、余弦定理及解三角形 1.正弦定理(1)内容:在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c==A B C.正弦定理对任意三角形都成立. (2)常见变形: ①sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c====== ②;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++③::sin :sin :sin ;a b c A B C = ④正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径.1.正弦定理解决的问题(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 2.在ABC △中,已知a ,b 和A 时,三角形解的情况2.余弦定理(1)内容:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,(2)从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===.21.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B 5C 3D 5【答案】B【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin α∴=B . 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案. 2.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79 C .79-D .89-【答案】B【解析】2217cos 212sin 12()39αα=-=-⨯=. 故选B.【名师点睛】本题主要考查三角函数的求值,考查考生的运算求解能力,考查的核心素养是数学运算.3.【2018年高考全国Ⅱ理数】在ABC △中,cos 25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,25C C =-=⨯-=-⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.4.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C.【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算. 5.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D .【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得2sin cos ++x xx x()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.6.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2A .①②④B .②④C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确. 当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误. 当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x=;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.7.在ABC △中,角A ,B ,C 的对边分别为,,.若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是A .B .C .2A B =D .2B A =【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.8.已知角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点(1)P ,则cos2=αA.3B .13 C .13-D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,所以cos ==α, 因此21cos 22cos 13=-=αα.故选B. 【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P ,求出cos α,再由二倍角公式,即可得出结果.9.设α为锐角,若cos (π+6α)=45,则sin π(2+)3α的值为a b c 2a b =2b a =2a b =A .B .C .2425- D .1225-【答案】B【解析】因为α为锐角,且πcos()6+α=45,所以π3sin()65+==α,所以ππππ3424sin(2)sin 2()2sin()cos()236665525+=+=++=⨯⨯=αααα,故选B.10.已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x =A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +【答案】C【解析】由函数π()sin()(0)6f x x =+>ωω的相邻对称轴之间的距离为π2,得π22T =,即πT =,所以2ππ=ω,解得2=ω,将函数π()sin(2)6f x x =+的图象向左平移π6个单位, 得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象,故选C . 【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.11.已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为25122425A .π12B .π6 C .π4D .π3【答案】B【解析】由图象易知,2A =,(0)1f =,即2sin 1=ϕ,且π2<ϕ,即6π=ϕ, 由图可知,11π()0,12f =所以11ππ11ππsin()0,π,126126k k ⋅+=∴⋅+=∈Z ωω,即122,11k k -=∈Z ω, 又由图可知,周期11π2π11π24,121211T >⇒>∴<ωω,且0>ω, 所以由五点作图法可知2,2k ==ω, 所以函数π()2sin(2)6f x x =+,因为()()0f a x f a x +--=,所以函数()f x 关于x a =对称,即有ππ2π,62a k k +=+∈Z ,所以可得ππ,26k a k =+∈Z , 所以a 的最小正值为π6.故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出,,A ϕω,可得函数()f x 的解析式,再由()()0f a x f a x +--=易知()f x 的图象关于x a =对称,即可求得a 的值.12.在ABC △中,角,,A B C 的对边分别为,,a b c ,若22sin sin sin ,65b B c C a A ac b -==,B .D .10-【答案】D【解析】由正弦定理角化边可得:2222222,2b c a a c b -=∴+=,且2523ac b =, 结合余弦定理有:22222223cos 5253a cb b b B ac b +--===,则4sin 5B ==,本题选择D 选项. 13.已知,,则__________. 【答案】 【解析】因为,,所以()()()()2222111sin cos 1,1cos sin 1,sin ,cos 22ααββαβ-+-=-+-=∴==, 因此【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角. 14.已知π02αβ<<<,且1cos tan sin βαβ-=,则πsin 26βα⎡⎤⎛⎫-+=⎪⎢⎥⎝⎭⎣⎦__________.【答案】2-【解析】由题意有sin 1cos cos sin αβαβ-=,得()cos cos βαα-=, 由π02βα<-<,π02α<<,有βαα-=,得2βα=,则ππsin 2sin 632βα⎡⎤⎛⎫⎛⎫-+=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 【名师点睛】本题主要考查了三角函数的化简求值问题,其中熟记三角函数的基本关系式,合理化简,求得2βα=,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.由题意,根据三角函数的基本关系式,化简得()cos cos βαα-=,进而可得2βα=,代入即可求解.15.已知函数()()sin (,,00)f x A x A A ωφωφω=+>>为常数,,的部分图象如下图所示,将()f x 的图象向左平移π3个单位长度,得到函数()g x ,则()π,0,2y g x x ⎡⎤=∈⎢⎥⎣⎦的单调递减区间为_________.【答案】π04⎡⎤⎢⎥⎣⎦,【解析】由函数()y f x =的图象可得7ππ2,4π123A T ⎛⎫==-= ⎪⎝⎭,∴2π2πω==,∴()()2sin 2f x x φ=+, 又根据“五点法”可得π2π3φ⨯+=,∴π3φ=, ∴()π2sin 23f x x ⎛⎫=+⎪⎝⎭,。
高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题附答案
【高中数学】数学《三角函数与解三角形》高考知识点(1)一、选择题1.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( )A .①②③B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确; ∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形C .等腰三角形D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u,2a =,则bc +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又2a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得130(120150)sin(30)(,22o o o o B B +∈∴+∈,330))22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.6.在ABC ∆中,若sin :sin :sin 2:3:4A B C =,则ABC ∆是( ) A .直角三角形 B .钝角三角形C .锐角三角形D .等腰直角三角形【答案】B 【解析】 【分析】由题意利用正弦定理,推出a ,b ,c 的关系,然后利用余弦定理求出cosC 的值,即可得解. 【详解】∵sinA :sinB :sinC=2:3:4∴由正弦定理可得:a :b :c=2:3:4, ∴不妨令a=2x ,b=3x ,c=4x ,∴由余弦定理:c 2=a 2+b 2﹣2abcosC ,所以cosC=2222a b cab+-=2224916223x x x x x +-⨯⨯=﹣14, ∵0<C <π, ∴C 为钝角. 故选B . 【点睛】本题是基础题,考查正弦定理,余弦定理的应用,考查计算能力,常考题型.7.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .5-B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.8.△ABC 中,已知tanA =13,tanB =12,则∠C 等于( )A .30°B .45°C .60°D .135°【答案】D 【解析】 【分析】利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】在△ABC 中,11tan tan 32tan tan()tan(+)=-1111tan tan 132A BC A B A B A B π++=--=-=-=---⋅,所以135C ?o .故选:D. 【点睛】本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.9.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值. 【详解】因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.10.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a b A B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.11.函数y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图象是( ) A .B .C .D .【答案】B 【解析】 【分析】首先根据二倍角余弦公式化简得到函数的解析式,再由函数表达式得到函数的单调性和周期,进而得到选项. 【详解】根据两角和差公式展开得到: y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22πππcos sin cos 2424x x x ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝=⎝⎭⎭=-sin2x ,函数在0的右侧是单调递减的,且周期为π,故选B. 故答案选B . 【点睛】这个题目考查了三角函数的恒等变换,题型为已知函数表达式选择函数的图像,这种题目,一般是先根据函数的表达式得到函数的定义域,或者值域,进行排除;也可以根据函数的表达式判断函数的单调性,周期性等,之后结合选项选择.12.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C 3D .22【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 22111cos 222223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.13.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )ABCD【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u rsin 2OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭=则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 93555OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.14.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案. 【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.15.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =,综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦.故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.16.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( ) A .152km B .30kmC .15kmD .153km【答案】D 【解析】 【分析】如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离. 【详解】设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,可得60DBC ∠=︒,30ABD ∠=︒,45BC =30ABC ∴∠=︒,120BAC ∠=︒在三角形ABC 中,利用正弦定理可得:sin sin AC BCABC BAC=∠∠,可得sin 1153sin 23BC ABC AC km BAC ∠===∠ 故选D 【点睛】本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.17.已知函数()3)(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是()A .2(23k -,42)3k +,k Z ∈ B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈ D .2(43k ππ-,44)3k ππ+,k Z ∈【答案】C 【解析】 【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可.【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=.再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-,令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C . 【点睛】本题考查了三角函数图像的性质及单调性,属中档题.18.4cos2d cos sin xx x xπ=+⎰( )A .1)B 1C 1D .2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调递减 D .3f x π⎛⎫+⎪⎝⎭的一个零点为6x π=【答案】D 【解析】 【分析】先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6x π=代入 3f x π⎛⎫+ ⎪⎝⎭判断D .【详解】()sin f x x x = 23sin x π⎛⎫=+ ⎪⎝⎭,()f x 周期22,1T A ππ==正确; ()f x 的最大值为2,B 正确,25,,,63326x x πππππ⎛⎫⎛⎫∈∴+∈ ⎪⎪⎝⎭⎝⎭Q , ()f x ∴在2,63ππ⎛⎫⎪⎝⎭上递减,C 正确; 6x π=时,1032f x f ππ⎛⎫⎛⎫+==≠ ⎪ ⎪⎝⎭⎝⎭,6x π=不是3f x π⎛⎫+⎪⎝⎭的零点,D 不正确. 故选D. 【点睛】本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.20.关于函数()()()sin tan cos tan f x x x =-有下述四个结论: ①()f x 是奇函数; ②()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增; ③π是()f x 的周期; ④()f x 的最大值为2.其中所有正确结论的个数是( ) A .4 B .3C .2D .1【答案】C 【解析】 【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案. 【详解】()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误;当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=,所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C . 【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.。
三角函数的易错题专题及答案
三角函数的易错题专题及答案三角函数易错题专题一、选择题1.___α的终边落在直线x+y=0上,则sinα1-cos2α的值等于( )解析:由于终边在直线x+y=0上,所以sinα=-cosα,代入原式得:-cosα-cos2α。
再利用余弦的半角公式cos2α=2cos^2α-1,得到原式化简为-2cos^2α-cosα。
选项B。
2.将函数y=sin2x的图像向右平移π/4个单位,得到的解析式为( )解析:向右平移π/4个单位相当于将原来的自变量x替换成x-π/8,所以新的解析式为y=sin2(x-π/8)。
根据正弦的平移公式sin(x-π/8)=sinxcos(π/8)-cosxsin(π/8)=cos(π/8)sinx-sin(π/8)cosx,所以新的解析式为y=cos(π/8)sin2x-sin(π/8)cos2x。
选项D。
3.在△ABC中,锐角A满足sin4A-cos4A≤sinA-cosA,则( )解析:利用正弦的平方和余弦的平方公式,将不等式右边化简为2sin^2A-2sinAcosA,左边化简为2sin^2A-2cos^2A。
所以原不等式化简为sin^2A+2cos^2A-2sinAcosA≤0,即(sinA-cosA)^2≤0,只有当sinA=cosA时等号成立。
所以A=π/4,选项B。
4.在△ABC中,角A,B,C的对边分别为a,b,c,且a=1,A=60°,若三角形有两解,则b的取值范围为( )解析:根据正弦定理a/sinA=b/sinB=c/sinC,代入数据得sinB=√3/2,所以B=π/3或5π/3.由于三角形有两解,所以B的取值范围为(π/3,π)∪(5π/3,2π),即选项D。
5.将函数y=3sin(2x+π/7)的图像向右平移1/2个单位长度,得到的图像对应的函数( )解析:向右平移1/2个单位相当于将原来的自变量x替换成x-1/4,所以新的解析式为y=3sin(2(x-1/4)+π/7)。
专题04 三角函数 备战2021年新高考数学清除易错点(教师版)
易错04 三角函数易错点1 定义求参忽略正负【例1】(2020·云南省玉溪)已知角α的终边过点()2,8P m-,且3cos 5α=,则tan α的值为 A .34B .C .43-D .【答案】43【解析】由题得3cos 5α==,解得3m =±,因为3cos 5α=为正数,所以m>0,则m=3,所以点()6,8P ,所以84tan 63α==. 【举一反三】1.(2020·全国高三二模(文))已知O 为坐标原点,角α的终边经过点(3,)(0)P m m <且sin 10m α=,则sin 2α= 。
【答案】35【解析】根据题意,sin 10m α==,解得1m =-,所以(3,1)OP =-,所以sin ,cos 1010αα=-=,所以3sin 22sin cos 5ααα==-. 2.(2020·山东潍坊·高考模拟)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,且3cos 5θ=-,若点(,8)M x 是角θ终边上一点,则x = . 【答案】-6【解析】由任意角的三角函数的定义可得3cos 5xrθ===-,解得6x =-3.(2020·全国)若α是第二象限角,其终边上一点(P x,且cos 4x α=,则sin α的值是【解析】由三角函数的定义得cos 4x x rα===,解得x =0或x或x. ∵α是第二象限角即x<0,可得x所以sin y r α===易错点2 诱导公式“符号”理解有误【例2】(2020·江苏省南通中学)已知角α终边上一点()43P ,-,求()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭的值.【答案】34-【解析】原式sin sin tan sin cos ααααα-⋅==-⋅.根据三角函数的定义,得3tan 4y x α==-,所以原式34=-.【举一反三】1.(2020·全国高三其他(理))已知点()3,4P 在角α的终边上,则5cos 2απ⎛⎫+ ⎪⎝⎭的值为 A .35B .35C .45D .【答案】45-【解析】点()3,4P 在角α的终边上,∴4sin 5α==∴54cos sin 25ααπ⎛⎫+=-=- ⎪⎝⎭. 2.(2020·湖北宜昌·高三一模(理))在平面直角坐标系xOy 中,已知角θ的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线2y x =上,则3sin 22πθ⎛⎫+= ⎪⎝⎭【答案】35【解析】因为222222223sin cos tan 1sin 2cos 2sin cos 2sin cos tan 1πθθθθθθθθθθ--⎛⎫+=-=-== ⎪++⎝⎭,且tan 2θ=, 所以3413sin 22415πθ-⎛⎫+==⎪+⎝⎭.3.(2020·乐平市第一中学高三其他(理))若3cos sin 4αα-=,则3cos 22πα⎛⎫+=⎪⎝⎭【答案】716【解析】23997cos sin (cos sin )1sin 2,sin 24161616αααααα-=∴-=∴-==37cos 2sin 2216παα⎛⎫∴+== ⎪⎝⎭易错点3 含有绝对值的周期【例3】(2020·广西南宁三中高三)下列函数中,以2π为周期且在区间3,24ππ⎛⎫⎪⎝⎭上单调递减的是( )A .()cos 2f x x =B .()sin 2f x x =C .()2sin cos f x x x =D .()22sin 1f x x =-【答案】D【解析】A: ()cos 2cos2f x x x ==,周期为π,排除; B: ()sin 2f x x =,不具有周期性,排除; C: ()2sin cos sin 2f x x x x ==,周期为2π,在区间3,24ππ⎛⎫⎪⎝⎭上单调递增,排除; D: ()22sin 1cos 2f x x x =-=,周期为2π,在区间3,24ππ⎛⎫⎪⎝⎭上单调递减故选D【举一反三】1.(2020·怀仁县大地学校月考)函数tan y x =周期为( ) A .2πB .2πC .πD .3π【答案】C【解析】函数tan y x =的最小正周期就是函数tan y x =的最小正周期为π, 2.(2020·辽宁)下列函数中,周期为2π的偶函数是( ) A .tan y x = B .2cos 2y x = C .2tan 1tan xy x=- D .sin 2cos 2y x x =-【答案】B【解析】∵函数tan y x =的周期,即tan y x =的周期,为π,故排除A ;函数21cos 4cos 22x y x +==的周期为242ππ=,且函数为偶函数,故B 满足条件; 函数2tan 1tan 21tan 2x y x x ==⋅-,它的周期为2π,但该函数为奇函数,故C 不满足条件; 函数sin 2y x =的周期为22ππ=,故D 不满足条件,故选:B . 3.(2020·广西贺州·高二月考)下列函数中,周期为π,且在02,上单调递增的是( )A .y =tan|x |B .y =|tan x |C .y =sin|x |D .y =|cos x |【答案】B【解析】函数tan y x =不是周期函数,函数tan y x =周期为π,且在(0,)2π上单调递增,所以选B.4.(多选)(2020·江苏省如皋中学月考)若函数()()sin f x x ω=的最小正周期为4π,则ω的值可能是( ) A .2 B .12C .12-D .-2【答案】BC【解析】因为函数()()sin f x x ω=的最小正周期为4π所以221||42T ππωπ===, 12ω=±故选:BC . 5.(多选)(2020·湖南省衡阳县第四中学高三月考)在下列函数中,最小正周期为π的所有函数为( )A .sin 2y x =B .cos y x =C .cos 26y x π⎛⎫=+ ⎪⎝⎭D .tan 24y x π⎛⎫=-⎪⎝⎭【答案】ABC 【解析】对于A ,2T ππω==,对于B ,cos y x =的周期是2π,cos y x =的图像是把cos y x =的图像的x 轴下方部分关于x 轴对称,周期减半,故cos y x =的周期是π,对于C ,2T ππω==,对于D ,2ππT ω==,故选:ABC. 易错点4 对称中心【例4】(2020·吉林高三其他(文))若函数44()sin cos f x x x =+,则此函数的图象的对称中心为( )A .(44k ππ+,3)()4k Z ∈B .(44k ππ+,0)()k Z ∈C .(84k ππ+,3)()4k Z ∈D .(84k ππ+,0)()k Z ∈【答案】C【解析】44()sin cos f x x x =+22222(sin cos )2sin cos x x x x =+- 11cos 4311cos 42244x x -=-⨯=+,令42x k ππ=+,k Z ∈,可得84k x ππ=+,k Z ∈,故此函数的图象的对称中心为(84k ππ+,3)4k Z ∈.故选:C .【举一反三】1.(2020·江西南昌二中高三月考(理))若将函数πsin 213y x ⎛⎫=-+ ⎪⎝⎭的图象向右平移π6个单位长度后,所得图象的一个对称中心为( )A .π,04⎛⎫⎪⎝⎭B .π,14⎛⎫⎪⎝⎭C .π,03⎛⎫⎪⎝⎭D .π,13⎛⎫⎪⎝⎭【答案】D【解析】πsin 213y x ⎛⎫=-+ ⎪⎝⎭的图象向右平移π6个单位长度后得到的函数为π2sin 21sin 21633y x x ππ⎡⎤⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 令22()3x k k Z ππ-=∈,则()32k x k Z ππ=+∈. 所以,所得图象的对称中心为,1()32k k Z ππ⎛⎫+∈⎪⎝⎭. 当0k =时,所得图象的一个对称中心为,13π⎛⎫⎪⎝⎭.故选:D. 易错点5 单调区间【例5】(2020·全国高三课时练习)函数12sin 6y x π⎛⎫=+-⎪⎝⎭的单调递增区间是____. 【答案】()252,233k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z【解析】12sin 12sin 66y x x ππ⎛⎫⎛⎫=+-=--⎪ ⎪⎝⎭⎝⎭.令6u x π=-,根据复合函数的单调性知,所给函数的单调递增区间就是sin y u =的单调递减区间 解226k x πππ+-()322k k ππ+∈Z ,得()252233k x k k ππππ++∈Z , 故函数12sin 6y x π⎛⎫=+-⎪⎝⎭的单调递增区间是()252,233k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .答案:()252,233k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z【举一反三】1.(2020·湘乡市第二中学)函数tan 23x y π⎛⎫=+⎪⎝⎭的单调递增区间是( ) A .()242,233k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭B .()52,233k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .()244,433k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D .()5,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】解不等式()2232x k k k Z πππππ-<+<+∈,可得()52233k x k k Z ππππ-<<+∈, 因此,函数tan 23x y π⎛⎫=+⎪⎝⎭的单调递增区间是()52,233k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B.2.函数π()cos 2([0,π]2f x x x ⎛⎫=-∈ ⎪⎝⎭)的单调减区间为 .【答案】π3π,44⎡⎤⎢⎥⎣⎦【解析】()cos 2sin 22f x x x π⎛⎫=-= ⎪⎝⎭,又[0,]x π∈,2[0,2]x π∴∈;又sin y x =在[0,2]π上的单调递减区间为:3,22ππ⎡⎤⎢⎥⎣⎦∴由3222x ππ≤≤得,344ππ≤≤x ;()sin 2,[0,]f x x x π∴=∈的单调减区间为3,44ππ⎡⎤⎢⎥⎣⎦.故答案为3,44ππ⎡⎤⎢⎥⎣⎦.3.(2020·陕西省商丹高新学校)函数cos 2y x π⎛⎫=-⎪⎝⎭的单调增区间是________. 【答案】2,222k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈【解析】因为cos sin 2y x x π⎛⎫=-=⎪⎝⎭,所以cos 2y x π⎛⎫=- ⎪⎝⎭的单调增区间是2,222k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈.易错点6 函数的伸缩平移【例6】(2020·湖南月考)已知曲线12:sin 2,:cos 3C y x C y x π⎛⎫=-= ⎪⎝⎭,则下面结论正确的是( ) A .先将曲线2C 向左平移3π个单位长度,再把所得的曲线上各点横坐标缩短为原来的12倍,纵坐标保持不变,便得到曲线1C B .先将曲线2C 向右平移3π个单位长度,再把所得的曲线上各点横坐标伸长为原来的2倍,纵坐标保持不变,便得到曲线1C C .先将曲线2C 向左平移56π个单位长度,再把所得的曲线上各点横坐标伸长为原来的2倍,纵坐标保持不变,便得到曲线1C D .先将曲线2C 向右平移56π个单位长度,再把所得的曲线上各点横坐标缩短为原来的12倍,纵坐标保持不变,便得到曲线1C 【答案】D【解析】A. 先将曲线2C 向左平移3π个单位长度得到cos +3y x π⎛⎫= ⎪⎝⎭,再把所得的曲线上各点横坐标缩短为原来的12倍得到5cos 2+=sin 2sin 23326y x x x ππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,错误;B. 先将曲线2C 向右平移3π个单位长度得到cos 3y x π⎛⎫=- ⎪⎝⎭,再把所得的曲线上各点横坐标伸长为原来的2倍1cos 23y x π⎛⎫=-⎪⎝⎭,不合题意;C. 先将曲线2C 向左平移56π个单位长度的得到5cos +6y x π⎛⎫= ⎪⎝⎭,再把所得的曲线上各点横坐标伸长为原来的2倍得15cos +26y x π⎛⎫=⎪⎝⎭,不合题意; D. 先将曲线2C 向右平移56π个单位长度得到5cos 6y x π⎛⎫=- ⎪⎝⎭,再把所得的曲线上各点横坐标缩短为原来的12倍得55cos 2=sin 2sin 26623y x x x ππππ⎛⎫⎛⎫⎛⎫=--+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得到曲线1C 故选:D.【举一反三】1.(2020·湖南学业考试)要得到函数y =1+sin x 的图象,只需将函数y =sin x 的图象( ) A .向上平移1个单位长度 B .向下平移1个单位长度 C .向右平移1个单位长度 D .向左平移1个单位长度【答案】A【解析】根据“左加右减,上加下减”的原则,将函数y =sin x 的图象向上平移1个单位可得y =1+sin x 的图象,故选:A.【易错总结】纵坐标的变化:A 、B横坐标的变化:w 、φ2.(2020·重庆八中高三月考)已知函数()sin()(0,0)2f x x πωϕωϕ=+><<的图象经过点(,0)6B π-,且()f x 的相邻两个零点的距离为2π,为得到()y f x =的图象,可将cos y x =图象上所有点( ) A .先向右平移6π个单位长度,再将所得点的横坐标变为原来的12,纵坐标不变 B .先向右平移12π个单位长度,再将所得点的横坐标变为原来的12,纵坐标不变 C .先向右平移6π个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变 D .先向右平移12π个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变【答案】A【解析】由题意可知,22T ππ=⨯=,22πωπ==,∵sin[2]06πϕ⎛⎫⋅-+= ⎪⎝⎭,∴3k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,可得:()2cos 236f x sin x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,∴将cos y x =的图象先向右平移6π个单位长度,再将所得点的横坐标变为原来的12倍,纵坐标不变,得到()y f x =的图象,故选A.3.(2020·利辛县阚疃金石中学)若将函数()y f x =的整个图象沿x 轴向左平移8π个单位,再将所得图象上每一点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象沿y 轴向下平移1个单位,得到函数1sin 2y x =的图象,则()y f x =解析式是( )A .y =1sin(2)122x π++ B .y =1sin(2)122x π-+ C .y =1sin(2)124x π++ D .y =1sin(2)124x π-+ 【答案】D【解析】由函数1sin 2y x =的图象沿y 轴向上平移1个单位得到1sin 12y x =+, 再将图象上每一点的横坐标缩为原来的12(纵坐标不变)得到1sin 212y x =+,再将整个图象沿x 轴向右平移8π个单位得到()1sin 2124f x x π⎛⎫=-+ ⎪⎝⎭.故选:D4.(2020·安徽安庆·高三月考(理))已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C 【答案】C【解析】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象, 再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C . 易错点7 正弦定理大边对大角【例7】(2020·北京期末)在ABC 中,3A π∠=,3BC =,AB =C ∠=( )A .3πB .3π或23π C .4πD .4π或34π【答案】C【解析】由正弦定理sin sin BC AB A C =,即3sin sin 3C π=,∴sin 2C =. ∴4Cπ(34C π=时,三角形内角和大于π,不合题意舍去).故选:C . 【举一反三】1.(2020·湖北宜昌市一中)在ABC ∆中,若03,30a b A ===,则B 等于( ) A .030 B .030或0150C .060或0120D .060【答案】C【解析】由正弦定理得sin sin a b A B =,即312∴∴B=60°或B=120°.故选:C .2.(2019·江苏南京)在ABC ∆中,已知1a =,60A =︒,c =,则角C 的度数为( ). A .30︒ B .60︒C .30150︒︒或D .60120︒︒或【答案】A【解析】由正弦定理sin sin a c A C =得:sin 1sin 2c A C a === c a < C A∴<()0,C π∈ 30C ∴=本题正确选项:A易错点8 解三角函数不等式【例8】(2020·甘肃省岷县第一中学)若点(),P sin cos tan ααα-在第一象限, 则在[0,2)π内α的取值范围是( ). A .5,,424ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .35,,244ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C .353,,2442ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭D .33,,244ππππ⎛⎫⎛⎫⋃⎪⎪⎝⎭⎝⎭【答案】A【解析】点(),P sin cos tan ααα-在第一象限,sin cos 0,tan 0.ααα->⎧⇒⎨>⎩sin cos ,tan 0.ααα>⎧⇒⎨>⎩,如下图所示:在[)0,2π内α的取值范围是5,,424ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭,本题选A.【举一反三】1.(2020·辽宁期中)不等式tan x ≥ ) A .{|,}32x k x k k Z ππππ-+≤≤+∈ B .{|,}32x k x k k Z ππππ-+≤<+∈ C .{|22,}32x k x k k Z ππππ-+≤≤+∈D .{|22,}32x k x k k Z ππππ-+≤<+∈【答案】B【解析】因为tan x ≥tan y x =的图象可得{|,}32x k x k k Z ππππ-+≤<+∈,故选:B.2.(2020·河南洛阳·)满足tan cos sin ααα<<的α一个可能值为( ). A .π12B .3π8C .9π16D .13π12【答案】C 【解析】当12πα=时,coscos124ππ>=,sin sin 124ππ<=cos sin αα<,所以A 选项错误; 当38πα=时,3tan tan 184ππ>=,3cos 18π<,不满足tan cos αα<,所以B 选项错误;当916πα=时,93tantan 1164ππ<<-,91cos 016π-<<,9sin 016π>,满足tan cos sin ααα<<,所以C 选项正确; 当1312πα=时,135cos cos 1242ππ<=-,135sin sin 1242ππ>=-,不满足cos sin αα<,所以D 选项错误. 故选:C.3.(2020·福建三明一中)y =____________________【答案】[2,2]33k k k Z ππππ-+∈【解析】12cos 10,cos ,22,233x x k x k k Z ππππ-≥≥-≤≤+∈即定义域为[2,2]33k k k Z ππππ-+∈4.(2020·江西宜春·)函数y =lg(2sin x -1)__________________. 【答案】()52,236k k Z k ππππ⎡⎫++⎪⎢⎭∈⎣【解析】要使原函数有意义,必须有2sin 1012cos 0x x ->⎧⎨-⎩即1sin 21cos 2x x⎧>⎪⎪⎨⎪⎪⎩,如图,在单位圆中作出相应的三角函数线,由图可知,解集为()()522,66522,33k x k k Z k x k k Z ππππππππ⎧+<<+∈⎪⎪⎨⎪+≤≤+∈⎪⎩,取交集可得 原函数的定义域为()52,236k k Z k ππππ⎡⎫++⎪⎢⎭∈⎣故答案为:()52,236k k Z k ππππ⎡⎫++⎪⎢⎭∈⎣1.(2020·河南高三其他(理))若角α的终边过点8,6cos ()60P m --,且4cos 5α=-则实数m 的值为( ) A .12-B .C .12D 【答案】C【解析】6cos603-=-,则点P 的坐标为(8,3)P m --, 因为4cos 5a =-.所以角a 的终边在第二象限或第三象限,故0m >. 45=-,即214m =,解得12m =-(舍)或12m =.故选:C . 2.(2019·黑龙江哈尔滨市第六中学校高三其他(理))在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x 轴正半轴,终边与单位圆交于点5P m ⎛⎫ ⎪⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( ) A .10B C .10D 【答案】A【解析】由题可知:2215m ⎛+= ⎝⎭,又θ为锐角所以0m >,m = 根据三角函数的定义:255sin ,cos θθ 所以4sin 22sin cos 5θθθ==223cos 2cos sin 5θθθ=-=-由sin 2sin 2cos cos 2sin 444πππθθθ⎛⎫+=+ ⎪⎝⎭所以43sin 24525210πθ⎛⎫+=⨯-⨯= ⎪⎝⎭ 故选:A3.(2020·辽宁辽阳·高三三模(文))已知()1,P m 为角α终边上一点,且1tan 43πα⎛⎫-= ⎪⎝⎭,则cos2=α______. 【答案】35【解析】因为()1,P m 为角α终边上一点所以tan m α=因为1tan 43πα⎛⎫-= ⎪⎝⎭,所以tan tan14tan 431tan tan 4παπαπα-⎛⎫-== ⎪⎝⎭+,即1113m m -=+解得2m =所以cos α=,23cos 22cos 15αα=-=-故答案为:354.(2020·上海市南洋模范中学)已知点((0)P t t ≠是角α其终边上一点,若cos 4t α=,则sin α=______【解析】|OP|=cosα4==,解得t. ∴sinα4===. 5.(2019·临川二中实验学校)已知α是第三象限角,其终边上一点(,P x ,且2cos 3α=-,则x 的值为________. 【答案】-2【解析】因为2cos 03α==-< ,所以-2x =,故答案为2x =- 6.(2020·上海浦东新·华师大二附中)如果sin 3α=-,α为第三象限角,则3sin 2πα⎛⎫+= ⎪⎝⎭________.【答案】13【解析】由sin α=,α为第三象限角,有1cos 3α==-.由诱导公式可得3sin cos 2παα⎛⎫+=- ⎪⎝⎭所以31sin 23πα⎛⎫+= ⎪⎝⎭故答案为:137.(2019·哈尔滨市第一中学校高三开学考试(文))已知函数:①tan y x =,②sin y x =,③sin y x =,④cos y x =,其中周期为π,且在π0,2⎛⎫⎪⎝⎭上单调递增的是( )A .①②B .①③C .①②③D .①③④【答案】B【解析】对于①tan y x =周期为π,由正切函数的图象可得在π0,2⎛⎫⎪⎝⎭上单调递增,所以①正确;对于②sin y x =为偶函数,根据图象判断它不是周期函数,所以②不正确; 对于③由于函数sin y x =周期为122ππ⋅=,利用正弦函数的图象可得在π0,2⎛⎫⎪⎝⎭上单调递增,故③正确;对于④cos y x =的周期为π,利用余弦函数的图象可得在π0,2⎛⎫⎪⎝⎭上单调递减,故④不正确;故选:B.8.(2020·湖北武汉·)给出下列函数:①=2y cos x ,②=y cos x ,③sin(22)y x π=+),④=y tan x ,其中周期为π的所有偶函数为( ) A .①② B .①②③C .②④D .①③【答案】D【解析】①=2=2y cos x cos x ,是偶函数,周期T 22π==π,满足条件 ②==y cos x cosx ,是偶函数,周期=2T π,不满足条件 ③sin(2)=cos 22y x x π=+,是偶函数,周期T 22π==π,满足条件 ④=y tan x 是偶函数,但不是周期函数,不满足条件.故选:D .9.(2020·湖南怀化·高三三模(理))函数()tan()3π=+f x x 的最小正周期是( )A .2πB .4π C .πD .2π【答案】C【解析】因为()tan()3π=+f x x 的图像为tan y x =向左移动3π个单位,再将x 轴下方的部分往上翻折所得.故最小正周期与tan y x =相同为π.故选:C10.(2020·台州市书生中学高一开学考试)在下列函数①sin 26y x π⎛⎫=+⎪⎝⎭② sin 4y x π⎛⎫=+⎪⎝⎭③cos 2y x = ④tan 24y x π⎛⎫=-⎪⎝⎭⑤tan y x = ⑥sin y x =中周期为π的函数的个数为 ( )A .3个B .4个C .5个D .6个【答案】C【解析】①sin 26y x π⎛⎫=+⎪⎝⎭最小正周期为22ππ=.正确. ②因为sin sin sin 444x x x ππππ⎛⎫⎛⎫⎛⎫++=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.正确. ③cos 2cos2y x x ==,最小正周期为22ππ=.正确. ④tan 24y x π⎛⎫=-⎪⎝⎭最小正周期为2π,故周期为π成立.正确. ⑤()tan tan tan x x x π+=-=故周期为π.正确. ⑥sin y x =为偶函数且无周期.错误.故选:C 11.(2019·广东中山一中)函数2sin 23y x π⎛⎫=-⎪⎝⎭的单调递增区间为_____________ 【答案】()511+,1212k k k Z ππππ⎡⎤+∈⎢⎥⎣⎦【解析】2sin 22sin 233y x x ππ⎛⎫⎛⎫=-=--⎪ ⎪⎝⎭⎝⎭当()322,2322x k k k Z πππππ⎡⎤-∈++∈⎢⎥⎣⎦时,函数单调递增 解得:()511,1212x k k k Z ππππ⎡⎤∈++∈⎢⎥⎣⎦即2sin 23y x π⎛⎫=-⎪⎝⎭的单调递增区间为:()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦本题正确结果:()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦12.(2020·全国)求函数3tan 24y x π⎛⎫=- ⎪⎝⎭的单调区间 . 【答案】单调递减区间为3(,)2828k k ππππ-+,k Z ∈,无单调递增区间 【解析】3tan 23tan 244y x x ππ⎛⎫⎛⎫=-=--⎪ ⎪⎝⎭⎝⎭,令()2242k x k k Z πππππ-<-<+∈,解得:()32828k k x k Z ππππ-<<+∈, ∴3tan 24y x π⎛⎫=- ⎪⎝⎭的单调递减区间为3(,)2828k k ππππ-+,k Z ∈;无单调递增区间.13.(2020·全国)求函数tan 34y x π⎛⎫=-+⎪⎝⎭的单调区间 . 【答案】,()12343k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z 【解析】tan 3tan 344y x x ππ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭.由3()242k x k k πππππ-+<-<+∈Z ,得()12343k k x k ππππ-+<<+∈Z , 所以函数tan 34y x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为,()12343k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z . 14.(2020·广东广州·高三月考)函数()sin()f x x ωϕ=+(其中0>ω,02πϕ<≤)的图象如下图所示,为了得到sin y x =的图象,则需将()y f x =的图象( )A .横坐标缩短到原来的12,再向右平移4π个单位 B .横坐标缩短到原来的12,再向左平移8π个单位 C .横坐标伸长到原来的2倍,再向右平移4π个单位 D .横坐标伸长到原来的2倍,再向左平移8π个单位 【答案】C 【解析】由图可知,1732882T πππ=-=,所以T π=,故22T πω==, 故函数()()sin 2f x x ϕ=+,又函数图象经过点3,08π⎛⎫⎪⎝⎭,故有3sin 208πϕ⎛⎫⨯+= ⎪⎝⎭,即328k πϕπ⨯+=, 所以34k πϕπ=-(k Z ∈),又02πϕ<≤,所以4πϕ=, 所以()sin 24f x x π⎛⎫=+ ⎪⎝⎭,故将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭图象的横坐标伸长到原来的2倍得到4y sin x π⎛⎫=+ ⎪⎝⎭的图象,然后再向右平移4π个单位即可得到sin y x =的图象.故选:C . 15.(多选)(2020·福清西山学校高三月考)由函数()sin f x x =的图象得到函数()cos 23g x x π⎛⎫=-⎪⎝⎭的图象的过程中,下列表述正确的是( ) A .先将()sin f x x =的图象上各点的横坐标缩短到原来的12(纵坐标不变),再向左平移个12π单位长度 B .先将()sin f x x =的图象上各点的横坐标缩短到原来的12(纵坐标不变),再向左平移6π个单位长度C .先将()sin f x x =的图象向左平移6π个单位长度,再将图象上各点的横坐标缩短到原来的12(纵坐标不变)D .先将()sin f x x =的图象向左平移12π个单位长度,再将图象上各点的横坐标缩短到原来的12(纵坐标不变)【答案】AC 【解析】()cos 2cos 2sin 2336g x x x x πππ⎛⎫⎛⎫⎛⎫=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 方式一:先将()sin f x x =的横坐标缩短到原来的12(纵坐标不变),再向左平移12π个单位长度. 方式二:先将()sin f x x =的图象向左平移6π个单位长度,再将横坐标缩短到原来的12(纵坐标不变). 故选:AC16.(多选)(2020·福建省罗源第一中学高三月考)要得到函数cos y x =的图像,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图像上所有的点( ) A .先向右平移6π个单位长度,再将横坐标伸长到原来的12(纵坐标不变) B .先向左平移个12π单位长度,再将横坐标伸长到原来的2倍(纵坐标不变)C .横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位长度 D .横坐标伸长到原来的12(纵坐标不变),再向右平移3π个单位长度 【答案】BC 【解析】对于A ,sin 23y x π⎛⎫=+ ⎪⎝⎭,向右平移6π个单位长度(纵坐标不变), 可得sin 2sin 263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,再将横坐标伸长到原来的12, 可得sin 4y x =,故A 不正确;对于B ,sin 23y x π⎛⎫=+ ⎪⎝⎭,向左平移个12π单位长度(纵坐标不变), 可得sin 2sin 2cos21232y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标伸长到原来的2倍,可得cos y x =,故B 正确;对于C ,sin 23y x π⎛⎫=+ ⎪⎝⎭,横坐标伸长到原来的2倍(纵坐标不变), 可得sin 3y x π⎛⎫=+ ⎪⎝⎭,再向左平移6π个单位长度, 可得sin sin cos 632y x x x πππ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确; 对于D ,sin 23y x π⎛⎫=+ ⎪⎝⎭,横坐标伸长到原来的12(纵坐标不变), 可得sin 43y x π⎛⎫=+ ⎪⎝⎭,再向右平移3π个单位长度, 可得()sin 4sin 4sin 433y x x x πππ⎡⎤⎛⎫=-+=-=- ⎪⎢⎥⎝⎭⎣⎦,故D 错误; 故选:BC 17.(2019·陕西西安·高新一中)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且60b c C ===︒,则角B =( )A .45︒B .30C .45︒或135︒D .30或150︒【答案】A【解析】由正弦定理得b c sinB sinC==,得sin B 2=,又b <c ,∴B <C ,∴B =45°, 故选A . 18.(2020·河南平顶山·高三月考(文))在ABC 中,角A ,B ,C 所対的边分别为a ,b ,c ,已知222a b c +-=,且sin ac B C =,则ABC S =( )A .12B .2C .1D 【答案】B【解析】222cos 22a b c C ab +-==,∵()0,πC ∈∴π6C =,1sin 2C ∴=sin ac B C =,acb ∴=,即=ab∴ABC S=111sin 222ab C C =⋅==.故选:B. 19.(2020·海原县第一中学月考)在ABC中,60,A a b ︒===B 等于( ) A .45︒B .45︒或135︒C .135︒D .以上答案都不对【答案】A【解析】在ABC中,60,A a b ︒=== 由正弦定理,可得sin sin a b A B =,所以sin 2sin 2b A B a ===, 又因为a b >,可得A B >,所以45B =.故选:A.20.(2020·河南高二其他(文))已知ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且sin sin 3sin 0A B C +-=,4a b c ++=,29ABCab S =△,则22sin sin a b a A b B +=+____________. 【答案】94【解析】∵sin sin 3sin 0A B C +-=,∴由正弦定理得30a b c +-=,又4a b c ++=,则34c c +=,则1c =,又21sin 92ABC ab S ab C ==△,∴4sin 9C =, 由正弦定理9sin sin sin 4a b c A B C ===得4sin 9A a =,4sin 9B b =, ∴222222944sin sin 499a b a b a A b B a b ++==++. 故答案为:94.21.(2020·辉县市第二高级中学高一月考)求下列函数的定义域:(1)y =(2)lg(1)y x =-+.【答案】(1)π2π2π,2π()33x k k k ⎡⎤∈++∈⎢⎥⎣⎦Z ;(2)π3π5π7π2π,2π2π,2π()4444x k k k k k ⎛⎤⎡⎫∈++++∈ ⎪⎥⎢⎝⎦⎣⎭Z 【解析】(1)∵2sin 0x -,∴3sin 2x,在单位圆中作出满足该不等式的角的集合,如图①所示,可得π2π2π,2π()33x k k k ⎡⎤∈++∈⎢⎥⎣⎦Z.(2)∵1010x x ⎧>⎪⎨⎪⎩,,∴cos x <,在单位圆中作出满足该不等式的角的集合,如图②所示,可得π3π5π7π2π,2π2π,2π()4444x k k k k k ⎛⎤⎡⎫∈++++∈ ⎪⎥⎢⎝⎦⎣⎭Z .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2019·全国Ⅱ)若x 1=π4,x 2=3π
4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω等于( )
A .2 B.32 C .1 D.1
2
2.(2020·长沙模拟)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(a +b )(sin A -sin B )=(c -b )sin C ,则△ABC 中A 为( ) A.π6 B.2π3 C.π3 D.5π
6
3.三角形的两边分别为5和3,若它们夹角的余弦值是方程5x 2-7x -6=0的根,则三角形的另一边长为( ) A .52
B .213
C .16
D .4
4.如果π4<α<π
2,那么下列不等式成立的是( )
A .cos α<sin α<tan α
B .tan α<sin α<cos α
C .sin α<cos α<tan α
D .cos α<tan α<sin α
5.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]上的图象大致为( )
6.(2019·天津实验中学模拟)将函数f (x )=sin ωx (其中ω>0)的图象向右平移π
4个单位长度,所
得图象经过点⎝⎛⎭⎫
7π4,0,则ω的最小值是( ) A.13 B.23 C.43 D.53
7.(2020·广州模拟)在△ABC 中,如果sin A ·sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰或直角三角形
D .等腰直角三角形
8.将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π
10个单位长度,所得图象对应的函数( ) A .在区间⎣⎡⎦⎤
3π4,5π4上单调递增
B .在区间⎣⎡⎦⎤
3π4,π上单调递减 C .在区间⎣⎡⎦⎤5π4,3π2上单调递增 D .在区间⎣⎡⎦
⎤3π
2,2π上单调递减 9.(多选)已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π
6个单位长度后
关于y 轴对称,则下列结论中正确的是( ) A .φ=5π
6
B.⎝⎛⎭⎫π12,0是f (x )图象的一个对称中心 C .f (φ)=-2
D .x =-π
6
是f (x )图象的一条对称轴
10.(多选)(2019·上海市向明中学月考)已知函数f (x )=cos(sin x ),g (x )=sin(cos x ),则下列说法不正确的是( )
A .f (x )与g (x )的定义域都是[-1,1]
B .f (x )为奇函数,g (x )为偶函数
C .f (x )的值域为[cos 1,1],g (x )的值域为[-sin 1,sin 1]
D .f (x )与g (x )都不是周期函数
11.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n 边形逼近圆,算得圆周率的近似值记为πn ,那么用圆的内接正2n 边形逼近圆,算得圆周率的近似值π2n 可表示成( ) A.πn sin
360°n
B.πn
cos
360°n
C.πn
cos
180°n
D.πn
cos
90°n
12.若关于x 的方程sin x +cos x -2sin x cos x +1-a =0,x ∈⎣⎡⎦⎤-π4,π
4有两个不同解,则实数a 的取值范围为( ) A.⎝⎛⎦⎤2,9
4 B.⎣⎡⎦⎤2,5
2 C.⎝⎛⎭
⎫2,52 D.⎣⎡⎭
⎫2,94
13.在平面直角坐标系xOy 中,若曲线y =sin 2x 与y =1
8tan x 在⎝⎛⎭⎫π2,π上交点的横坐标为α,则sin 2α的值为__________.
14.已知函数f (x )=sin ⎝⎛⎭⎫2x +π6的图象向右平移π
4个单位长度得到函数g (x )的图象,则函数g (x )在⎣⎡⎦
⎤0,π
2上的单调递增区间是________. 15.已知M 是函数f (x )=|2x -3|-8sin πx (x ∈R )的所有零点之和,则M 的值为________. 16.将函数f (x )=cos ⎝⎛⎭⎫2x +π12的图象向左平移π
8个单位长度后,得到函数g (x )的图象,则下列结论中正确的是________.(填上所有正确结论的序号) ①g (x )的最小正周期为4π; ②g (x )在区间⎣⎡⎦⎤0,π
3上单调递减; ③g (x )图象的一条对称轴为x =π
12;
④g (x )图象的一个对称中心为⎝⎛⎭⎫
7π12,0.
答案精析
1.A 2.C 3.B 4.A 5.B 6.B 7.D 8.A 9.ABD 10.ABD
11.C [设圆的半径为r ,将内接正n 边形分成n 个小三角形,
由内接正n 边形的面积无限接近圆的面积可得πr 2≈n ×12×r 2sin 360°n ,整理得π≈n ×1
2×sin
360°
n
, 此时πn =n ×12×sin 360°
n ,
即πn =n ×sin
180°n ×cos 180°
n
, 同理,由内接正2n 边形的面积无限接近圆的面积可得
πr 2≈2n ×12×r 2sin 360°2n ,整理得,π≈2n ×12×sin 360°2n =n ×sin 180°
n ,
此时π2n =n ×sin 180°
n , 所以π2n =n ×sin
180°
n
=πn
cos
180°n
.] 12.D [∵sin x +cos x -2sin x cos x +1-a =0,x ∈⎣⎡⎦⎤-π4,π4, ∴a =sin x +cos x -2sin x cos x +1, 设t =sin x +cos x ,则2sin x cos x =t 2-1,
t =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,在⎣⎡⎦⎤-π4,π
4上单调递增, 则t ∈[]
0,2,
∴a =t -t 2+2=-⎝⎛⎭⎫t -122+9
4在[0,2]上有两个不同的解. 即y =-⎝⎛⎭⎫t -122+9
4与y =a 的图象有两个不同的交点. 如图所示:
∴实数a 的取值范围为⎣⎡⎭⎫2,94.] 13.-15
8
14.⎣⎡⎦⎤0,5π12 15.12
解析 将函数f (x )=|2x -3|-8sin πx 的零点转化为函数h (x )=|2x -3|与g (x )=8sin πx 图象交点的横坐标.
在同一平面直角坐标系中,画出函数h (x )与g (x )的图象, 如图所示,
因为函数h (x )与g (x )的图象都关于直线x =3
2
对称,
两个函数的图象共有8个交点,所以函数f (x )的所有零点之和M =8×3
2=12.
16.②④
解析 由题意,将函数f (x )=cos ⎝⎛⎭⎫2x +π12的图象向左平移π
8个单位长度后, 得到g (x )=cos ⎣⎡⎦
⎤2⎝⎛⎭⎫x +π8+π
12
=cos ⎝⎛⎭⎫2x +π
3的图象, 则函数g (x )的最小正周期为2π
2
=π, 所以①错误;
当x ∈⎣⎡⎦⎤0,π3时,2x +π3∈⎣⎡⎦
⎤π
3,π, 故g (x )=cos ⎝⎛⎭⎫2x +π3在区间⎣⎡⎦⎤0,π
3上单调递减, 所以②正确;
当x =π12时,g (x )=0,则x =π
12不是函数g (x )图象的对称轴,所以③错误;
当x =7π
12时,g (x )=0,则⎝⎛⎭⎫7π12,0是函数g (x )图象的对称中心,所以④正确; 所以结论正确的有②④.。