高中物理斜面问题分类剖析
斜面模型问题浅析

斜面模型问题浅析顾小伟(江苏省海安市曲塘中学㊀226661)摘㊀要:斜面模型是高中物理常见的模型之一ꎬ通过平面问题的斜面处理ꎬ利用受力分析配合牛顿第二定律的使用ꎬ可以有效提高学生的力学求解思维ꎬ培养学生的综合能力.斜面模型可以揭示摩擦力特性ꎬ斜面模型的受力分析也是高中物理受力分析常用方法的体现.同时ꎬ通过对其迁移应用ꎬ可以进一步提高学生的发散性思维ꎬ提高解题逻辑思维能力.本文将围绕上述三点ꎬ对斜面模型问题展开讨论分析.关键词:斜面模型ꎻ受力分析ꎻ思维能力中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2018)31-0057-02㊀㊀斜面模型的受力分析中可以涉及众多考点ꎬ摩擦力㊁重力㊁电场力㊁磁场力都可以包含其中ꎬ并可通过该模型创设复杂的物理情境ꎬ是对物理知识的系统性考察.斜面问题千变万化ꎬ光滑斜面㊁粗糙斜面㊁斜面组合等等ꎬ可以对运动学㊁牛顿运动定律及功能关系等进行分析.㊀㊀一㊁斜面模型展示摩擦力特性摩擦力具有被动性的特点ꎬ即其总是阻碍物体向运动趋势方向发展ꎬ导致摩擦力的方向总是与物体运动趋势方向相反.通过摩擦力的这一特性ꎬ导致摩擦力参与的力学问题都存在一个求解范围的特点.同时ꎬ摩擦力的变化也会出现非单调变化的情况.图1例:斜面上有一物体ꎬ已知斜面倾角为θꎬ现沿斜面方向给物体施加一个力才足以使物体静止.现设定最小力为F1ꎬ最大力为F2ꎬ如图1所示ꎬ求物体与斜面之间的动摩擦因数及物体质量.解析㊀根据摩擦力的被动性特点ꎬ结合力F的方向ꎬ可知:当力F取得最小值F1时ꎬ物体处于下滑的临界状态ꎻ当力F取得最大值F2时ꎬ物体处于上滑的临界状态.于是ꎬ通过对物体的受力分析ꎬ结合受力平衡状态ꎬ得到:取最小值时mgsinθ=F1+μmgcosθꎬ取最大值时mgsinθ+μmgcosθ=F2.将上两式联立方程组进行求解ꎬ得到m=F1+F22gsinθ㊁μ=F2-F1F2+F1tanθ.当力F由最小逐渐增加到最大时ꎬ物体所受摩擦力先逐渐变小ꎬ再逐渐增大.通过该斜面模型的摩擦力分析ꎬ有效的展示了摩擦力的被动性特点ꎬ提高了学生的受力分析能力.㊀㊀二㊁斜面模型体现受力分析方法高中物理受力分析常用方法包括整体法㊁隔离法㊁正交分解法等ꎬ整体法与隔离法适用于动力学部分ꎬ尤其是涉及到多个物体的运动组合情况ꎻ而正交分解法则是力学最基本的物理方法ꎬ在受力分析与建立平衡方程时有图2着重要的应用.例1㊀如图2ꎬ已知斜面固定ꎬ斜面上有两个质量相同的物体A㊁Bꎬ两物体紧密接触下滑ꎬ但两物体的接触面光滑.且物体A与斜面的动摩擦因数是B的两倍ꎬ斜面的倾角为αꎬ物体B与斜面的动摩擦因数为(㊀㊀).A.23tanα㊀㊀B.23cotα㊀㊀C.tanα㊀㊀D.cotα解析㊀本题欲求的是物体B与斜面的动摩擦因数ꎬ很多学生会尝试使用隔离法ꎬ将物体B提取出来进行单独分析ꎬ但却不得求解.在本题中ꎬ给出的已知条件较少ꎬ且注意条件 物体A㊁B紧密接触ꎬ且接触面光滑 .此时ꎬ不妨将A㊁B视为一个整体进行处理.此时ꎬ利用受力平衡原理ꎬ得到平衡方程为2mgsinα=μmgcosα+2μmgcosαꎬ最终求得μ=23tanαꎬ即选项A为正确选项.值得注意的是ꎬ在斜面模型受力分析方法的选择上ꎬ务必结合题中给出的限定条件.通常情况下ꎬ当所求的是对象内部的相互作用力时ꎬ可以采取隔离法求解ꎻ当求解的力是对象所受的合外力时ꎬ整体法则更为适用.在正交分解法的使用过程中ꎬ需要注意的是妥善选择坐标系ꎬ尽量将力向坐标系中靠拢.㊀㊀三㊁斜面模型迁移应用斜面模型并不都是简单的给出一个斜面ꎬ也存在一些特殊的斜面模型ꎬ需要学生进行灵活的思维迁移.例如斜面上的平抛运动问题㊁台阶问题㊁斜面磁场问题等等.但归根结底ꎬ其考察的本质都是一样的.主要抓住几何关系ꎬ结合运动学定律ꎬ正确进行受力分析ꎬ即可实现求解.图3例2㊀如图3所示ꎬ一个小球从一楼梯顶部抛出ꎬ初速度为v0=2m/sꎬ图中所示的台阶高度均为0.2mꎬ宽度为0.25m.试问ꎬ最终小球会落到第几级台阶上?解析㊀本题是平抛运动与台阶问题ꎬ于是我们将台阶按照虚线进行连接ꎬ得到一虚拟斜面问题.小球撞到哪一级台阶ꎬ即可通过小球撞到虚线上时的水平位移来确定.假定小球撞到斜面上的点Pꎬ此时水平位移为xꎬ竖直位移为y.则结合题中运动学关系ꎬ可以得到关系式:x=v0t㊁y=12gt2.再结合几何关系ꎬ得到xy=0.250.2.联立上两式求解ꎬ解得t=0.32s㊁x=0.64mꎬ2<0.640.25=2.56<3ꎬ故可以判断出小球首先撞到第三级台阶上.虽说本题没有出现斜面字眼ꎬ但按照斜面问题来处理事半功倍.值得说明的是ꎬ小球平抛曲线与某段虚线台阶相交ꎬ即落在哪个台阶上ꎬ这是因为该交点处的速度方向必然偏向台阶方向向下ꎬ故小球必然落在该台阶范围内.总之ꎬ斜面问题是一类综合性问题ꎬ可以涉及到力学㊁运动学㊁功能学等众多知识点.尤其在考试中ꎬ该类题型常被赋予众多解题情境ꎬ需要学生灵活应变ꎬ将各类情境抽象㊁类比或者等效成斜面问题ꎬ从中抽象出斜面模型进行求解ꎬ这样必然有助于学生理解ꎬ促进学生对物理知识点的掌握.㊀㊀参考文献:[1]汤祥鹍ꎬ何叶丹.平抛-斜面模型[J].数理化学习:高中版ꎬ2009(1):71-73.[2]李新良.斜面滑块模型支持力与摩擦力的分析[J].中学教学参考ꎬ2011(23):70-71.[责任编辑:闫久毅]对机械能守恒定律在解题中的应用探究何政毅(浙江省三门中学㊀318000)摘㊀要:高中物理是一门探究物理现象ꎬ揭示运动㊁电磁㊁功和能等相关物理规律的学科ꎬ机械能守恒定律是贯穿于高中物理知识探究的一条重要定律.毫不夸张的说ꎬ掌握了机械能守恒定律基本奠定了物理知识学习的基础.本文将结合自己的理解ꎬ对机械能守恒定律在物理问题的分析和解答中的应用进行进一步的分析ꎬ供大家借鉴与参考.关键词:机械能守恒定律ꎻ解题策略ꎻ实际应用中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2018)31-0058-02㊀㊀ 机械能守恒定律 的实质还是 能量守恒定律 ꎬ是物理力学和运动学中的特殊 能量守恒 ꎬ学习好 机械能守恒定律 对于提升我们的物理成绩ꎬ促进我们的物理思想具有重要的作用ꎬ可以改变以往物理 题海战术 的学习方法ꎬ并且让我们的自主学习效果更高ꎬ知识应用更加灵活.㊀㊀一㊁机械能守恒定律概述高中物理教学中的 机械能守恒定律 主要是指 由两个或两个以上的物体组成的系统互相作用而遵循的一条基本能量定律. 我们知道ꎬ在高中物理的概念中ꎬ机械能是物体动能和势能的总和ꎬ势能可以分为重力势能和弹性势能. 机械能守恒定律 就是指势能和动能在系统内进行互相转化ꎬ其总量保持不变.如果系统的机械能初始值为E1ꎬ最终状态的机械能值为E2ꎬ那么一定有E1=E2ꎬ即:EK1+EP1=EK2+EP2.在一个系统中ꎬ系统势能的变化量与系统动能的变化量相等ꎬ即动能和势能互相转化ꎬ。
高中物理斜面滑块专题

高中物理斜面滑块专题是一个重要的知识点,主要涉及力和运动的综合问题。
在解决斜面滑块问题时,需要注意以下几个方面:受力分析:对滑块进行受力分析,包括重力、支持力、摩擦力和可能存在的外力。
根据斜面的角度和滑块的运动状态,判断各力的方向和大小。
运动分析:根据题意分析滑块的运动状态,如静止、匀速直线运动、匀加速运动或匀减速运动。
同时要明确运动的方向和加速度的方向。
牛顿第二定律:如果滑块做匀变速运动,需要使用牛顿第二定律(F=ma)来分析力和运动的关系。
注意要分析沿斜面方向和垂直斜面方向的力,并根据需要选择正方向。
摩擦力分析:根据斜面的角度、滑块的运动状态和摩擦因数,判断摩擦力的方向和大小。
注意区分滑动摩擦力和静摩擦力,并注意滑动摩擦力公式f=μN中N的取值。
平衡条件:在某些情况下,滑块处于静止或匀速直线运动状态,需要使用平衡条件(如F=0,∑F=0)来解决问题。
功能关系:如果涉及到能量的转化或守恒,需要使用功能关系进行分析,如重力做功与重力势能变化的关系,动能定理等。
圆周运动和天体问题:在某些情况下,滑块可能做圆周运动或涉及天体问题,需要使用相应的公式和规律进行分析。
在解决斜面滑块问题时,需要注意多解问题和分类讨论,同时要善于运用图解法和正交分解法来解决问题。
通过多练习不同类型的题
目,可以逐步提高解决斜面滑块问题的能力。
高一物理斜面模型的九种类型

有关物理“斜面模型”的九种类型
有关物理“斜面模型”的九种类型如下:
1.光滑斜面:斜面光滑无摩擦,无其他外力作用,物体仅受重力作用沿斜面下滑。
2.粗糙斜面:斜面粗糙有摩擦,物体下滑时同时受到摩擦力作用。
3.匀速斜面:斜面的角度、长度以及物体的质量一定时,物体下滑的速度保持不变。
4.固定斜面:斜面固定不动,不会随物体的运动而发生形变或滑动。
5.可动斜面:斜面可以运动,例如可以沿某个方向滑动或转动。
6.匀加速斜面:斜面的角度、长度以及物体的质量一定时,物体下滑的加速度保持不
变。
7.弹性斜面:物体在下滑过程中,会受到弹力的作用,使物体产生弹性形变。
8.有外力作用的斜面:物体在下滑过程中,会受到外力作用,如重力、摩擦力等。
9.有运动约束的斜面:物体在下滑过程中,会受到某些运动约束,如滑轮、弹簧等。
高中物理斜面滑块专题

高中物理斜面滑块专题【实用版】目录1.斜面滑块专题概述2.斜面滑块的基本概念3.斜面滑块的物理原理4.斜面滑块的应用实例5.斜面滑块的解题技巧6.总结正文【斜面滑块专题概述】高中物理斜面滑块专题是针对斜面滑块这一物理现象进行深入研究的一个专题。
在高中物理课程中,斜面滑块专题涉及到对斜面滑块的基本概念、物理原理以及应用实例的讲解,同时还会教授学生如何运用解题技巧来解决斜面滑块问题。
本文将从这几个方面对高中物理斜面滑块专题进行详细介绍。
【斜面滑块的基本概念】斜面滑块是指一个物体在斜面上滑动的过程。
在斜面滑块问题中,通常会涉及到物体的质量、斜面的倾角、摩擦力以及重力势能和动能的转化等问题。
了解斜面滑块的基本概念,有助于我们更好地理解斜面滑块的物理原理和解决实际问题。
【斜面滑块的物理原理】斜面滑块的物理原理主要包括以下几个方面:1.重力势能和动能的转化:物体在斜面上滑动时,重力势能会转化为动能。
2.摩擦力的作用:摩擦力是阻碍物体在斜面上滑动的力,其大小与物体所受的压力和斜面的粗糙程度有关。
3.动能定理:在斜面滑块过程中,物体的动能变化等于所受的外力做功,即动能定理。
【斜面滑块的应用实例】斜面滑块在现实生活中的应用非常广泛,例如物体的运输、机械设备的运动等。
在高中物理课程中,斜面滑块应用实例主要体现在习题中,通过解决实际问题,让学生更好地理解和运用斜面滑块的物理原理。
【斜面滑块的解题技巧】解决斜面滑块问题,可以运用以下几种解题技巧:1.分析物体受力情况:对物体在斜面上的受力进行分析,找出主要的力以及它们的关系。
2.运用动能定理:根据动能定理,列出物体在斜面上滑动过程中动能的变化,从而求解问题。
3.考虑摩擦力的影响:在解题过程中,要充分考虑摩擦力的影响,特别是在物体速度较大时,摩擦力可能成为影响物体滑动的重要因素。
4.运用守恒定律:在某些斜面滑块问题中,可以运用守恒定律来求解,例如能量守恒定律、动量守恒定律等。
高中物理专题复习:斜面类问题

《高中物理专题复习:斜面类问题》xx年xx月xx日CATALOGUE目录•斜面的基本概念和分类•斜面类问题的力学分析•斜面类问题的运动学分析•斜面类问题的动力学分析•斜面类问题的能量分析•斜面类问题的例题解析01斜面的基本概念和分类是一种倾斜的平面,可以看作是倾斜面与水平面相互垂直的理想化模型。
斜面斜面具有倾斜角和斜面长度,倾斜角是指斜面与水平面之间的夹角,斜面长度是指沿斜面向下方向的最大距离。
基本属性斜面的定义与基本属性按照倾斜程度分类可分为缓坡和陡坡,缓坡的特点是倾斜角较小,物体沿斜面运动时速度较慢,所需推力较小;而陡坡的特点是倾斜角较大,物体沿斜面运动时速度较快,所需推力较大。
按照有无摩擦分类可分为光滑斜面和粗糙斜面,光滑斜面是指没有摩擦力的斜面,物体沿光滑斜面下滑时速度较快,所需推力较小;粗糙斜面是指存在摩擦力的斜面,物体沿粗糙斜面下滑时速度较慢,所需推力较大。
斜面的分类与特点斜面问题的解题思路首先需要确定研究的是什么样的物体,这个物体在斜面上是静止还是运动的。
确定研究对象进行受力分析运用牛顿第二定律列方程根据运动学公式求解对研究对象进行受力分析,主要分析重力、支持力、摩擦力等力的作用。
根据受力分析的结果,运用牛顿第二定律列方程求解出物体沿斜面的加速度。
根据加速度的大小和方向,运用运动学公式求解物体沿斜面的运动情况,包括速度、位移等物理量。
02斜面类问题的力学分析1斜面上的受力分析23首先确定研究的是物体在斜面上的受力情况,还是物体与斜面间的相互作用力。
确定研究对象将重力按照平行斜面和垂直斜面两个方向进行分解,分别表示为mg·sinθ和mg·cosθ。
重力分解根据摩擦力的性质,判断是静摩擦力还是滑动摩擦力,并确定其方向和大小。
摩擦力03速度关系根据速度关系,确定物体在斜面上的速度大小与位移方向的关系。
斜面上的运动学分析01运动状态分析判断物体沿斜面方向的运动状态,如静止、匀速下滑或加速下滑等。
高中物理模型系列之斜面模型

一模型界定本模型是指涉及固定斜面或自由斜面的力学问题,涉及斜面的抛体或类抛体的动力学问题,也包括环套在倾斜杆上的情形。
二模型破解1.整体法与隔离法处理斜面上的受力问题(i )物体在斜面上处于静止或运动状态、斜面固定或不固定的情况下,涉及物体与斜面间作用时应采用隔离法,反之则可采用整体法,但通常需将整体法与隔离法结合使用。
(ii )当物体运动中斜面也处于变速运动状态时,可利用矢量三角形处理斜面系统的变速运动(iii )解决斜面问题时,应先进行受力分析,当物体受力较多时,可建立正交坐标系,利用三大观点列方程求解。
(iv )一些典型情景可利用固定结论解决:○1.自由释放的滑块能在斜面上(如图1 所示)匀速下滑时,m 与M 之间的动摩擦因数μ=g tan θ. ○2.在斜面上自由释放的滑块(如图1 所示):(I)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零,对地面的压力等于整体重力;(II)加速下滑时,斜面M 对水平地面的静摩擦力水平向右,对地面的压力小于整体的重力;(III)减速下滑时,斜面M 对水平地面的静摩擦力水平向左,对地面的压力大于整体的重力.○3.在斜面上自由释放的滑块(如图2所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零.○4.悬挂有物体的小车在斜面上滑行(如图3所示): (I)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面;(II)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上;(III)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下;(IV)悬绳沿竖直方向时,加速度a=0;(V)悬绳沿水平方向时,加速度θsin g a =. ○5.如图4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止. 图1 图2 图3⑥.如图5所示,对斜劈施加的作用力F=(M+m)g tan θ即a=g tan θ时,甲图中绳恰好松弛,乙图中m恰好对斜劈无压力、小球即将离开斜劈。
高中物理 斜面问题
斜面问题模型解读:斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
对沿粗糙斜面自由下滑的物体做受力分析,物体受重力mg 、支持力F N 、动摩擦力f ,由于支持力θcos mg F N =,则动摩擦力θμμcos mg F f N ==,而重力平行斜面向下的分力为θsin mg ,所以当θμθcos sin mg mg =时,物体沿斜面匀速下滑,由此得θμθcos sin =,亦即θμtan =。
所以物体在斜面上自由运动的性质只取决于摩擦系数和斜面倾角的关系。
当θμtan <时,物体沿斜面加速速下滑,加速度)cos (sin θμθ-=g a ; 当θμtan =时,物体沿斜面匀速下滑,或恰好静止; 当θμtan >时,物体若无初速度将静止于斜面上;模型拓展1:物块沿斜面运动性质的判断例1.(多选)物体P 静止于固定的斜面上,P 的上表面水平,现把物体Q 轻轻地叠放在P 上,则( )A.、P 向下滑动 B 、P 静止不动 C 、P 所受的合外力增大 D 、P 与斜面间的静摩擦力增大模型拓展2:物块受到斜面的摩擦力和支持力的分析例2.如图,在固定斜面上的一物块受到一外力F 的作用,F 平行于斜面向上。
若要物块在斜面上保持静止,F 的取值应有一定的范围,已知其最大值和最小值分别为F 1和F 2(F 2>0)。
由此可求出( )A 、物块的质量B 、斜面的倾角C 、物块与斜面间的最大静摩擦力D 、物块对斜面的压力点评:本题考查受力分析、力的分解、摩擦力、平衡条件。
关键是要根据题述,利用最大静摩擦力平行斜面向上、平行斜面向下两种情况,应用平衡条件列出两个方程得出物块与斜面的最大静摩擦力的表达式。
高考物理斜面知识点
高考物理斜面知识点在高考物理中,斜面是一个重要的知识点,涉及到力的分解、斜面上物体的加速度等内容。
本文将全面介绍高考物理中与斜面相关的知识点,帮助考生更好地应对考试。
一、斜面上物体的重力分解当物体位于斜面上时,其重力可以分解为垂直于斜面的分力和平行于斜面的分力。
根据三角函数的定义,可以计算出物体在斜面上的分力大小。
1.1 垂直于斜面的分力设物体的重力为G,斜面的倾角为α,则物体在垂直于斜面的方向上的分力F_normal为G*cosα。
这一分力的作用是使物体紧贴斜面表面。
1.2 平行于斜面的分力物体在斜面上的平行于斜面方向的分力F_parallel等于G*sinα。
这一分力的作用是使物体沿着斜面滑动。
二、斜面上物体的加速度斜面上物体的加速度可以通过力学分析得到。
2.1 平行于斜面的合力斜面上物体的平行于斜面方向的合力F_parallel是物体的重力分量G*sinα,减去斜面对物体的摩擦力F_friction。
2.2 摩擦力的计算斜面对物体的摩擦力F_friction可以通过静摩擦力的计算公式得到:F_friction = μ*F_normal。
其中,μ为摩擦因数。
2.3 斜面上物体的加速度根据牛顿第二定律F=ma,物体在平行于斜面方向上的合力F_parallel等于物体的质量m乘以加速度a。
可以得到以下等式:G*sinα - F_friction = ma。
2.4 解方程求解加速度根据上述等式,可以将F_friction表示为μ*F_normal,然后代入等式中。
最终可以解出物体在斜面上的加速度a的值。
三、斜面上的静摩擦力问题在物体斜面上静止的过程中,物体与斜面之间存在静摩擦力的问题。
3.1 最大静摩擦力最大静摩擦力F_max可以通过公式F_max = μ_s*F_no rmal计算得到。
其中,μ_s为静摩擦因数。
3.2 斜面上物体处于静止的条件当物体斜面上的分力小于等于最大静摩擦力时,物体能够保持静止。
高考物理备考微专题精准突破专题1.9 动力学中的斜面问题(解析版)
高考物理备考微专题精准突破 专题1.9 动力学中的斜面问题【专题诠释】1.斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
对沿粗糙斜面自由下滑的物体做受力分析,物体受重力mg 、支持力F N 、动摩擦力f ,由于支持力θcos mg F N =,则动摩擦力θμμcos mg F f N ==,而重力平行斜面向下的分力为θsin mg ,所以当θμθcos sin mg mg =时,物体沿斜面匀速下滑,由此得θμθcos sin =,亦即θμtan =。
所以物体在斜面上自由运动的性质只取决于摩擦系数和斜面倾角的关系。
当θμtan <时,物体沿斜面加速速下滑,加速度)cos (sin θμθ-=g a ; 当θμtan =时,物体沿斜面匀速下滑,或恰好静止; 当θμtan >时,物体若无初速度将静止于斜面上; 2.等时圆模型1.质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示。
2.质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。
3.两个竖直圆环相切且两圆环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示。
θmgfF Ny x【高考领航】【2019·浙江选考】如图所示为某一游戏的局部简化示意图。
D 为弹射装置,AB 是长为21 m 的水平轨道, 倾斜直轨道BC 固定在竖直放置的半径为R =10 m 的圆形支架上,B 为圆形的最低点,轨道AB 与BC 平滑连 接,且在同一竖直平面内。
某次游戏中,无动力小车在弹射装置D 的作用下,以v 0=10 m/s 的速度滑上轨道 AB ,并恰好能冲到轨道BC 的最高点。
高中物理重要方法典型模型突破9-模型专题(1) 斜面模型(解析版)
专题九模型专题(1)斜面模型【模型解读】在高中物理学习过程中,把物理问题进行抽象化处理,建立物理模型,在具体的物理问题的分析、解决的过程中,物理模型方法是解决问题的桥梁和工具作用,进一步培养通过建构模型来应用物理学知识和科学方法的意识,体会到物理问题解决过程中要有简化、抽象等科学思维斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
图示或释义与斜面相关的滑块运动问题规律或方法(1)μ=tan θ,滑块恰好处于静止状态(v0=0)或匀速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(2)μ>tan θ,滑块一定处于静止状态(v0=0)或匀减速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变)(3)μ<tan θ,滑块一定匀加速下滑,此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变) (4)若滑块处于静止或匀速下滑状态,可用整体法求出地面对斜面体的支持力为(M+m)g,地面对斜面体的摩擦力为0;若滑块处于匀变速运动状态,可用牛顿第二定律求出,地面对斜面体的支持力为(M+m)g-ma sin θ,地面对斜面体的摩擦力为ma cos θ;不论滑块处于什么状态,均可隔离滑块,利用滑块的运动状态求斜面对滑块的弹力、摩擦力及作用力(5)μ=0,滑块做匀变速直线运动,其加速度为a=g sin θ注意画好截面图斜面的变换模型加速运动的车上水杯液面可类似于物块放在光滑斜面上a=gtana tana=h/R【典例突破】【例1】如图所示,在水平地面上静止着一质量为M、倾角为θ的斜面体,自由释放的质量为m的滑块能在斜面上匀速下滑(斜面体始终静止),则下列说法中正确的是() A.滑块对斜面的作用力大小等于mgcos θ,方向垂直斜面向下B.斜面对滑块的作用力大小等于mg,方向竖直向上C.斜面体受到地面的摩擦力水平向左,大小与m的大小有关D.滑块能匀速下滑,则水平地面不可能是光滑的解析:选B因滑块在重力、斜面的摩擦力及斜面的支持力作用下匀速下滑,如图所示,所以斜面对滑块的作用力大小等于mg,方向竖直向上,B项正确;而滑块对斜面的作用力与斜面对滑块的作用力是一对作用力与反作用力,A项错误;又因斜面体及滑块均处于平衡状态,所以可将两者看成一整体,则整体在竖直方向受重力和地面的支持力作用,水平方向不受力的作用,即水平地面对斜面体没有摩擦力作用,C、D项错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理斜面问题分类一、静力学1.如图所示,质量为m 的木块A 放在斜面体B 上,若A 和B 沿水平方向以相同的速度v 0一起向左做匀速直线运动,则A 和B 之间的相互作用力大小为( )A. mgB. mgsin θC. mgcos θD. 0 答案:A2.质量为m 的球置于倾角为θ的光滑面上,被与斜面垂直的光滑挡板挡着,如图所示.当挡板从图示位置缓缓做逆时针转动至水平位置的过程中,挡板对球的弹力N 1和斜面对球的弹力N 2的变化情况是( )A. N 1增大B. N 1先减小后增大C. N 2增大D. N 2减少 答案:AD3.如图所示,在倾角为300的粗糙斜面上有一重为G 的物体,若用与斜面底边平行的恒力2GF =推它,恰好能使它做匀速直线运动。
物体与斜面之间的动摩擦因数为( ) A .22 B .33 C .36 D .66 答案:C4.如图所示,在一块长木板上放一铁块,当把长木板从水平位置绕A 端缓慢抬起时,铁块所受的摩擦力( )A .随倾角θ的增大而减小B .开始滑一动前,随倾角θ的增大而增大,滑动后,随倾角θ的增大而减小C .开始滑动前,随倾角θ的增大而减小,滑动后,随倾角θ的增大而增大D .开始滑动前保持不变,滑动后,随倾角θ的增大而减小 答案:B5.如图所示,斜面体P 放在水平面上,物体Q 放在斜面上.Q 受一水平作用力F ,Q 和P 都静止.这时P 对Q 的静摩擦力和水平面对P 的静摩擦力分别为1f 、2f .现使力F 变大,系统仍静止,则( )A. 1f 、2f 都变大B. 1f 变大,2f 不一定变大C. 2f 变大,1f 不一定变大D. 1f 、2f 都不一定变大答案:C6.如图所示,物体B 叠放在物体A 上,A 、B 的质量均为m ,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C 匀速下滑,则( )A. A 、B 间没有静摩擦力B. A 受到B 的静摩擦力方向沿斜面向上C. A受到斜面的滑动摩擦力大小为mg sinθD. A与斜面间的动摩擦因数, μ=tanθ答案:D7.如图所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导线所在平面,当ab棒下滑到稳定状态时,小灯泡获得的功率为P,除灯泡外,其它电阻不计,要使灯泡的功率变为2P,下列措施正确的是(AC )A.换一个电阻为原来2倍的灯泡B .把磁感应强度B增为原来的2倍C .换一根质量为原来2倍的金属棒D.把导轨间的距离增大为原来的28、在倾角为α的光滑斜面上,放一根通电导线AB,电流的方向为A→B,AB长为L,质量为m,放置时与水平面平行,如图所示。
将磁感应强度大小为B的磁场竖直向上加在导线所在处,此时导线静止,那么导线中的电流多大?如果导线与斜面有摩擦,动摩擦因数为μ,为使导线保持静止,电流I应为多大?(μ<tanα)解析:在分析这类问题时,由于B、I和安培力F的方向不在同一平面内,一般情况下题目中所给的原图均为立体图,在立体图中进行受力分析容易出错,因此画受力图时应首先将立体图平面化.本题中棒AB所受重力mg、支持力F N和安培力F均在同一竖直面内,受力分析如图所示:由于AB静止不动,所以①②由①②得导线中电流Babθ如果存在摩擦,问题就复杂得多了:当电流时,AB有向下滑的趋势,静摩擦力沿斜面向上,临界状态时静摩擦力达到最大值;当电流时,AB有向上滑的趋势,静摩擦力沿斜面向下,临界状态时。
第一种临界情况,由平衡条件得:沿斜面方向③垂直于斜面方向④又⑤由③④⑤得,第二种情况,同理可列方程⑥⑦⑧由⑥⑦⑧得,所求条件为:点评:解此类题的关键是:正确画出便于分析的平面受力图。
深化:(1)题目中所给的条件μ<tanα有什么作用?若μ>tanα会出现什么情况?提示:μ<tanα说明mgsinα>μmgcosα,若导体中不通电,则它将加速下滑。
所以为使导体静止,导体中的电流有一最小值,即。
若μ>tanα,则mgsinα<μmgcosα,则即使I=0,导体也能静止,即电流的取值范围为。
(2)若磁场B的方向变为垂直斜面向上,本题答案又如何?提示:若磁场B的方向变为垂直斜面向上,则安培力沿斜面向上。
对导体捧将要沿斜面下滑的情况,由平衡条件得:解得:对导体棒将要上滑的情况,由平衡条件得:解得:所以,在磁场B与斜面垂直时,为使导体静止,电流的取值范围为:9.(东城区2008—2009学年度第一学期期末教学目标检测)19.(8分)如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。
金属导轨的一端接有电动势E=4.5V、内阻r=0.50Ω的直流电源。
现把一个质量m=0.040kg的导体棒ab放在金属导轨上,导体棒恰好静止。
导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻R0=2.5Ω,金属导轨电阻不计,g取10m/s2。
已知sin37º=0.60,cos37º=0.80,求:(1)通过导体棒的电流;(2)导体棒受到的安培力大小;(3)导体棒受到的摩擦力大小。
19.(8分)分析和解:(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:I=ER r=1.5A…………(3分)(2)导体棒受到的安培力:F安=BIL=0.30N…………(2分)(3)导体棒所受重力沿斜面向下的分力F1= mg sin37º=0.24N由于F1小于安培力,故导体棒受沿斜面向下的摩擦力f…………(1分)根据共点力平衡条件mg sin37º+f=F安…………(1分)解得:f=0.06N…………(1分)二、动力学θθabErB1.如图,质量为M 的三角形木块A 静止在水平面上.一质量为m 的物体B 正沿A 的斜面下滑,三角形木块A 仍然保持静止。
则下列说法中正确的是 ( ABC ) A .A 对地面的压力可能小于(M+m)g B .水平面对A 的静摩擦力可能水平向左 C .水平面对A 的静摩擦力不可能为零D .B 沿A 的斜面下滑时突然受到一沿斜面向上的力F 的作用,当力F 的大小满足一定条件时,三角形木块A 可能会开始滑动2.如图所示,质量为M 的木板放在倾角为θ的光滑斜面上,质量为m 的人在木板上跑,假如脚与板接触处不打滑.(1)要保持木板相对斜面静止,人应以多大的加速度朝什么方向跑动?(2)要保持人相对于斜面的位置不变,人在原地跑而使木板以多大的加速度朝什么方向运动?解(1)要保持木板相对斜面静止,木板要受到沿斜面向上的摩擦力与木板的下滑力平衡,即F Mg =θsin根据作用力与反作用力的性质可知,人受到木板对他沿斜面向下的摩擦力,所以人受到的合力为mMg mg a ma F mg θθθsin sin ,sin +==+方向沿斜面向下.(2)要保持人相对于斜面的位置不变,对人有F mg =θsin ,F 为人受到的摩擦力且沿斜面向上,因此木板受到向下的摩擦力,木板受到的合力为Ma F Mg =+θsin ,解得MMg mg a θθsin sin +=,方向沿斜面向下.3.如图所示,三个物体质量C B A m m m ==,物体A 与斜面间动摩擦因数为83,斜面体与水平地面间摩擦力足够大,物体C 距地面的高度为0. 8 m,斜面倾角为300.求:(1)若开始时系统处于静止状态,斜面体与水平地面之间有无摩擦力?如果有,求出这个摩擦力;如果没有,请说明理由.(2)若在系统静止时,去掉物体B ,求物体C 落地时的速度.解:(1)以A 、B 、C 和斜面整体为研究对象,处于静止平衡,合外力为零,因水平方向没有受到其他外力,所以斜面和地面间没有摩擦力.(2)s m /2104.如图所示,AB 为斜面,BC 为水平面。
从A 点以水平初速度V 向右抛出一小球,其落点与A 的水平距离为S 1,若从A 点以水平初速度2V 向右抛出同一小球,其落点与A 的水平距离为S 2,不计空气阻力,则S 1与S 2的比值不可能为( C ) A .1:4B .1:3C .1:2D .1:75.如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B ) A .在a 轨道上运动时角速度较大B .在a 轨道上运动时线速度较大C .在a 轨道上运动时摩托车对侧壁的压力较大D .在a 轨道上运动时摩托车和运动员所受的向心力较大6.(9分)在某一旅游景区,建有一山坡滑草运动项目. 设山坡AB 可看成长度为L=50m 、倾角θ=37°的斜面,山坡低端与一段水平缓冲段BC 圆滑连接。
一名游客连同滑草装置总质量m=80kg ,滑草装置与AB 段及BC 段间动摩擦因数均为µ=0.25。
他从A 处由静止开始匀加速下滑,通过B 点滑入水平缓冲段。
不计空气阻力,取g=10m/s 2,sin37°≈0.6。
结果保留2位有效数字。
求: (1)游客在山坡上滑行时的加速度大小;(2)另一游客站在BC 段上离B 处60m 的P 处观看, 通过计算判断该游客是否安全。
6.(9分)解:(1)设游客在山坡上滑行时加速度大小为a ,则有:sin cos ma mg mg θμθ=- (2分)得:2sin cos 100.60.25100.84/a g g m s θμθ=-=⨯-⨯⨯= (2分) (2)设PB 距离为x ,对全过程由动能定理得:sin cos 0mgL mg L mg x θμθμ-⋅-⋅= (3分) 得:(sin cos )/(10500.60.25100.850)/0.251080x gL g L g mθμθμ=-⋅=⨯⨯-⨯⨯⨯⨯= (2分)三、综合1.如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,一个质量为m ,边长为L 的正方形线框以速度V 刚进入上边磁场时,即恰好做匀速直线运动,求:(1)当ab 边刚越过f f '时,线框的加速度多大?方向如何?(2)当ab 到达g g '与f f '中间位置时,线框又恰好作匀速运动,求线框VC BA ab vc dabe e'B B ff ' gg'θ从开始进入到ab 边到达g g '与f f '中间位置时,产生的热量是多少?(1)a=3gsinθ,方向平行于斜面向上 (2)Q= 3mglsinθ/2 +15 mv 2/322.如图所示,由相同绝缘材料组成的斜面AB 和水平面BC ,质量为m 的小滑块由A 静止开始释放,它运动到C 点时的速度为v 1 (v 1≠0),最大水平位移为S 1;现给小滑块带上正电荷,并在空间施加竖直向下的匀强电场,仍让小滑块由A 静止开始释放,它运动到C 点时的速度为v 2,最大水平位移为S 2,忽略在B 点因碰撞而损失的能量,水平面足够长,以下判断正确的是 ( ) A 、v 1<v 2, B 、v 1≥v 2,C 、S 1≠S 2,D 、S 1=S 2。