有机化学 第三章 烯烃、炔烃和二烯烃
第三章-烯烃、炔烃、二烯烃

以反式加成产物为主
Br
Br
CH2 CH2 + Br2 NaCl水溶液 CH2 CH2 + CH2 CH2
Br
Cl
亲电试剂:试剂带有正电荷,或者电子云密度较低,在
反应中进攻反应物上带部分负电荷的位置,这种试剂叫
做亲电试剂,例如X+(卤素)、R+、H +等。详见课本 P54-56。
亲电加成反应:由亲电试剂进攻而引起的加成反应。
1埃 = 0.1纳米(nm) = 10-10米(m)
1
键的特点: 1.成键原子不能绕两核连线自由旋转。
2.键比键易断裂。
3.电子云易极化。
PS:极化(polarization),指事物在一定条件下发生两极 分化,使其性质相对于原来状态有所偏离的现象
烯烃的同分异构
构造异构:碳链异构;官能团位置异构 构型异构:顺反异构 (几何异构or立体异构)
链终止 CH3CH· CH2Br +Br· CH3CHBrCH2Br
注:过氧化物只对HBr有影响,不影响HCl和HI。
诱导效应:受分子中电负性不同的原子或基团的影响,整个分 子中成键的电子云向着一个方向偏移,分子发生极化的效应。
δ+ δ- δ+ δH3C CH CH2 + HBr
CH3CHCH2 Br
电负性差别:O:3.5 Cl:3.1 O> Cl
由于次氯酸不稳定,反应中常用氯气和水代替次氯酸
Cl2 + H2O HOCl + HCl
H2C CH2 + Cl2 + H2O
CH2 CH2 OH Cl
(2) 臭氧化反应
O
CH3CH CH2 O3 CH3HC O
3烯烃、炔烃、二烯烃

沸点:
3.7°C
0.88°C -105.6°C
熔点: -138.9°C
三、烯烃、炔烃的化学性质
双键的结构与性质分析
C C C C
键能: 键 ~347 kJ / mol 键 ~263 kJ / mol 键活性比 键大 不饱和,可加成至饱和
电子受原子核吸引较弱, 是电子供体,易受 亲电试剂进攻参与反应。 与亲电试剂结合 与氧化剂反应
乙烯分子中的σ键
乙烯分子中的π键
H H
·
·
H
C = C
C
C H
{
sp2-sp2 σ键 2p-2p π键
π键
σ键和π键比较
存在的情况 键的形成情 况 电子云的分 布情况
键
键
1、可以单独存在。 2、存在于任何共价键中。
1、必须与键共存。 2、仅存在于不饱和键中。
成键轨道沿轴向在直线上相 成键轨道对称轴平行,从侧 互重叠。 面重叠。 1、 电子云集中于两原子 核的连线上,呈圆柱形分布 2、 键有一个对称轴,轴 上电子云密度最大。 1、键能较大。 2、键的旋转:以 键连接 的两原子可相对的自由旋转 3、键的可极化度:较小。 1、 电子云分布在 键所 在平面的上下两方,呈块状
第三章
烯烃、炔烃、二烯烃
本章重点
不饱和烃的类型、结构和命名
烯烃构型的表示方式(顺式和反式,E型和Z型)
不饱和烃的亲电加成反应 Markovnilkov加成规则及理论解释 诱导效应及共轭效应 共轭二烯烃的1,4加成
第三章
烯烃、炔烃、二烯烃
本章难点 不饱和烃的亲电加成反应
Markovnilkov加成规则及理论解释
(3)命名:根据主链上的碳数和双、叁键的位次 编号m、n,称为m-某烯-n-炔
甘肃农业大学有机化学练习题参考答案第三章 烯烃炔烃二烯烃

(2) H3CHC CCH3
CH3
Br2/H2O
(3) H3CHC CCH3
CH3
ICl
(4) H3CHC CCH3
CH3
HBr/H2O2
(5) H3CHC CCH3
CH3
H2SO4
(6) H3CHC CCH3
CH3 (7) H3CHC CCH3
KMnO4/H +
CH3COOH + CH3COCH3
H2C C CH CH2 CH3
(4) (6)
H2C CHCH2CH CH2
(5)
H3C H
C C
CH3 CH2CH2CH3
H3C H
H C C
C C H
CH3 H
4. 写出 2-甲基-2-丁烯与下列试剂作用的反应式:
CH3 (1) H3CHC CCH3 Br2/CCl4 CH3 Br CH3 CH3CHCCH3 Br Br CH3 CH3CHCCH3 OH I CH3 CH3CHCCH3 Cl Br CH3 CH3CHCCH3 H H CH3 CH3CHCCH3 OSO3H H2O H CH3 CH3CHCCH3 OH
12. 推导结构式: (A) CH3CH CHCH(CH3)2 (B) CH3 CH2 CH C(CH3 )2 (C) CH3CH2 CH2CH(CH3)2 13. 推导结构式: (A)
(CH3 )2CHCH2 C CH
(B) (H3C)2C CHCH CH2
PDF 文件使用 "ቤተ መጻሕፍቲ ባይዱdfFactory" 试用版本创建
H3C H3C C CHCH3
(2) CH3CHCH2CH CH2 或 CH3CHCH2C CH
《有机化学》第三章 不饱和烃

吸电子基团: +NR3>NO2>CN>COOH>F>Cl>Br>I>COOR>OR>
COR>SH>OH> C CR>C6H5>CH=CH2>H
诱导效应的特点:
(1)诱导效应的强弱取决于原了或基团的电负性的大小
的两原子可相对的自由旋转。 能相对自由旋转。Βιβλιοθήκη c.键的可极化度:较小。 较大
1.2 单烯烃的异构现象
1.2.1 结构异构
CH3 CH2 CH CH2 CH3 CH CH CH3
1-丁 烯
2-丁 烯
官能团碳碳双键 位置异构
CH3 C CH2 2-甲 基 丁 烯 CH3
碳链异构
结构异构是由于分子中各原子的结合顺序不同而引起的, 位置异构和碳链异构均属于结构异构。
(2) 与卤化氢的加成
CH3CH CHCH3 + HCl CH3CH2CHCH3
2–丁烯
HBr CH3CH2CH CH2
Markovnikov规则
Cl
2–氯丁烷
Br
CH3CHCH CH3
80 %
CH3CHCH2 CH2Br 20 %
当不对称的烯烃与卤化氢等极性试剂加成时,氢原总
是加到含氢较多的双键碳原子上,卤原子(或其子或
上相互重叠。
从侧面重叠。
电子云的分布情况 a. 电子云集中于两原子 电子云分布在 键所
核的连线上,呈圆柱形分布。 在平面的上下两方,呈块
状分布。
大学有机化学第三章 烯烃和炔烃

CH3 → CH=CH2 + HX
CH3CH—CH3 X
马代规则是 不对称试剂与双键发生亲电性加成时, 试剂中正电性部分主要加到能形成较稳定正碳离子 的那个双键碳原子上。 + CH3CHCH3 δ+ δ-
CH3—CH=CH2 + H+
HX分子中的氢以H+ 质子形式发生反应,因此称为亲电试剂
CH3CH2CH2
CH3
顺反异构命名与Z .E命名规则不相同,不能混为一 谈,两者之间没有固定的关系
例如:
Cl Cl C=C CH3 H (Z)-1 , 2-二氯丙烯 顺-1 , 2-二氯丙烯 H C H ‖ C H H 大 Br
Cl
C=C
CH3
Cl 大
Cl C COOH ‖ C Br Cl
(E)-1 , 2-二氯-1-溴丙烯 顺--1 , 2-二氯-1-溴丙烯 CH3 C H ‖ C H H
次产物
因此 1.1.1-三氟-3-氯丙烷是主要产物
2. 加硫酸
R-CH=CH2 + HOSO2OH H3PO4 300℃ 7Mpa R-CHCH3 H2O RCH-CH3 OSO2OH OH (间接水化法制备醇) CH3CH2OH
CH2=CH2 + H2O
3. 加卤素
CH2 = CH2 + X2
CH2 = CH2 + Br2/CCl4 Br2/H2O CH2—CH2 X X CH2-CH2 Br Br
如遇到含多个双键化合物而主链编号有选择时,则编号应从 顺型双键的一端开始 4 1 如 3 2 CH3 H 6 5 CH2 C=C 7 C=C H H H CH3 顺· 反-2.5-庚二烯
四、物理性质 五. 化学性质
第3章 烯烃 炔烃 二烯烃

pm 109 H 134 pm C C H 121°
H 117. 5° H
2. 炔烃的结构
炔烃分子中C≡C叁键碳原子是 sp杂化。 sp 杂化轨道中 s 成分比 sp2 杂化和 sp3 杂 化的高,键长 C=C(134pm)比 C—C (154pm)短。以乙炔为例:
H
C
120 pm
108 pm C H
H3C H
C=C
CH2CH3 CH3
顺 -3-甲 基 -2-戊 烯
反 -3-甲 基 -2-戊 烯
CH3 C=C CH3CH2
CH3 CH(CH3)2
CH2Cl C=C CH3
CH3 CH2CH3
顺 -2,3,4-三甲基 -3-己烯
反 -2,3-二甲基 -1-氯 -2-戊烯
CH3 C=C CH3CH2 Br
CH3
a≠b 且 c≠d
2、顺/反(cis/trans)命名法:
(1) a=c或b=d时的顺/反异构标记 相同的原子或原子团在双键的同侧为顺 式,异侧为反式。
a b C C
c d
a=c或b=c 或 a=d或
CH3 H C C
H CH3
H CH3 C C
H CH3
H3C H
C=C
CH3 CH2CH3
180°
C=C(134pm),C—C(154pm)
比较σ键和π键的异同点:
σ键的特点 (1)形成: (3)重叠程度: 键能: 沿键轴 大 大 轴对称 (5)旋转性: (6)存在形式: 可以独立 (2)重叠方式: “头碰头” π键的特点 垂直于键轴 “肩并肩” 小 小 呈块柱状 平面对称小 不能 不能
(二)诱导效应(inductive effect)
有机化学简明教程 第三章 2 炔烃和二烯烃

应命名为 3-戊烯-1-炔,而不命名为 2-戊烯-4-炔。
上一内容 下一内容 回主目录
返回
2013-7-5
3.7 炔烃的结构
(1) 乙炔的结构
•乙炔分子是一个线形分子,四个原子都排布在同一 条直线上. •乙炔的两个碳原子共用了三对电子.
•烷烃碳: sp3杂化 •烯烃碳: sp2杂化 •炔烃碳: sp杂化
AgC CAg AgC CAg +HCl
2Ag + 2C+364KJ HC CH +2AgCl
应用: 鉴定 C CH基团,即HC CH、R C CH。 C CH和R C C R/。 鉴别
提纯末端炔烃( C
上一内容 下一内容 回主目录
CH)。
返回
2013-7-5
3-9 炔烃的化学性质
三、氧化反应 炔烃和氧化剂反应,往往可以使碳碳叁键断裂,最 后得到完全氧化的产物 ——羧酸或二氧化碳。
回主目录
返回
2013-7-5
3-11 二烯烃的结构
单双键交替的共轭体系叫做 π,π共轭体系,这 个体系所表现的共轭效应叫做π,π共轭效应。 π,π共轭效应的结果: (1)1,3-丁二烯的键长趋于平均化。 (2)单键具有了部分双键的性质。
H2C C H
S-顺式
上一内容 下一内容
C
CH2 H2C H
RC
RC
CH + H2O
CR + H2O
/
HgSO4
H2SO4
H2SO4
R
C O
CH3
CH2 R/
HgSO4
R C
一个分子或离子在反应过程中发生了基因的转 移和电子云密度重新分布而最后生成较稳定的 分子的反应,称为分子重排反应(或称重排反 应)。
有机化学 第三章 不饱和烃

同分异构现象
1.碳链异构:和烷烃一样,
2.官能团位置异构:由于双键或三键位置不同所产生的异构,如:
3. 立体异构:由于双键不能绕σ键键轴旋转,导致相连基团在空间的不同排列方式 产生的异构现象。
顺反异构—— 相同基团在双键同侧为顺式,不同侧为反式
CH3
CH3
CC
H
H
顺式(cis)
本章学习内容
1.烯烃、炔烃等不饱和烃的命名(掌握) 2.烯烃、炔烃及共轭二烯烃的结构特征(理解) 3.烯烃、炔烃、共轭二烯烃的物理、化学性质(重点难点掌握)
3.1 分类
烯烃(alkene):C=C 不饱和烃
单烯烃:含一个双键
多烯烃 :含两个及以上个双键, 含两个双键叫二烯烃
炔烃(alkyne):
H3C CH3CH2
CH2CH2CH3 CH2CH3
Br Cl
Cl
H
顺-3-甲基-4-乙基-3-庚烯 (E)-3-甲基-4-乙基-3-庚烯
反-1,2-二氯-1-溴乙烯 (Z) -1,2-二氯-1-溴乙烯
课堂练习:命名下列化合物
CH3CH2 H
Cl CH3
H3C CH3CH2
CH3 CHCH3 CH2CH2CH3
氯加在含氢多的碳原子上,合成卤代醇的方法。
+ H2C CH2 H O Cl
H2C Cl
CH2 OH
+ H3C CH CH2
H O Cl
H3C
CH OH
CH2 Cl
4. 与卤化氢加成(亲电加成)——碳正离子中间体机理 反应历程:H+首先与双键中的p电子对结合使另一碳原子形成 碳正离子,碳正离子再与X- 结合成卤代烷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章烯烃、炔烃和二烯烃第一节烯烃和炔烃单烯烃是指分子中含有一个C=C的不饱和开链烃,简称烯烃.通式为C n H2n。
炔烃是含有(triple bond) 的不饱和开链烃。
炔烃比碳原子数目相同的单烯烃少两个氢原子,通式CnH2n-2。
一、烯烃和炔烃的结构乙烯是最简单的烯烃, 乙炔是最简单的炔烃,现已乙烯和乙炔为例来讨论烯烃和炔烃的结构。
(一)乙烯的结构分子式为C2H4,构造式H2C=CH2,含有一个双键C=C,是由一个σ 键和一个π 键构成。
现代物理方法证明,乙烯分子的所有原子都在同一平面上,每个碳原子只和三个原子相连.杂化轨道理论根据这些事实,设想碳原子成键时,由一个s轨道和两个p轨道进行杂化,组成三个等同的sp2杂化轨道,sp2轨道对称轴在同一平面上, 彼此成1200角.此外,还剩下一个2p轨道,它的对称轴垂直于sp2轨道所在的平面。
乙烯:C-C σ键4C-H σ键在乙烯分子中,两个碳原子各以一个sp2轨道重叠形成一个C-Cσ键,又各以两个sp2轨道和四个氢原子的1s轨道重叠,形成四个C-Hσ键,五个σ键都在同一平面上。
每个碳原子剩下的一个py轨道,它们平行地侧面重叠,便组成新的分子轨道,称为π轨道。
其它烯烃的双键也都是由一个σ键和一个π键组成的。
双键一般用两条短线来表示,如:C=C,但两条短线含义不同,一条代表σ键,另一条代表π 键。
π键重叠程度比σ键小,不如σ键稳定,比较容易破裂。
(二)乙炔的结构乙炔的分子式是C2H2,构造式H-C≡C-C,碳原子为sp 杂化。
两个sp杂化轨道向碳原子核的两边伸展,它们的对称轴在一条直线上,互成180°。
在乙炔分子中,两个碳原子各以一个sp轨道互相重叠,形成一个C-Cσ键,每个碳原子又各以一个sp轨道分别与一个氢原子的1s轨道重叠形成C-Hσ键。
此外,每个碳原子还有两个互相垂直的未杂化的p轨道(px,py),它们与另一碳的两个p轨道两两相互侧面重叠形成两个互相垂直的π键。
故乙炔的叁键是由一个σ键和两个相互垂直的π键组成。
两个π键的电子云分布好象是围绕两个碳原子核心的圆柱状的π电子云。
乙炔分子中两个碳原子的sp轨道,有½ s性质,s轨道中的电子较接近了核。
因此被约束得较牢,sp轨道比sp2轨道要小,因此sp杂化的碳所形成的键比sp2杂化的碳要短,它的p电子云有较多的重叠。
二、烯烃和炔烃的同分异构及命名(一)烯烃和炔烃的异构现象1.烯烃和炔烃的构造异构由于烯烃含有双键,其异构现象较烷烃复杂,它包括碳干异构,双键位置不同引起的位置异构(position isomerism),以及由于双键两侧的基团在空间的位置不同引起的顺反异构。
例如:丁烷只有正丁烷和异丁烷两个异构体,而丁烯就有三个异构体:CH3CH2CH=CH2CH3CH=CHCH31-丁烯2-丁烯2-甲基丙烯双键位置异构碳架异构2.烯烃的顺反异构由于双键不能自由旋转又产生了另一个异构现象--顺反异构,如:2-丁烯有两个:顺-2-丁烯反-2-丁烯两个相同基团在双键的一边称为顺式(cis-); 两个相同基团分处在双键的两边称为反式(trans- 。
顺、反异构现象在烯烃中很普遍,凡是以双键相连的两个碳原子上都带有不同的原子或原子团时,都有顺、反异构现象。
如果以双键相连的两个碳原子,其中有一个带有两个相同的原子或原子团,则这种分子就没有顺、反异构体。
因为它的空间排列只有一种。
如:(二)烯烃和炔烃的命名1.构造异构体的系统命名①选择一个含双键或叁键的最长的碳链为主链。
据主链碳原子数目的多少称为‗某烯‘或―某炔‖。
②从最靠近双键或叁键的一端起,把主链碳原子依次编号。
2,4-二甲基-2-己烯③双键或叁键的位次必须标明出来,只写双键两个碳原子中位次较小的一个,放在烯烃名称的前面。
④其他同烷烃的命名原则2.烯烃顺反异构的命名顺反异构有两种命名方法(1)顺反命名法与烷烃的顺反异构体命名相同,当双键的两个碳原子上各连有的相同原子或基团位于双键同侧时,在系统名称前冠以―顺‖字,在异侧的冠以―反‖字。
并加短线与系统名称隔开。
如(2) Z 、E 命名法根据IUPAC 命名法,字母Z 是德文Zusammen 的字头,指同一侧的意思。
E 是德文Entgegen 的字头,指相反的意思。
用―次序规则‖来决定Z 、E 的构型。
主要内容有两点:①次序规则:ⅰ将双键碳原子所连接的原子或基团按其原子序数的大小排列,把大的排在前面,小的排在后面,同位素则按原子量大小次序排列。
I ,Br, Cl,, S, P, O, N, C, D, H当与双键C1所连接的两个原子或基团中原子序数大的与C2所连原子序数大的原子或基团处在平面同一侧时为(Z )构型,命名时在名称的前面附以(Z )字。
反之,若不在同一侧的则为(E )构型,命名时在名称前面附以(E )字。
如:C=C CH 3H H 3C H 顺-2-丁烯C=C H CH 3H 3C H 反-2-丁烯ⅱ如果与双键碳原子连接的基团第一个原子相同而无法确定次序时,则应看基团的第二个原子的原子序数,依次类推。
按照次序规则(Sequence rule)先后排列。
②Z、E命名法:烯烃碳碳双键C1和C2上原子序数大的原子或原子团在双键平面同一侧时,为―Z‖构型,在异侧时为―E‖构型。
③顺、反异构体的命名与(Z)、(E)构型的命名不是完全相同的。
这是两种不同的命名法。
顺、反异构体的命名指的是相同原子或基团在双键平面同一侧时为―顺‖,在异侧时为―反‖。
Z、E构型指的是原子序数大的原子或基团在双键平面同一侧时为―Z‖,在异侧时为―E‖。
3.烯炔的命名若分子中同时含有叁键和双键,这类化合物称为烯炔。
它的命名首先选取含双键和叁键最长的碳链为主链。
位次的编号通常使双键具有最小的位次。
三、烯烃和炔烃的物理性质在常温下,C2-C4的烯烃炔烃为气体,C5-C18的烯烃和C5-C17的炔烃为液体,C原子数更多的烯烃和炔烃为固体。
沸点、熔点、比重都随分子量的增加而上升,比重都小于1,都是无色物质,溶于有机溶剂,不溶于水。
沸点: 3.7°C 0.88°C熔点:-138.9°C -105.6°C顺、反异构体之间差别最大的物理性质是偶极矩,一般反式异构体的偶极矩较顺式小,或等于零,这是因为在反式异构体中两个基团和双键碳相结合的键,它们的极性方向相反可以抵消,而顺式中则不能。
四、烯烃的化学性质烯烃官能团:C=C, 由一个σ键和一个π键组成。
由于π键键能小,易破裂,所以烯烃的反应都是围绕着π键进行的:① π键电子云流动,较松散,可作为一电子源,起lewis 碱的作用,与亲电试剂发生加成反应,生成饱和产物:X YC=C+ X-Y C C②与双键相连的α-C上的氢,受C=C影响,可发生取代反应。
炔烃官能团:-C≡C-:1个σ、2个π①有π键:有类似于烯烃的性质,如加成、氧化、聚合;② 2个相互⊥的π:有不同于烯烃的性质,如炔氢的酸性。
(一)加成反应由于烯烃的电子云流动性强,易极化,容易给出电子,所以容易被缺电子的试剂进攻。
这种缺电子的试剂叫亲电试剂,它容易与能给出电子的烯烃双键起加成反应,这种反应就叫亲电加成反应。
1.加卤素反应在常温时就可以迅速地定量地进行,溴的四氯化碳溶液与烯烃反应时,溴的颜色消失,在实验室里,常利用这个反应来检验烯烃。
如:卤素的活泼性:氟> 氯> 溴> 碘烯烃和氟作用,反应非常剧烈,得到的大部分是分解产物,碘和烯烃的作用非常慢,同时产物邻二碘化合物不很稳定,极易脱碘成烯烃,所以通常不与烯烃起加成反应。
所以一般所谓烯烃的加卤,实际上是指加氯或加溴来说的。
炔烃在加成时,炔需首先给出电子对与正离子结合,与烯相比,炔烃的键的碳为sp杂化,吸电子能力比较强,故不易给出电子对,所以较烯烃不易进行亲电加成反应。
再者,叁键的键长(0.12nm)比双键(0.134nm)短,它的p电子云有较多的重叠,所以π键较难被打开。
(双键优先与Br反应)2.加卤化氢①HX的活泼次序:HI > HBr >HCl浓HI,浓HBr能和烯烃起反应,浓盐酸要用AlCl3催化剂才行。
②马氏规则(Markovnikov 规则)凡是不对称的烯烃和酸(HX)加成时,酸的负基X-主要加到含氢原子较少的双键碳原子上,H+加到含氢多的双键碳原子上。
③过氧化物(H2O2,R-OOR等)存在下,HBr与不对称烯烃加成--反马氏规则.过氧化物对HCl,HI加成反应方向没影响.④炔烃与HX3.与硫酸的加成将乙烯通入冷浓硫酸中生成硫酸氢乙酯硫酸氢乙酯水解生成乙醇:不对称烯烃与H2SO4加成时,产物符合马氏规则。
4. 加水①烯烃加水C=C+ H3O++CH-C CH-COH2+H+H2O CH-COH-H+H+此反应副产物多,缺乏制备价值。
但控制Cat条件,烯烃可直接水合:CH2=CH2 + H2O H3PO4/硅藻土300 C,7~8MPa。
CH3-CH2-OH 195 C,2MPa。
异丙醇CH2=CHCH3 + H2O H3PO4/硅藻土CH3-CH-CH3OH(遵循马氏规则)②炔烃加水CH CH + H2O HgSO4,稀H2SO4HC CHHOH重排H-C-CH3O98-105 C。
烯醇式酮式RC CH + H2OR-C-CH3O HgSO4,稀H2SO4RC CHHOH重排烯醇式为什么会重排成酮式呢?更稳定!99%1%H C C H H HO H C C HH OH 总键能2678KJ/mol2741KJ/mol互变异构室温下,两个构造异构体能迅速地相互转变,达到动态平衡的现象,叫互变异构现象。
ͪʽϩ´¼Ê½£¬¼´ÎªÒ»ÖµäÐ͵Ļ¥±äÒ칡£5.与次卤酸加成次卤酸的酸性很弱,它与烯烃加成时,生成β-氯代醇:CH 2=CH 2 + HO Cl δ+δ-Cl-CH 2-CH 2-OHβ-氯乙醇实际操作时,常用氯和水直接反应。
例:CH 2=CH 2CH 2CH 2Cl+Cl 2-Cl-H 2O -H+CH 2CH 2Cl ClCl -CH 2CH 2ClOH(主)(副)β-氯乙醇CHCH 2Cl+CH 3-CH 3-CH=CH 2+CHCH 2CH 3-ClOHCHCH 2CH 3-ClOHH 2O -H+Cl 2-Cl -2-氯-1-丙醇1-氯-2-丙醇a b这个反应也是亲电加成反应,即亲电试剂首先进攻,形成正离子。