平面弯曲及梁的基本分类
合集下载
直梁的弯曲

MC,MA的坐标相连,画出 抛物线;再以直线MA,MD左 和MD右,MB的坐标,可得 全梁的弯矩图图c所示。 由图可见,在D稍右处横
截面上有绝对值最大的弯 矩,其值为
M 15kN m max
例题分析
例题4-1:管道托架如图所示,如AB长为l,作用在其上的 管道重P1与P2,单位为kN,a、b、l以m计。托架可简化 为悬臂梁,试画出它的弯矩图。
例题分析
例题4-2:卧式容器可以简化为受均布载荷的外伸梁,如图 所示受均布载荷q作用的筒体总长L,试作出其弯矩图,并 讨论支座放在什么位置使设备的受力情况最好。
解:(1)共分三个受力段, 如图建立坐标系yAx.
(2)求支座反力RC、RD RC=RD =0.5qL
例题分析
(3)列弯矩方程,画弯矩图
例题分析
解:共分为三个受力段,取 梁左端A为坐标原点,建立 坐标系,如图:
•分段列弯矩方程,画弯矩图:
M1=0 (0≤x1 ≤ a)
M
M2=-P1 (x2 -a)
(a ≤ x2 ≤ b)
M3=-P1 (x3 -a) -P2 (x3 -b)
(b ≤ x3 ≤ l)
x
x
-
-P1 (b -a) -P1 (l -a) -P2 (l -b)
bh2
IZ 12
WZ 6
IZ
D 4
64
(1
4)
WZ
D3
32
(1
4)
截面几何量Iz 与Wz
其它截面形状的Iz 和Wz(参见表4-2)
对各种型钢,Iz 和Wz值可从有关材料手册中查到
❖结论:1)梁在弯矩相同的截面上, Iz 和Wz值 越大, σmax越小,因此设计梁的截面形状时,要 尽量使Iz 和Wz值大; 2)梁在弯矩相同的截面上, Iz和Iy可能不同,Wz 和Wy可能不同,因此若将梁沿轴向转90º,其承载 能力不同。
截面上有绝对值最大的弯 矩,其值为
M 15kN m max
例题分析
例题4-1:管道托架如图所示,如AB长为l,作用在其上的 管道重P1与P2,单位为kN,a、b、l以m计。托架可简化 为悬臂梁,试画出它的弯矩图。
例题分析
例题4-2:卧式容器可以简化为受均布载荷的外伸梁,如图 所示受均布载荷q作用的筒体总长L,试作出其弯矩图,并 讨论支座放在什么位置使设备的受力情况最好。
解:(1)共分三个受力段, 如图建立坐标系yAx.
(2)求支座反力RC、RD RC=RD =0.5qL
例题分析
(3)列弯矩方程,画弯矩图
例题分析
解:共分为三个受力段,取 梁左端A为坐标原点,建立 坐标系,如图:
•分段列弯矩方程,画弯矩图:
M1=0 (0≤x1 ≤ a)
M
M2=-P1 (x2 -a)
(a ≤ x2 ≤ b)
M3=-P1 (x3 -a) -P2 (x3 -b)
(b ≤ x3 ≤ l)
x
x
-
-P1 (b -a) -P1 (l -a) -P2 (l -b)
bh2
IZ 12
WZ 6
IZ
D 4
64
(1
4)
WZ
D3
32
(1
4)
截面几何量Iz 与Wz
其它截面形状的Iz 和Wz(参见表4-2)
对各种型钢,Iz 和Wz值可从有关材料手册中查到
❖结论:1)梁在弯矩相同的截面上, Iz 和Wz值 越大, σmax越小,因此设计梁的截面形状时,要 尽量使Iz 和Wz值大; 2)梁在弯矩相同的截面上, Iz和Iy可能不同,Wz 和Wy可能不同,因此若将梁沿轴向转90º,其承载 能力不同。
材料力学——4梁的弯曲内力

21
例题1 图所示,悬臂梁受集中力F作用, 试作此梁的剪力图和弯矩图 解: 1.列剪力方程和弯矩方程
FQ ( x) F
(0<x<l ) (0≤x<l)
M ( x) Fx
2.作剪力图和弯矩图 由剪力图和弯矩图可知:
FQ M
max max
F Fl
22
例题 2简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。 解:1.求约束反力 由对称关系,可得: 1 FAy FBy ql 2 2.列剪力方程和弯矩方程
Q2 Q1– Q2=P
x
x
梁的内力计算的两个规律:
(1)梁横截面上的剪力FQ,在数值上等于该截 面一侧(左侧或右侧)所有外力在与截面平行方 向投影的代数和。即:
FQ
F
yi
若外力使选取研究对象绕所求截面产生顺时针 方向转动趋势时,等式右边取正号;反之,取 负号。此规律可简化记为“顺转剪力为正”, 或“左上,右下剪力为正”。相反为负。
12
二、例题
[例1]:求图(a)所示梁1--1、2--2截面处的内力。 q 2 解:截面法求内力。 qL 1 1--1截面处截取的分离体 1 a y qL A M1 x1 Q1 图(b) 2 b 如图(b)示。
x
图(a)
Y qL Q1 0 Q1 qL
mA( Fi ) qLx1 M1 0 M1 qLx1
作梁的剪力图 FQB右=4kN/m×2m=8kN,FQD=0
34
35
27
3. 弯矩图与剪力图的关系
(1)任一截面处弯矩图切线的斜率等于该截面 上的剪力。 (2) 当FQ图为斜直线时,对应梁段的M图为二 次抛物线。当FQ图为平行于x轴的直线时,M图 为斜直线。
梁的弯曲

MB 0
MA 0
FAy= - M / l FBy= M / l
(2)列剪力方程和弯矩方程
弯曲内力
A
FAy= - M / l
a
x1 l
b B
C x2
FBy= M / l
AC段:距A端为x1的任意截面1-1以左研究
V x1=FAy M / l 0 x1 a M x1=FAyx1 Mx1 / l 0 x1 a
剪力和弯矩一般是随横截面的位置而变化的。横截面 沿梁轴线的位置用横坐标x表示,则梁内各横截面上的剪 力和弯矩就都可以表示为坐标x的函数,即
V=V(x)和 M=M(x) 以上两函数分别称为梁的剪力方程和弯矩方程。
弯曲内力
二、剪力图和弯矩图
为了形象地表明沿梁轴线各横截面上剪力和弯矩的变 化情况,通常将剪力和弯矩在全梁范围内变化的规律用图 形来表示,这种图形称为剪力图和弯矩图。
FBy
弯曲内力
总结与提示
截面法是求内力的基本方法。 (1) 用截面法求梁的内力时,可取截面任一侧研究,但 为了简化计算,通常取外力比较少的一侧来研究。 (2) 作所取隔离体的受力图时,在切开的截面上,未知 的剪力和弯矩通常均按正方向假定。 (3) 在列梁段的静力平衡方程时,要把剪力、弯矩当作 隔离体上的外力来看待,因此,平衡方程中剪力、弯矩的 正负号应按静力计算的习惯而定,不要与剪力、弯矩本身 的正、负号相混淆。
弯曲内力
q>0
弯曲内力
FQ=0截面
弯曲内力
三、应用规律绘制梁的剪力图和弯矩图
用规律作剪力图和弯矩图的步骤 (1) 求支座反力。 对于悬臂梁由于其一端为自由端,所以可以不求支 座反力。 (2) 将梁进行分段 梁的端截面、集中力、集中力偶的作用截面、分布 荷载的起止截面都是梁分段时的界线截面。 (3) 由各梁段上的荷载情况,根据规律确定其对应的 剪力图和弯矩图的形状。 (4) 确定控制截面,求控制截面的剪力值、弯矩值, 并作图。
平面弯曲的概念

3-2 直梁弯曲时的内力分析
解: 1、先求支座反力: 1)A处支座反力为:
Pb RA l
2)B处支座反力为:
Pa RB l
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-2 直梁弯曲时的内力分析
2、作剪力图: 1)AC段梁的剪力方程为:
Pb Q1 l
(0 x1 a)
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-2 直梁弯曲时的内力分析
2、内力符号规定: 1)剪力: 横截面上的剪力Q使该截面的邻近 微段有作顺时针转动趋势时取正号;有 反时针转动趋势时取负号。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-2 直梁弯曲时的内力分析
3-3纯弯曲时梁横截面上的正应力
二、 弯曲变形与应力的关系 1、纵向纤维的线应变:
bb O O
OO
( y)d d d
3-1 平面弯曲的概念
1、弯曲:当杆件受到垂直于杆轴线的外 力(即横向力)或力偶作用时,杆的轴线 由直线变成曲线的变形。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-1 平面弯曲的概念
2、梁:以弯曲变形为主的杆件。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-1 平面弯曲的概念
6、梁的类型: 梁根据约束有以下三种基本类型: 1)简支梁 2)外伸梁 3)悬臂梁 (注:以上梁都为静定梁)
2008.9~2009.1
梁的剪力和弯矩概念讲解(剪力图弯矩图,含例题)

6kN
1
2
q 2kN m
3
4
5
B
1 2 3 4 5
2m
A
3m
C
3m
FA 13kN
FB 5kN
例题
4.5
为使在锯开处两端面的开裂最小,应使锯口处的 弯矩为零,木料放在两只锯木架上,一只锯木架 放置在木料的一端,试问另一只锯木架放置何处 才能使木料锯口处的弯矩为零。
q
B
A
C
D
MD 0
MD 0
※
剪力和弯矩的计算规则
梁任意横截面上的剪力,等于作用在该截面左边 (或右边)梁上所有横向外力的代数和。截面左 边向上的外力(右边向下的外力)使截面产生正的 剪力,反之相反。【左上右下为正,反之为负】 梁任意横截面上的弯矩,等于作用在该截面左 边(或右边)所有外力(包括外力偶)对该截面 形心之矩的代数和。截面左边(或右边)向上的 外力使截面产生正弯矩,反之相反。【左顺右逆 为正,反之为负】
2m
FB 2kN 1m
7
kN
3 3
x 1.56
2 2
kNm
2.44
2
例题
4.12
4kN m
6kN
2kN m
4.5
4.5
1m
1m
2m
5.5
kN 1.5
5.5
4
8.5 7
kNm
例题
4.13
80 kN m
A
160 kN
D E
40kN m
B
40 kN
F
C
310 kN 2m
120
30
190
D
FD
MA
梁的弯曲(工程力学课件)

02 弯曲的内力—弯矩与剪力
3-3截面
M 3 q 2a a 2qa 2
4-4截面
qa 2
5qa 2
2
M 4 FB 2a M C
3qa
2
2
5-5截面
qa 2
M 5 FB 2a
2
02 弯曲的内力—弯矩与剪力
由以上计算结果可以看出:
(1)集中力作用处的两侧临近截面的弯矩相同,剪力不同,说明剪力在
后逐段画出梁的剪力图和弯矩图。
04 弯矩、剪力与载荷集度之间的关系
例8 悬臂梁AB只在自由端受集中力F作用,如图(a)所示,
试作梁的剪力图和弯矩图。
解:
1-1截面: Q1=-F M1=0
2-2截面: Q1=-F M1=-Fl
04 弯矩、剪力与载荷集度之间的关系
例9 简支梁AB在C点处受集中力F作用,如图(a)所示,作此梁的剪力
(2)建立剪力方程和弯矩方程;
(3)应用函数作图法画出剪力Q(x),弯矩M(x)的图线,即为剪力
图和弯矩图
03 弯矩图和剪力图
例9.3 悬臂梁AB在自由端B处受集中载荷F作用,如图(a)所示,试作
其剪力图和弯矩图。
解 :(1)建立剪力方程和弯矩方程
() = ( < < )
() = −( − ) ( ≤ ≤ )
方程和弯矩方程,并作剪力图和弯矩图。
解:(1)求支反力
(2)建立剪力方程和弯矩方程
03 弯矩图和剪力图
(3)绘制剪力图、弯矩图
计算下列5个截面的弯矩值:
03 弯矩图和剪力图
二、用简便方法画剪力图、弯矩图 (从梁的左端做起)
1.无载荷作用的梁段上 剪力图为水平线。 弯矩图为斜直线(两点式画图)。
工程力学第八章 梁的平面弯曲

在中性轴上,y=0,则正应力σ为零。
③静力平衡关系
空间平行力系的简化
N=∫AσdA My=∫AzσdA Mz=∫AyσdA ∵是纯弯曲
∴∑X=0 N=∫AσdA=0 ∑My=0 My=∫AzσdA=0 又∵∫AσdA=-Ε/ρ∫AydA ∴∫AydA=0 ∫AydA=Sz是横截面对Z轴(中性轴)的静面积
A
B
Q(x) + -
M(x)
+
④在集中力偶作用处,弯矩图将发生突
变,突变值等于集中力偶矩的大小;当
集中力偶顺时针作用时,弯矩图向上跳
跃(沿x方向),当集中力偶逆时针作用
时,弯矩图向下跳跃(沿x方向)。
M
A
C
B
Q(x)
-
M/L
Mb/L
M(x)
+
Ma/L
⑤若在梁的某一截面上Q(x)=0,亦即弯
=[(ρ+|y|)dψ-ρdψ]/ ρdψ
=|y|/ρ 这表明纵向纤维的线应变与它到中性层的距离
成正比。 ∵ε与y的符号相反 ∴ε=- y/ρ
②物理关系
当应力不超过材料的比例极限时,材料 符合虎克定律,σ=E·ε,将ε代入得σ=- E y/ρ
表明,横截面上任意点处的正应力σ与该 点到中性轴的距离成正比,即沿截面高 度,正应力呈线形分布。
危险截面上下边缘处的点叫危险点。 弯曲强度条件:
σmax= Mmax/ WZ≤[σ]
对于拉压许用应力不同的材料,其强度
条件应同时满足:
σmax拉≤[σ拉]
σmax压≤[σ压]
弯矩图: 没有载荷斜直线, 均布载荷抛物线, 集中载荷有尖点, 力偶载荷有突变。
③静力平衡关系
空间平行力系的简化
N=∫AσdA My=∫AzσdA Mz=∫AyσdA ∵是纯弯曲
∴∑X=0 N=∫AσdA=0 ∑My=0 My=∫AzσdA=0 又∵∫AσdA=-Ε/ρ∫AydA ∴∫AydA=0 ∫AydA=Sz是横截面对Z轴(中性轴)的静面积
A
B
Q(x) + -
M(x)
+
④在集中力偶作用处,弯矩图将发生突
变,突变值等于集中力偶矩的大小;当
集中力偶顺时针作用时,弯矩图向上跳
跃(沿x方向),当集中力偶逆时针作用
时,弯矩图向下跳跃(沿x方向)。
M
A
C
B
Q(x)
-
M/L
Mb/L
M(x)
+
Ma/L
⑤若在梁的某一截面上Q(x)=0,亦即弯
=[(ρ+|y|)dψ-ρdψ]/ ρdψ
=|y|/ρ 这表明纵向纤维的线应变与它到中性层的距离
成正比。 ∵ε与y的符号相反 ∴ε=- y/ρ
②物理关系
当应力不超过材料的比例极限时,材料 符合虎克定律,σ=E·ε,将ε代入得σ=- E y/ρ
表明,横截面上任意点处的正应力σ与该 点到中性轴的距离成正比,即沿截面高 度,正应力呈线形分布。
危险截面上下边缘处的点叫危险点。 弯曲强度条件:
σmax= Mmax/ WZ≤[σ]
对于拉压许用应力不同的材料,其强度
条件应同时满足:
σmax拉≤[σ拉]
σmax压≤[σ压]
弯矩图: 没有载荷斜直线, 均布载荷抛物线, 集中载荷有尖点, 力偶载荷有突变。
平面弯曲1(内力及内力图)

1
ΙΙ. ΙΙ. 梁的计算简图
一、载荷和约束力的类 型
1.集中力 2.集中力偶 3.分布力
F
m
q
二、梁的支座类型
1.固定铰支座
2.活动铰支座
3.固定端
三、梁的类型
1.简支梁
2.外伸梁 3.悬臂梁
约束力不超过三个, 以上三种梁统称为 : 静定梁(约束力不超过三个, 可由平衡方程求解。) 可由平衡方程求解。) 2
11
由外力写内力
力引起正剪力; 1.相对于横截面来说,左 段向上、右段向下的外 力引起正剪力; 相对于横截面来说, 段向上、 反之则反。 反之则反。
2.相对于横截面来说,左 、右段向上的外力引起 正弯矩; 相对于横截面来说, 正弯矩; 反之则反。 反之则反。
3.相对于横截面来说,外 力矩或外力偶,左段顺 时针转, 相对于横截面来说, 力矩或外力偶, 时针转, 反之则反。 右段逆时针转引起正弯 矩;反之则反。
3 .根据方程作图
Pa (a<x<l) l Pa (a ≤ x ≤ l ) M = FB ( l − x ) = (l − x ) l
Pa l
x
0
+
M
Pab l
8
例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 解:
FA = FB = ql 2
18
例. 作图示梁的Fs、M图 作图示梁的F
y
解:
Fa Fa FA = (↓),FB = + F(↑) l l
x1
A
B
x2
C
FxBiblioteka axlAB段
Fa Fs = − l Fa M=− x l
ΙΙ. ΙΙ. 梁的计算简图
一、载荷和约束力的类 型
1.集中力 2.集中力偶 3.分布力
F
m
q
二、梁的支座类型
1.固定铰支座
2.活动铰支座
3.固定端
三、梁的类型
1.简支梁
2.外伸梁 3.悬臂梁
约束力不超过三个, 以上三种梁统称为 : 静定梁(约束力不超过三个, 可由平衡方程求解。) 可由平衡方程求解。) 2
11
由外力写内力
力引起正剪力; 1.相对于横截面来说,左 段向上、右段向下的外 力引起正剪力; 相对于横截面来说, 段向上、 反之则反。 反之则反。
2.相对于横截面来说,左 、右段向上的外力引起 正弯矩; 相对于横截面来说, 正弯矩; 反之则反。 反之则反。
3.相对于横截面来说,外 力矩或外力偶,左段顺 时针转, 相对于横截面来说, 力矩或外力偶, 时针转, 反之则反。 右段逆时针转引起正弯 矩;反之则反。
3 .根据方程作图
Pa (a<x<l) l Pa (a ≤ x ≤ l ) M = FB ( l − x ) = (l − x ) l
Pa l
x
0
+
M
Pab l
8
例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 解:
FA = FB = ql 2
18
例. 作图示梁的Fs、M图 作图示梁的F
y
解:
Fa Fa FA = (↓),FB = + F(↑) l l
x1
A
B
x2
C
FxBiblioteka axlAB段
Fa Fs = − l Fa M=− x l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L q — 均布力
F — 集中力
L
L
(L称为梁的跨长)
平面弯曲的概念及工程实例
一、弯曲实例 工厂厂房的天车大梁:
F F
火车的轮轴:
F
F
F
F
楼房的横梁:
阳台的挑梁:
二、弯曲的概念:
受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
主要产生弯曲变形的杆--- 梁。
q
P M
三、平面弯曲的概念:
RA
NB
F1
q
F2
M
纵向对称面
平面弯曲
受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在 梁的纵向对称平面内(通过或平行形心主轴上且过 弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平 面曲线。
静定梁的分类(三种基本形式)
q(x)— 分布力 1、悬臂梁:
2、简支梁:
L M — 集中力偶
3、外伸梁: