2018年北师大版七年级数学初一下册第六章概率初步单元评价检测试卷及答案解析

合集下载

2018北师大数学初中七年级的下第六章概率初步单元总结复习综合测试卷试题包括答案.docx

2018北师大数学初中七年级的下第六章概率初步单元总结复习综合测试卷试题包括答案.docx

数学七年级(下)第六章概率初步单元综合测试题一、1.高速公路上依次有A,B,C 三个出口, A,B 之的距离 m km,B,C 之的距离 n km,决定在 A, C 之的任意一增一个生活服区,此生活服区在A, B 之的概率().n m n mA. mB. nC. +D. +nm n m2.在一个暗箱里放有 a 个除色外其他完全相同的球, a 个球中球只有 3 个.每次将球拌均匀后,任意摸出一个球下色再放回暗箱.通大量重复摸球后,摸到球的率定在25%,那么可以推算出 a 大是 ().A . 12B. 9C.4D.33.已知一个布袋里装有 2 个球, 3 个白球和 a 个黄球,些球除色外其余都相同.若从布袋里任意摸出 1 个球,是球的概率1, a 等于 () 3A .1B.2C.3D.44.在一个不透明的布袋中,球、黑球、白球共有若干个,除色外,它的形状、大小、地等完全相同.小新从布袋中随机摸出一球,下色后放回布袋中,匀后再随机摸出一球,下色⋯⋯如此大量摸球后,小新其中摸出球的率定于0.2,摸出黑球的率定于 0.5.此,他出下列:①若行大量摸球,摸出白球的率定于0.3;②若从布袋中任意摸出一个球,球是黑球的概率最大;③若再摸球100 次,必有 20 次摸出的是球.其中法正确的是()A .①②③B.①②C.①③D.②③5.下列事件生的概率0 的是 ()A .射运只射 1 次,就命中靶心B.任取一个数 x,都有 |x| ≥0C.画一个三角形,使其三的分8 cm,6 cm,2 cmD.抛一枚地均匀且六个面分刻有 1 到 6 的点数的正方体骰子,朝上一面的点数6.下列事件中是必然生的事件是A.打开机,正播放新B.通过长期努力学习,你会成为数学家C.从一副扑克牌中任意抽取一张牌,花色是红桃D.某校在同一年出生的有 367 名学生,则至少有两人的生日是同一天7.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是A. B. C. D.8.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()1131A .4B.5C.8D.39.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数实验次10020030050080010002000数频率0. 3650.3280.3300.3340.3360. 3320.333A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率10.100 个大小相同的球,用 1 至 100 编号,任意摸出一个球,则摸出的是 5 的倍数编号的球的概率是()A.1B.19 C. 1D.以上都不对201005二、填空题11.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.12.若从一个不透明的口袋中任意摸出一球是白球的概率为1,已知袋中白球有 3 个,则袋中球6的总数是 ____________。

北师大版数学七年级下册数学第6章概率初步单元测试题(有答案)

北师大版数学七年级下册数学第6章概率初步单元测试题(有答案)

北师大版七年级数学下册第6章概率初步单元测试题一.选择题(共10小题)1.有一个正方体骰子,6个面分别标有1~6这6个整数,投掷这个正方体骰子一次,朝上一面出现奇数的概率是()A.B.C.D.2.下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨3.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大4.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”5.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.246.某个事件发生的概率是,这意味着()A.在一次试验中没有发生,下次肯定发生B.在一次事件中已经发生,下次肯定不发生C.每次试验中事件发生的可能性是50%D.在两次重复试验中该事件必有一次发生7.点O1、O2、O3为三个大小相同的正方形的中心,一只小虫在如图所示的实线围成的区域内爬行,则小虫停留在阴影区域内的概率是()A.B.C.D.8.某林业部门要考察某幼苗的成活率,于是进行了试验,如表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400 1500 3500 7000 9000 14000成活数m369 1335 3203 6335 8073 12628成活的频率0.923 0.890 0.905 0.897 0.897 0.902 A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率9.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是()A.若α>90°,则指针落在红色区域的概率大于0.25B.若α>β+γ+θ,则指针落在红色区域的概率大于0.5C.若α﹣β=γ﹣θ,则指针落在红色或黄色区域的概率和为0.5D.若γ+θ=180°,则指针落在红色或黄色区域的概率和为0.510.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上二.填空题(共8小题)11.王强投掷一枚质地均匀的硬币,连续投3次,硬币落地均是正面向上,他投掷第四次正面向上的概率为.12.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为事件.13.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.14.一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是.15.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是.16.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.17.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.18.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为.三.解答题(共8小题)19.现有4个红球,请你设计摸球游戏.(1)使摸球事件是个不可能事件;(2)使摸球事件是个必然事件.20.盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.21.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n100 200 300 400 500 600 700 800 900 1000 针尖不着地的频数m63 120 186 252 310 360 434 488 549 610针尖不着地的频率0.63 0.60 0.63 0.60 0.62 0.61 0.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.22.如图,是一个被等分成8个扇形的转盘.请在扇形内写上“红、黑”表示涂上相应的颜色,未写表示白色,使得自由转动停止后,指针落在红色区域的概率等于落在黑色区域的概率,且小于落在白色区域的概率.填出两种,再指出“红、黑,白”分别是多少个?23.为弘扬中华传统文化,某学校决定开设民族器乐选修课,为了更适合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,给出以下未完成的统计图.(1)这次抽样调查中,共调查名学生.(2)扇形统计图(图2),“古筝”部分所对应的圆心角为度,“二胡”部分所对应的圆心角为度.(3)如果从选择“琵琶”选项的学生中,随机抽取15名学生参加“琵琶”乐器选修课,那么被选中的学生的可能性大小是.24.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?25.如图为一个封闭的圆形装置,整个装置内部为A、B、C三个区域(A、B两区域为圆环,C区域为小圆),具体数据如图.(1)求出A、B、C三个区域三个区域的面积:S A=,S B=,S C=;(2)随机往装置内扔一粒豆子,多次重复试验,豆子落在B区域的概率P B为多少?(3)随机往装置内扔180粒豆子,请问大约有多少粒豆子落在A区域?26.在边长为4的正方形平面内,建立如图1所示的平面直角坐标系.学习小组做如下实验:连续转动分布均匀的转盘(如图2)两次,指针所指的数字作为直角坐标系中P点的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标).(1)转盘转动共能得到个不同点,P点落在正方形边上的概率是;(2)求P点落在正方形外部的概率.参考答案与试题解析一.选择题(共10小题)1.解:由题意可得,投掷这个正方体骰子一次,朝上一面出现的奇数是1,3,5,故投掷这个正方体骰子一次,朝上一面出现奇数的概率是=,故选:B.2.解:A、任意购买一张电影票,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C.3.解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.根据不透明的盒子中装有5个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C 选项错误;D.根据不透明的盒子中装有5个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D 选项正确;故选:D.4.解:A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.5.解:根据题意得=0.25,解得:a=18,经检验:a=18是分式方程的解,故选:C.6.解:∵某个事件发生的概率是,∴根据概率的意义:该事件在一次试验中可能发生,也可能不发生,每次试验中事件发生的可能性是50%,故选:C.7.解:由图知:小虫停留在阴影区域内的概率==,故选:B.8.解:A.由此估计这种幼苗在此条件下成活的概率约为0.9,此选项正确;B.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,此选项错误;C.可以用试验次数累计最多时的频率作为概率的估计值,此选项正确;D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,此选项正确;故选:B.9.解:A、∵α>90°,∴>=0.25,故A正确;B、∵α+β+γ+θ=360°,α>β+γ+θ,∴>=0.5,故B正确;C、∵α﹣β=γ﹣θ,∴α+θ=β+γ,∵α+β+γ+θ=180°,∴α+θ=β+γ=180°,∴=0.5,∴指针落在红色或紫色区域的概率和为0.5,故C错误;D、∵γ+θ=180°,∴α+β=180°,∴=0.5,∴指针落在红色或黄色区域的概率和为0.5,故D正确;故选:C.10.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.二.填空题(共8小题)11.解:∵抛掷一枚质地均匀的硬币一次,可能的结果有:正面向上,反面向上;∴P(正面向上)=P(反面向上)=.故答案为:.12.解:投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则两枚骰子向上一面的点数之和等于12为随机事件,故答案为:随机.13.解:黑色区域的面积=3×5﹣×3×1﹣×2×2﹣×3×1=10,所以击中黑色区域的概率==.故答案为:.14.解:∵在一个布袋里放有5个红球,3个球黄球和2个黑球,它们除了颜色外其余都相同,∴从布袋中任意摸出一个球是黑球的概率为:=.故答案为:.15.解:51、53、55、57、59、60这6个数中能被5整除的有55和60两个,所以抽到的数能被5整除的可能性的大小是=,故答案为:.16.解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.17.解:P(中奖)==.故本题答案为:.18.解:由题意可得,×100%=20%,解得,a=15.故答案为:15.三.解答题(共8小题)19.解:(1)在4个白球中摸出一个红球,是不可能事件;(2)在4个白球中摸出一个白球,是必然事件.20.解:(1)∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是,∴可得关系式=;(2)如果往口袋中再放进10个黑球,则取得黑棋的概率变为,又可得=;联立求解可得x=15,y=25.21.解:(1):抛掷次数n100 200 300 400 500 600 700 800 900 1000 针尖不着地的频数m63 120 186 252 310 360 434 488 549 610 针尖不着地的频率0.63 0.60 0.62 0.63 0.62 0.60 0.62 0.61 0.61 0.61 (2)(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.22.解:根据题意画图如下:第一个图红色2份,所占的概率是=,第一个图黑色2份,所占的概率是=,第一个图白色4份,所占的概率是=;第二个图红色1份,所占的概率是,第二个图黑色1份,所占的概率是,第二个图白色6份,所占的概率是=.23.解:(1)根据题意得:20÷10%=200(名),答:一共调查了200名学生;故答案为:20;(2))“古筝”部分所对应的圆心角为:360°×25%=90°;喜欢古琴所占的百分比30÷200=15%,喜欢二胡所占的百分比1﹣10%﹣25%﹣20%﹣15%=30%,二胡部分所对应的圆心角的度数为:30%×360°=108°;故答案为:90,108;(3)被选中的学生的可能性大小是:=;故答案为:.24.解;现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.25.解:(1)S A=π•22=4π,S B=π•42﹣π•22=12π,S C=π•62﹣π•42=20π;故答案为:4π,12π,20π;(2)豆子落在B区域的概率P B为:=;(3)根据题意得:180×=100(粒),答:大约有100粒豆子落在A区域.26.解:(1)列表如下:1 2 3 ﹣1 ﹣2 ﹣31 (1,1)(1,2)(1,3)(1,﹣1)(1,﹣2)(1,﹣3)2 (2,1)(2,2)(2,3)(2,﹣1)(2,﹣2)(2,﹣3)3 (3,1)(3,2)(3,3)(3,﹣1)(3,﹣2)(3,﹣3)﹣1 (﹣1,1)(﹣1,2)(﹣1,3)(﹣1,﹣1)(﹣1,﹣2)(﹣1,﹣3)﹣2 (﹣2,1)(﹣2,2)(﹣2,3)(﹣2,﹣1)(﹣2,﹣2)(﹣2,﹣3)﹣3 (﹣3,1)(﹣3,2)(﹣3,3)(﹣3,﹣1)(﹣3,﹣2)(﹣3,﹣3)根据图表可得:转盘转动共能得到36个不同点,P点落在正方形边上的有12个,则P点落在正方形边上的概率是=;故答案为:36,;(2)根据图表得出:共有36个点,其中落在正方形外部的点共有20个,则P点落在正方形外部的概率是:=.北师大版。

北师大版数学七年级下册第六章 概率初步自我评估(一)(含答案)

北师大版数学七年级下册第六章   概率初步自我评估(一)(含答案)

第六章 概率初步自我评估(一)(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列事件中是必然事件的是( )A .2月份有31天B .一个等腰三角形中,有两条边相等C .明天的太阳从西边出来D .投掷一枚质地均匀的骰子,出现6点朝上2. 掷一枚质地均匀的硬币3次,其中2次正面朝上,1次正面朝下,若再次掷出这枚硬币,则正面朝下的概率是( ) A .1B .32 C .31 D .123.下列四个袋子中分别装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A B C D 4. 某校七年级(1)班成立了“环保卫士”宣传小组,其中男生2人,女生3人,从中随机抽取一名同学进社区宣传“垃圾分类”,恰好抽到女生的概率为( )5. 如图1,一个游戏盘中,红、黄、蓝三个扇形的圆心角度数分别为40°,120°,200°,让转盘自由转动,指针停止后在黄色区域的概率是( ) A .19B .13C .59D .79图1 图2 图36. 在一个不透明的口袋中放入红球6个,黑球2个,黄球n 个,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球个数n 是()A.3B.4C.5D.67.如图2,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中黑色部分的概率,P(乙)表示小球停留在乙区域中黑色部分的概率,下列说法中正确的是()A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定8.四张完全相同的卡片上,分别画有圆、平行四边形、等腰三角形、长方形,现从中随机抽取一张,恰好抽到轴对称图形的概率是()B.9.小明在一次用频率估计概率的试验中,统计了某一结果出现的频率,并绘制了图3所示的统计图,则符合这一结果的试验可能是()A.掷一枚质地均匀骰子,出现4点的概率B.任意买一张电影票,座位号是2的倍数的概率C.从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率D.从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率10.如图4,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()图4二、填空题(本大题共6小题,每小题3分,共18分)11. 有下列事件:①如果a,b都是有理数,那么ab=ba;②打开电视,正在播放新闻;③5张相同的小标签分别标有数字1~5,从中任意抽取1张,抽到0号签.其中属于确定事件的是____________.(填序号)12. 甲、乙两人轮流做下面的游戏:掷一枚质地均匀的骰子(每个面上分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是.13. 二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图5,指针落在惊蛰、春分、清明区域的概率是.图5 图6 图714.图6是一条线段,AB的长为10 cm,MN的长为2 cm,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为.15.在一个不透明的暗箱中装有红、黄、蓝三种除颜色外完全相同的小球,其中红球5个,黄球7个,蓝球a个.若每次将球充分搅匀后,随机摸出一个小球记下颜色后,放回盒子里,经过大量的重复试验后发现,摸到红球的频率稳定在25%左右,则a的值约为_________.16.乐乐同学有两根长度为4 cm,7 cm的木棒,他想自己动手钉一个三角形相框,如图7,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是.三、解答题(本大题共6小题,共52分)17. (7分)一个不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)判断摸到什么颜色的球可能性最大?(2)要使摸到这三种颜色的球的概率相等,需要在这个口袋里的球做什么调整?18.(8分)在一个不透明的袋中装有红、黄、白三种颜色的球共50个,且红球比黄球多5个,它们除颜色外都相同.已知从袋中随机摸出一个球,摸到的球是白球的概率为310.(1)求原来袋中白球的个数;(2)现从原来装有50个球的袋中随机摸出一个球,求摸到的球是红球的概率.19. (9分)在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?20.(9分)密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…,9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××(注:中旬为某月中的11日-20日),小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率.21.(9分)某公司的一批某品牌衬衣的质量抽检结果如下:(1)将上表补充完整;(2)结合表格数据直接写出这批衬衣中任抽1件是次品的概率;(3)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?22.(10分)一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x 个,其他均为黄球,现从布袋中随机摸出一个球,若是红球,则甲同学胜,若是黄球,则乙同学胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?附加题(20分,不计入总分)(1)把一个木制正方体的表面涂上红颜色,然后将其分割成64 个大小相同的小正方体,如图所示.若将这些小正方体均匀地搅混在一起,则任意取出一个正方体,其两面涂有红色的概率为;各面都没有红色的概率为;(2)若将大正方体用同样的方法分割成n3(n为正整数,n≥5)个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体,其两面涂有红色的概率是多少?各面都没有红色的概率是多少?第六章概率初步自我评估(一)参考答案一、1. B 2. D 3. D 4. A 5. B 6. B 7. C 8. C 9. D 10. D二、11. ①③12.甲13.1814.1515. 816.25三、17. 解:(1)因为红球个数最多,所以摸到红球的可能性最大.(2)要使摸到这三种颜色的球的概率相等,要把袋子里的1个红球变成白球即可.18. 解:(1)3501510⨯=,即白球的个数是15.(2)设红球的个数为x,由题意,得x+(x-5)+15=50,解得x=20.所以摸出一个球是红球的概率为202505=. 19. 解:(1)当n=5或6时,这个事件必然发生; (2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件,可能发生. 20. 解:(1)1或2(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920, 其中能被3整除的有912,915,918,所以密码数能被3整除的概率为310. 21. 解:(1)表格中从左到右依次填:0,0.04,0.08,0.06,0.06,0.06.(2)观察表格,可得随着抽检件数的增多,抽到次品的频率稳定在0.06,由频率估计概率可得这批衬衣中任抽1件是次品的概率为0.06.(3)根据(2)的结论,这批衬衣中任抽1件是次品的概率为0.06,则600×0.06=36(件). 答:要准备36件正品衬衣供顾客调换.22. 解:(1)当x=3时,红球有3个,白球有6个,黄球有16-3-6=7(个). 所以甲同学获胜可能性为316,乙同学获胜可能性为163671616--=. 因为316﹤716,所以当x=3时,乙同学获胜的可能性大. (2)要使游戏对双方公平,则有1616136x x-=,解得x=4. 答:当x=4时,游戏对双方是公平的. 附加题解: (1) 两面涂有红色正方体的每条棱有 2 个, 共有 12 条棱, 则有2×12=24(个), 概率为243648=;各面都没有红色的正方形有23=8(个),概率为81648=. (2) 两面涂有红色正方体的每条棱有(n -2)个, 共有 12 条棱, 则有12(n -2)个,概率为312(2)n n-; 各面都没有红色的正方形有(n -2)3个,概率为33(2)n n-.。

北师大七年级下《第六章概率初步》本章质量评估试卷(含答案)

北师大七年级下《第六章概率初步》本章质量评估试卷(含答案)

本章质量评估(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列事件是必然事件的是()A.某运动员投篮时连续3次全中B.太阳从西方升起C.打开电视正在播放电视剧D.若a≤0,则|a|=- a2.下列事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到100 ℃会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有()A.1个B.2个C.3个D.4个3.气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是()A.本市明天将有80%的地区降水B.本市明天将有80%的时间降水C.明天肯定下雨D.明天降水的可能性比较大4.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是()A.0B.C.D.15.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则()A.P1=1,P2=1B.P1=0,P2=1C.P1=0,P2=D.P1=P2=6.有一个正方体,6个面上分别标有1到6这6个整数,抛掷这个正方体一次,则出现向上一面的数字是偶数的概率为()A. B. C. D.7.某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元) 1000 500 100 50 10 2数量(个)10 40 150 400 1000 10000如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是()A. B. C. D.8.做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22B.0.44C.0.50D.0.569.关于频率和概率的关系,下列说法正确的是()A.频率等于概率B.当试验次数很大时,频率稳定在概率附近C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等10.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是()A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)二、填空题(每小题4分,共32分)11.下列6个事件中:(1)掷一枚硬币,正面朝上;(2)从一副没有大、小王的扑克牌中抽出一张恰为黑桃;(3)随意翻开一本有400页的书,正好翻到第100页;(4)天上下雨,马路潮湿;(5)买奖券中特等奖;(6)掷一枚正方体骰子,得到的点数大于7.其中确定事件为,不确定事件为;不可能事件为,必然事件为;不确定事件中,发生可能性最大的是,发生可能性最小的是.12.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜.这个游戏.(填“公平”或“不公平”)13.小芳掷一枚硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.14.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为.如果他将转盘等分成12份,那么红色区域应占份.15.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是.16.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.17.从某玉米种子中抽取6批,种子粒数100 400 800 1000 2000 5000发芽种子粒数85 318 652 793 1604 4005发芽频率0.850.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).18.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球约有个.三、解答题(共58分)19.(8分)一盒乒乓球共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品.指出这些事件分别是什么事件. 20.(10分)请用“一定”“很可能”“可能”“不太可能”“不可能”等语言来描述下列事件的可能性.(1)袋中有50个球,1个红的,49个白的,从中任取一球,取到红色的球;(2)掷一枚质地均匀的骰子,6点朝上;(3)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品;(4)早晨太阳从东方升起;(5)小丽能跳100 m高.21.(10分)一只小猫在如图所示的方砖上走来走去,求最终停在黑色方砖上的概率是多少.22.(10分)如图所示,有一个转盘,转盘被分成4个相同的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当做指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.23.(10分)小颖和小红两名同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10(1)计算“3点朝上”的频率和“5(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大.”小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?24.(10分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是.(1)取到白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?【答案与解析】1.D(解析:A项和C项可能发生也可能不发生,是随机事件;B项不可能发生,是不可能事件;D项必然发生,是必然事件.)2.A(解析:②在标准大气压下,水加热到100 ℃会沸腾是必然事件.)3.D(解析:本市明天降水概率是80%,只能说明明天降水的可能性比较大,是随机事件,A,B,C属于对题意的误解,只有D正确.)4.C(解析:因为是随机选取的,所以选取桂花、菊花、杜鹃花的可能性是相等的.)5.B(解析:因为袋中只有红球,所以摸到白球是不可能事件,摸到红球是必然事件.)6.C(解析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为.)7.C(解析:因为从10万张彩票中购买一张,每张被买到的机会相同,所以有10万个结果,奖金不少于50元的共有10+40+150+400=600(个),所以P(所得奖金不少于50元)==.故选C.)8.D(解析:在大量重复试验下,随机事件发生的频率可以作为概率的估计值,因此抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为1- 0.44=0.56.)9.B(解析:A.利用频率只能估计概率;B正确;C.概率是定值;D.可以相等,如“抛硬币试验”,可得到正面向上的频率为0.5,与概率相同.)10.B(解析:事件A:打开电视,它正在播广告是随机事件,0<P(A)<1;事件B:抛掷一个均匀的骰子,朝上的点数小于7是必然事件,P(B)=1;事件C:在标准大气压下,温度低于0 ℃时冰融化是不可能事件,P(C)=0.所以P(C)<P(A)<P(B).故选B.)11.(4)(6)(1)(2)(3)(5)(6)(4)(1)(5)(解析:(1)因为一枚硬币有正、反两面,所以掷一枚硬币,正面朝上是随机事件;(2)因为一副没有大、小王的扑克牌中有黑桃、红桃、梅花及方块共四种花色,故随机抽出一张恰是黑桃是随机事件;(3)因为一本书有400页,每页都有被翻到的可能,正好翻到第100页是随机事件;(4)天上下雨后雨水落到地上,马路就湿了,是必然事件;(5)买奖券可能中特等奖,也可能不中特等奖,是随机事件;(6)正方体骰子共有6个面,点数为1,2,3,4,5,6,得到的点数大于7是不可能事件.不确定事件中,(1)发生的概率为,可能性最大;(5)发生的可能性最小,概率往往为数百万分之一.)12.不公平(解析:甲获胜的概率是,乙获胜的概率是,两个概率值不相等,故这个游戏不公平.)13.(解析:掷一枚硬币正面向上的概率为,概率是个固定值,不随试验次数的变化而变化.)14.4(解析:12×=4(份).)15.(解析:圆形地面被分成面积相等的八部分,其中阴影占四部分,所以小球落在黑色石子区域内的概率是.)16.(解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是.)17.0.8(解析:由表知,种子发芽的频率在0.8左右摆动,并且随着统计量的增加,这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值.)18.15(解析:因为口袋里有25个球,试验200次,其中有120次摸到黄球,所以摸到黄球的频率为=,所以袋中的黄球约有25×=15(个).)19.解:(1)(2)可能发生,也可能不发生,是随机事件.(3)一定不会发生,是不可能事件.(4)一定发生,是必然事件.20.解:(1)不太可能.(2)可能.(3)很可能.(4)一定.(5)不可能.21.解:因为方砖共有18块,而黑色方砖有9块,所以停在黑色方砖上的概率是=.22.解:转一次转盘,它的可能结果有四种:红、红、绿、黄,并且各种结果发生的可能性相等.(1)P(指针指向绿色)=.(2)P(指针指向红色或黄色)=.(3)P(指针不指向红色)=.23.解:(1)“3点朝上”的频率是=;“5点朝上”的频率是=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率才稳定在事件发生的概率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.24.解:(1)P(取到白球)=1- P(取到红球)=1- =.(2)设袋中的红球有x只,则有=,解得x=6.所以袋中的红球有6只.。

2018春北师版七年级下第6章概率初步综合测试卷含答案(pdf版)

2018春北师版七年级下第6章概率初步综合测试卷含答案(pdf版)

Ð '(k!$j'M$L'N.´^)'¢( !" "
&%
$ /
+%
$ !
,%
# /
-%
) !
$)% abkY¶/4E)YP¿$!YÊ¿3! Y0¿$W1¿ý#
ïòwµU$,&ð¶/4Ð 2=$Y¿$(P¿'¢+
!$$-! ^
!$ "
&%$
+%)
,%!
-%"
$!% ¯PijO'%fn#$Ť¾OPÇÇ$-PQO¯|}>
$#% W*XX`UD¯k¾IIÂ#¢'ÇÇ{$È#Àck)*
='IY='È#iPijO$-ÎËWk)*'ÇÇèí
(
!" "
&% Zk[%¡zI'\½$=$ó;'¢
+% &kYE)YÊ¿3$YP¿'/½{Ð(k¿$(KP¿

,% ]k[^_$%z;'¢
-% Ð ¨kYdL$Øíu)dý'¢
y"$*)*!*"*#*'¡YL$TU&Zk¾;'LÙ()
'®L$WUDy'Zk¾;'LÙ³^!$-XUDy$¤
C+WYTUúe^+ £º»$
!"mngd'[\"h C & 6 3 5 Y &Ý%Ý() 6 #
lC*&
5
Á
0
65
Y
%Ý.Ý()

北师大版数学七年级下册数学第六章概率初步单元测试卷(含解析)

北师大版数学七年级下册数学第六章概率初步单元测试卷(含解析)

第六章概率初步单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(共10小题,满分30分,每小题3分)1.如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中的灰色部分的概率,P(乙)小球停留在乙区域中的灰色部分的概率,下列说法正确的是()A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定2.用如图所示的两个转盘进行“配紫色”游戏,配成紫色(也就是两个转盘分别转出一个是红,一个是蓝)的概率是()A.1325B.625C.3625D.653.小张用一枚质地均匀的硬币做抛掷试验,前10次掷的结果都是反面向上,那么下一次掷得正面向上的概率为P(A),则()A.P(A)=1 B.P(A)=0 C.P(A)=0.5 D.P(A)≥0.5 4.一个不透明的盒子里有几个除颜色外其他完全相同的小球,其中有6个红球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在30%,那么估计盒子中小球的个数n为()A.15 B.18 C.20 D.245.在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为()A.45B.14C.15D.346.连续掷一枚质地均匀的硬币两次,掷出的结果两次都是“正面朝上”的概率为()A.12B.13C.14D.237.下列事件是必然事件的为()A.明天太阳从西方升起B.掷一枚硬币,正面朝上C.打开电视机,正在播放“成都新闻”D.任意一个三角形,它的内角和等于180 8.下列事件中,属于必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意画一个三角形,其内角和为180°D.任意一个二次函数图象与x轴有交点9.盒子里有15个象棋子,其中有5个炮,4个马,6个象,任意摸一个,摸到(________)的可能性最大,摸到(________)的可能性最小.A.马,象B.炮,马C.象,马D.都有可能10.下列事件为随机事件的是()A.在一个大气压下,加热到100Co水沸腾B.购买一张彩票,中奖C.奥运会上,百米的成绩为5秒D.掷一枚普通的骰子,朝上一面的点数为8二、填空题(共7小题,满分28分,每小题4分)11.写出一个不可能事件_____.12.“a是实数,则a2≥0”这一事件是___事件.(填“确定”或“随机”)13.一不透明的口袋里装有白球和红球共20个,这些球除颜色外完全相同,小明通过多次模拟试验后发现,其中摸到白色球的频率稳定在0.2左右,则口袋中红色球可能有___个.14.小明在一次班会中参与知识抢答活动,现有语文题4个,数学题5个,综合题11个,搅匀后从中随机抽取1个题,他抽中综合题的概率是________________________. 15.“一个事件发生的可能性大小的数值,称为这个事件的概率”.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率记为P1,指针指向小于3的数的概率记为P2,指针指向偶数的概率记为P3,则P1、P2、P3的大小关系是_____.16.盒子里有材质、大小相同的红球、蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出______个球.17.一个不透明的袋中装有3个黑球和2个白球,这些球除颜色外都相同,从这个袋中任意摸出一个球为白球的概率是______.三、解答题(共6小题,满分42分,每题7分)18.掷三个普通的正方体的骰子,把三个骰子的点数相加,请问下列事件哪些是必然发生的,哪些是不可能发生的,哪些是可能发生的,说说你的理由.(1)和为2;(2)和为6;(3)和大于2;(4)和等于18;(5)和小于19;(6)和大于18.19.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中,红球有1个,若从中随机摸出一个球,这个球是白球的概率为2 3 .(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.20.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?21.一个口袋中有黑球10个,白球若干个,小明从袋中随机一次摸出10只球,记下其中黑球的数目,再把它们放回,搅均匀后重复上述过程20次,发现共有黑球18个,由此你能估计出袋中的白球是多少个吗?22.在一个不透明的袋中装有3个绿球,5个红球和若干个白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(要求通过列式或列方程解答)(1)若袋内白球有4个,求任意摸出一个球是绿球的概率是多少?(2)如果任意摸出一个球是绿球的概率是310,求袋子内有几个白球?23.将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张.给出下列事件:(1)抽出的牌的点数是8;(2)抽出的牌的点数是0;(3)抽出的牌是“人像”;(4)抽出的牌的点数小于6;(5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.参考答案1.C【解析】【分析】利用概率的定义直接求出P(甲)和P(乙)进行比较. 【详解】解:P(甲)=26=13,P(乙)=39=13,所以P(甲)=P(乙).故答案为:C【点睛】本题考查了随机事件的概率,掌握概率的定义是解题的关键.2.A【解析】【分析】列表得出所有等可能的情况数,找出配成紫色的情况数,除以总情况数即为所求的概率.【详解】解:列表得:由表可知共有5×5=25种可能,配成紫色的有13种,所以配成紫色的概率是1325,故选:A.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.3.C【解析】【分析】根据概率的意义就是事件出现的机会的大小,硬币出现正面向上与反面的机会相等,据此即可选择正确选项.【详解】因为每次掷硬币正面朝上的概率都是12,前面的结果对后面的概率是没有影响的,所以出现正面向上的概率是相同的.故选C.【点睛】本题考查了概率的知识,概率等于所求情况数与总情况数之比.4.C【解析】【分析】看到频率稳定,那么这一定利用频率估计概率,利用概率求数量的题目,这句话“摸到红球的频率稳定在30%”是关键,可以告诉我们红球的概率,利用红球的概率可以得到所有小球的数量.【详解】解:设摸到红球的概率为P,∵摸到红球的频率稳定在30%,∴P(摸到红球)=0.3,∵P(摸到红球)=红球的数量所有小球的数量,∴6=200.3P==红球的数量所有小球的数量【点睛】本题主要考查学生利用概率求数量5.C【解析】【分析】根据题意,易得这个不透明的袋子里有10个球,已知其中有2个白球,根据概率的计算公式可得答案.【详解】解:这个不透明的袋子里有10个球,其中2个白球,小明随意地摸出一球,是白球的概率为:21 105;故选:C.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.关键是准确找出总情况数目与符合条件的情况数目.6.C【解析】【分析】画树状图展示所有4种等可能的结果数,找出掷出的结果两次都是“正面朝上”的结果数,然后根据概率公式计算.【详解】解:画树状图为:共有4种等可能的结果数,其中掷出的结果两次都是“正面朝上”的结果数为1,所以掷出的结果两次都是“正面朝上”的概率=14.故选:C.【点睛】本题考查了列表法与树状图法.7.D【解析】【分析】必然事件即为一定会发生的事件,其概率为1,判断即可得出答案. 【详解】A明天太阳从西方升起是不可能事件,故选项A错误;B掷一枚硬币,正面朝上是随机事件,故选项B错误;C打开电视机,正在播放“成都新闻”是随机事件,故选项C错误;D任意一个三角形,它的内角和等于180°是一个必然事件,符合题意;故答案选择D.【点睛】此题考查了随机事件,解题的关键是理解必然事件和随机事件的概念.8.C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、打开电视机正在播放广告是随机事件;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;C、任意画一个三角形,其内角和为180°是必然事件,D、任意一个二次函数图象与x轴有交点是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.C【解析】【分析】因为盒子里有5个炮,4个马,6个象,象的个数>炮的个数>马的个数,马的个数最少,所以摸到象的可能性最大,摸到马的可能性最小,据此解答.【详解】解:盒子里有15个象棋子,其中有5个炮,4个马,6个象,6>5>4,任意摸出一个,摸到象的可能性最大,摸到马的可能性最小,故答案为:C.【点睛】本题可以不用求出摸出三种球的可能性,可以直接根据每种球的个数的多少直接判断即可.10.B【解析】【分析】随机事件是可能发生也可能不发生的事件,依据定义找到正确选项即可.【详解】解:A、是必然事件,故错误;B、可能发生,也可能不发生,是随机事件,故正确;C、是不可能事件,故错误;D、是不可能事件,故错误;故选择:B.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.明天是三十二号【解析】不可能事件是指在一定条件下,一定不发生的事件.一个月最多有31天,故明天是三十二号不可能存在,为不可能事件.12.确定【解析】【分析】先判断命题的真假,然后根据必然事件、不可能事件、随机事件的概念求解.【详解】∵“a是实数,a2≥0”是真命题,∴“a是实数,a2≥0”这一事件是必然事件,是确定事件,.故答案是:确定.【点睛】考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.16【解析】【分析】由题意:“小明通过多次摸球试验后发现”知所得频率可以近似地认为是概率,再由概率之和为1计算出红色与黑色球的频率,最后由数据总数×频率=频数计算个数即可.【详解】解:Q白色球频率稳定在0.2左右,∴摸到红色与黑色球的频率为10.20.8-=,故口袋中红色与黑色球个数可能是200.816⨯=个,故答案为:16.【点睛】本题考查了概率的意义,大量反复试验下频率稳定值即概率.关键是算出摸到球的频率.14.11 20【解析】【分析】语文题4个,数学题5个,综合题11个,一共有20个题,从20个中抽到综合题的可能性,有11种,因此抽中综合题的概率是11 20【详解】解:设抽中综合题的概率为P,P(抽中综合题)=11=20抽中综合题的数量抽题的总数量【点睛】本题考查学生对于求简单概率问题的掌握15.P1=P3>P2【解析】【分析】根据概率公式计算出三者的概率,从而得出它们大小关系.【详解】∵指针指向大于3的数的概率记为P1=36=12,指针指向小于3的数的概率记为P2=26=13,指针指向偶数的概率记为P3=36=12,∴P1=P3>P2,故答案为:P1=P3>P2.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.16.3【解析】【分析】根据题意可知,盒子里共有两种颜色的球,想要摸出的球一定有2个同色,题中“一定”说明当摸出的球是两个时不符合,因为摸出两个球时,可以是两红,两蓝,一红一蓝,不符合一定有两个同色,所以至少当摸出第3个球时,才能保证一定有2个同色的球出现.【详解】摸出一个球出来,颜色情况可能是一个蓝或者一个红,此时只有一个球,不存在两个同色球的情况,不符合题意,排除.然后继续摸出第2个球出来时,此时两个球的颜色情况可能是两红、两蓝、一红一蓝,此时虽然出现了2个同色球的情况,但不符合题意中“一定”有2个同色的情况,因为还包含了一蓝一红,不符合题意,排除.当摸出第三个球出来时,此时的颜色情况可能是三红、三蓝、一红两蓝、一蓝两红。

北师大版初中数学七年级下册《第6章 概率初步》单元测试卷(含答案解析

北师大新版七年级下学期《第6章概率初步》单元测试卷一.选择题(共3小题)1.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 2.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.3.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的二.填空题(共47小题)4.抛掷一枚质地均匀的硬币一次,正面朝上的概率是.5.在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.6.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为.7.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为m2.8.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.9.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.10.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.11.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为.12.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.13.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.14.从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是.15.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是.17.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.19.一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是.20.从,π,这三个数中选一个数,选出的这个数是无理数的概率为.21.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.22.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.23.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.24.一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是.25.掷一枚质地均匀的骰子,向上一面的点数为5的概率是.26.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.27.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是.28.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.29.在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.30.在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球的概率为,则袋子内共有乒乓球的个数为.31.已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为.32.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.33.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.34.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.35.若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是.36.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为37.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:合格品频率则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)38.某射手在相同条件下进行射击训练,结果如下:击中靶心的频率该射手击中靶心的概率的估计值是(精确到0.01).39.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1).40.我市今年对九年级学生进行了物理、化学实验操作考试,其中物理实验操作考试有4个考题备选,分别记为A,B,C,D,学生从中随机抽取一个考题进行测试,如果每一个考题抽到的机会均等,那么学生小林抽到考题B的概率是.41.在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.42.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.43.从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.44.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.45.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.46.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.47.在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.48.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是.49.一个不透明的口袋中有三个完全相同的小球,它们的标号分别为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.50.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.北师大新版七年级下学期《第6章概率初步》单元测试卷参考答案与试题解析一.选择题(共3小题)1.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1【分析】利用概率的意义以及实际生活常识分析得出即可.【解答】解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;故选:A.【点评】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.2.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.3.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:A.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.二.填空题(共47小题)4.抛掷一枚质地均匀的硬币一次,正面朝上的概率是.【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【解答】解:抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=,故答案为:.【点评】此题考查了概率公式,概率=发生的情况数÷所有等可能情况数.5.在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是15.【分析】黑色棋子除以相应概率算出棋子的总数,减去黑色棋子的个数即为白色棋子的个数;【解答】解:5÷﹣5=15.∴白色棋子有15个;故答案为:15.【点评】本题主要考查了概率的求法,概率=所求情况数与总情况数之比.6.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为20.【分析】利用频率估计概率,然后解方程即可.【解答】解:设原来红球个数为x个;则有=,解得x=20.故答案为20.【点评】本题考查了利用频率估计概率:一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.7.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 2.4m2.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.【解答】解:长方形的面积=3×2=6(m2),∵骰子落在世界杯图案中的频率稳定在常数0.4附近,∴世界杯图案占长方形世界杯宣传画的40%,∴世界杯图案的面积约为:6×40%=2.4m2,故答案为:2.4.【点评】本题考查的是利用频率估计概率,正确得到世界杯图案的面积与长方形世界杯宣传画的面积之间的关系是解题的关键.8.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.9.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.【分析】击中黑色区域的概率等于黑色区域面积与正方形总面积之比.【解答】解:随意投掷一个飞镖,击中黑色区域的概率是==.故答案为:.【点评】此题考查了几何概率计算公式以及其简单应用.注意面积之比=几何概率.10.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.【分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可;【解答】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率==.故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为2.【分析】根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.【解答】解:由题意可得,m=3÷﹣3﹣4=9﹣3﹣4=2,故答案为:2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.12.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.13.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的,可得结论.【解答】解:如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.【点评】此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.14.从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是.【分析】在6个数中找出无理数,再根据概率公式即可求出抽到无理数的概率.【解答】解:∵在﹣1、0、、π、5.1、7这6个数中无理数有、π这2个,∴抽到无理数的概率是=,故答案为:.【点评】本题考查了概率公式以及无理数,根据无理数的定义找出无理数的个数是解题的关键.15.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.【分析】根据概率公式计算即可得.【解答】解:∵在这4张无差别的卡片上,只有1张写有“葫芦山庄”,∴从中随机一张卡片正面写有“葫芦山庄”的概率是,故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【解答】解:∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是=,故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.17.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.【分析】根据题意和题目中的数据可以求得小明随意吃了一个,则吃到腊肉棕的概率.【解答】解:由题意可得,小明随意吃了一个,则吃到腊肉棕的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.19.一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是16.【分析】根据题意和题目中的数据,由白球的数量和概率可以求得总的球数,从而可以求得红球的个数.【解答】解:由题意可得,红球的个数为:4÷﹣4=4×5﹣4=20﹣4=16,故答案为:16.【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.20.从,π,这三个数中选一个数,选出的这个数是无理数的概率为.【分析】由题意可得共有3种等可能的结果,其中无理数有π、共2种情况,则可利用概率公式求解.【解答】解:∵在,π,这三个数中,无理数有π,这2个,∴选出的这个数是无理数的概率为,故答案为:.【点评】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.21.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.22.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.【分析】根据几何概型概率的求法,飞镖扎在小正方形内的概率为小正方形内与大正方形的面积比,根据题意,可得小正方形的面积与大正方形的面积,进而可得答案.【解答】解:根据题意,AB2=AE2+BE2=13,=13,∴S正方形ABCD∵△ABE≌△BCF,。

北师大版七年级数学下册单元测试卷第六章 概率初步附答案

第六章概率初步一、选择题(共18小题;共54分)1. 一条信息可以通过如图的网络线由上(点)往下向各站点传送,例如:信息到点可由经的站点送达,也可由经的站点送达,共有两条途径传送,则信息由点到达的不同途径共有A. 条B. 条C. 条D. 条2. 从件不同款式的衬衣和条不同款式的裙子中分别取一件衬衣和一条裙子搭配,可能的情况有A. 种B. 种C. 种D. 种3. 从标号分别为,,,,的张卡片中,随机抽取张.下列事件中,必然事件是A. 标号小于B. 标号大于C. 标号是奇数D. 标号是4. 一个暗箱里装有个黑球,个白球,个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是C. D.5. 盒子中装有个红球和个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是A. B. C. D.6. 太阳绕地球转,这是的.A. 可能B. 不可能C. 一定7. 下列事件中,是必然事件的是A. 打开电视机,正在播放新闻B. 父亲年龄比儿子年龄大C. 通过长期努力学习,你会成为数学家D. 下雨天,每个人都打着雨伞8. 某篮球运动员在同一条件下,进行投篮训练,共投次,其中投中次,据此估计,这名球员投篮一次投中的概率约是A. B. C. D.9. 下列成语所描述的事件概率为的是A. 水中捞月B. 守株待兔C. 瓮中捉鳖D. 十拿九稳10. 下列说法正确的是A. 某种彩票的中奖率为千分之一,一次买一千张彩票一定中奖B. 一批零件的合格率为百分之九十九,任意抽查一个一定合格C. 下雨天走在路上不太可能被雷电击倒D. 抛掷两枚一元的硬币,出现一正一反的可能性比出现两个正面的可能性小11. 小明训练上楼梯赛跑,他每步可上阶或者阶(不上阶),那么小明上阶楼梯的不同方法共有(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法)A. 种B. 种C. 种D. 种12. 在投掷一枚硬币的游戏过程中,已知“正面朝上”的概率为,那么下列说法正确的是A. 投掷次必有次“正面朝上”B. 投掷很多次的时候,极有可能出现“正面朝上”C. 投掷次可能有次“正面朝上”D. 投掷很多次的时候,极少出现“正面朝上”13. 下列事件中最有可能发生的是A. 刚买回来的新手机不能打电话B. 足球比赛比分为C. 北方的冬天下雪D. 买彩票中了一等奖14. 下列事件中,属于随机事件的是A. 在十进制中B. 从长度分别为厘米,厘米,厘米,厘米的根小木棒中,取根为边拼成一个三角形C. 方程在实数范围内有解D. 在装有个红球的口袋内,摸出一个白球15. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是A. B. C. D.16. 某班学生中随机选取一名学生是男生的概率是,那么该班男女生的人数比是17. 现有,,,,共五个数,从中取若干个数分给A,B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有分配方法A. 种B. 种C. 种D. 种18. 小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是D.二、填空题(共7小题;共31分)19. 现有张扑克牌,牌面分别是方块,,和草花,,,小红从草花和方块里各摸张牌,摸到张牌上的数之和是的概率是.20. 三条任意长的线段可以组成一个三角形,这一事件是事件.21. 某班要选名同学代表参加班级间的交流活动.现在按下面的办法选取:把全班同学的姓名分别写在没有明显差别的纸片上,把纸片混放在一个盒子里,充分搅拌后,随机抽取张,按照纸片上所写的名字选取名同学.你觉得上面的选取过程是简单随机抽样吗? (填“是”或“不是”).22. 甲、乙、丙、丁、戊五位同学参加一次活动,很幸运的是他们都得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙,丙,丁,戊依次取得第到第件礼物,当然取法各种各样,那么他们共有种不同的取法.23. 一道选择题有A,B,C,D 个选项,只有个选项是正确的.若两位同学随意任选个答案,则同时选对的概率为.24. 若一事件发生的概率是,则它发生(填“必然”、“可能”或“不可能”).25. 从学校任选一位同学,事件:该同学是八年级的,事件:该同学是九年级()班的,事件:该同学是男的,用,,分别表示事件,,发生的可能性大小,按从小到大的顺序排列是.三、解答题(共5小题;共65分)26. 如图,圆盘分成大小相等的扇形,分别写有数字,任意转动圆盘,比较下列事件的可能性大小,并按照从大到小的顺序排列(当指针落在扇形边界时,统计在逆时针方向相邻的扇形区域内).()指针落在数字区域内,可能性记为;()指针落在奇数区域内,可能性记为;()指针落在的倍数区域内,可能性记为.27. 请你设计一个游戏,其中包括“不太可能”发生的事件、“很有可能”发生的事件、“不可能发生”的事件.28. 有一个质地均匀的正方体,一面涂上红色,两面涂上黄色,三面涂上绿色.用依次表示抛掷出“红”“黄”“绿”“红或黄或绿”“蓝”的可能性大小,请你将它们的可能性大小按照从小到大的顺序排列.29. 小明有双黑袜子和双白袜子,假设袜子不分左右,那么从中随机抽取只恰好配成一双的概率是多少?如果袜子分左右呢?30. 在袋中装有大小、形状、质量完全相同的个白球和个红球,甲、乙两人从中进行摸球游戏,在游戏之前两人就各有分,然后从中轮番摸球,每次摸三个球,然后放回袋中搅匀,再由另一个人摸球,得分规则如下:最后以得分高者为胜者,请问这个游戏对甲、乙双方公平吗?如果不公平,谁更有利;如果公平,请说明理由.答案第一部分1. C 【解析】经的只有条,经的有条,经的只有条,经的有条,所以总共有条.2. D3. A4. C5. C6. B7. B8. B9. A10. C11. C 【解析】根据题意可知,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,,上阶楼梯的方法数为.12. B13. C14. B15. C【解析】在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有种等可能的结果,与图中阴影部分构成轴对称图形的有②④⑤,共种情况,所以与图中阴影部分构成轴对称图形的概率是.16. A17. B18. B 【解析】如图,基本事件是,颜色都对号了的事件是,所以答案是第二部分【解析】摸到张牌上的数之和是的情况有:,;,;,.故摸到张牌上的数之和是的概率是.20. 随机21. 是22.【解析】甲、乙、丙、丁、戊取礼物的顺序有种,为:①A,B,C,D,E;②A,C,D,E,B;③A,C,D,B,E;④A,C,B,D,E;⑤C,D,E,A,B;⑥C,D,A,B,E;⑦C,D,A,E,B;⑧C,A,B,D,E;⑨C,A,D,B,E;⑩C,A,D,E,B.23.【解析】一个同学任取一个的概率为个答案同时选对的概率为.24. 可能25.第三部分26. .27. 略28. .29. 共有种等可能的结果数,若袜子不分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子不分左右,那么从中随机抽取只恰好配成一双的概率;若袜子分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子分左右,那么从中随机抽取只恰好配成一双的概率.30. 这个游戏对双方公平.理由:在三红三白六个球中,任意摸出三个球,是三红的概率为,同理三个球都为白球的概率也为,若摸出的球是二红一白,则有三种情况:红,红,白;红,白,红;白,红,红,摸出球为二红一白概率为,同理二白一红的概率也为,所以(分),(分),所以,所以摸一次球甲、乙两人所得的平均分相等,因此这个游戏公平.。

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。

北师大版初中数学七年级下册第六单元《概率初步》单元测试卷(较易)(含答案解析)

北师大版初中数学七年级下册第六单元《概率初步》单元测试卷(较易)(含答案解析)考试范围:第六单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. “明天是晴天”这个事件是( )A. 确定事件B. 不可能事件C. 必然事件D. 随机事件2. 一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )A. 掷一次这枚骰子,向上一面的点数小于5B. 掷一次这枚骰子,向上一面的点数等于5C. 掷一次这枚骰子,向上一面的点数等于6D. 掷一次这枚骰子,向上一面的点数大于63. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小4. 一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )A. 掷一次这枚骰子,向上一面的点数小于5B. 掷一次这枚骰子,向上一面的点数等于5C. 掷一次这枚骰子,向上一面的点数等于6D. 掷一次这枚骰子,向上一面的点数大于65. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果,下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( )A. ①B. ②C. ①②D. ①③6. 口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是( )A. 从口袋中拿一个球恰为红球B. 从口袋中拿出2个球都是白球C. 拿出6个球中至少有一个球是红球D. 从口袋中拿出的球恰为3红2白7. 为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是( )A. 0.85B. 0.57C. 0.42D. 0.158. 一个不透明的袋子中只装有1个黄球和3个红球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A. 摸到黄球是不可能事件B. 摸到黄球的概率是34C. 摸到红球是随机事件D. 摸到红球是必然事件9. 一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸1个球,摸到红球的概率是( )A. 13B. 23C. 25D. 3510. 不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是( )A. ba+b B. baC. aa+bD. ab11. 一副扑克牌有54张,(黑桃、红桃、方片、草花各13张,大小王各一张)从牌中任意摸出一张牌是红桃的概率是( )A. 1352B. 1354C. 12D. 132712. 如图,小颖有一个卡片藏在9块瓷砖中的某一块下面(每块瓷砖除图案外其它均相同),那么卡片藏在瓷砖下的概率为( )A. 59B. 16C. 13D. 12第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一副52张的扑克牌(无大王、小王),从中任意取出一张,抽到“K”的可能性的大小是______.14. 下列事件:①太阳从东方升起;②三条线段能组成一个三角形;③a是实数,|a|<0;④购买一张大乐透彩票,中大奖500万.其中确定事件是______ (填写序号).15. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率mn0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.16. 在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随,则a=.机摸出1个球,摸到红球的概率为23三、解答题(本大题共9小题,共72.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六单元检测
(45分钟 100分)
一、选择题(每小题4分,共28分)
1.掷一枚质地均匀的硬币10次,下列说法正确的是( )
(A)每2次必有1次正面向上
(B)可能有5次正面向上
(C)必有5次正面向上
(D)不可能有10次正面向上
2.(2012·徳阳中考)下列事件中,属于必然事件的个数是( )
(1)打开电视,正在播广告;
(2)投掷一枚普通的骰子,掷得的点数小于10;
(3)射击运动员射击一次,命中10环;
(4)在一个只装有红球的袋中摸出白球.
(A)0 (B)1 (C)2 (D)3
3.(2012·枣庄中考)在一个不透明的盒子中装有8个白球,若干个黄球,它们
,则黄球除颜色不同外,其余均相同.若从中随机摸出一个球为白球的概率是2
3
的个数为( )
(A)16 (B)12 (C)8 (D)4
4.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢.下面说法正确的是( )
(A)小强赢的概率最小(B)小文赢的概率最小
(C)小亮赢的概率最小 (D)三人赢的概率都相等
5.小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为( )
(A)16 (B)18 (C)19
(D)
518
6.(2012·哈尔滨中考)在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到不合格产品的概率是( ) (A)
110
(B)15 (C)25 (D)45
7. 某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是( )
(A) 1
2
(B)13
(C)14
(D) 15
二、填空题(每小题5分,共25分) 8.“明天会下雨”是_________事件.
9.(2012·益阳中考)有长度分别为2 cm ,3 cm ,4 cm ,7 cm 的四条线段,任取其中三条能组成三角形的概率是____.
10.(2012·河北中考)在1×2的正方形网格格点上放三
枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为____.
11.某电视台综合节目接到热线电话4 000个,现要从中抽取“幸运观众”10名,
张小华同学打通了一次热线电话,那么他成为“幸运观众”的可能性是______(填百分率).
12.王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是________.
三、解答题(共47分)
13.(12分)(2012·南京中考)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学.
(2)随机选取2名同学,其中有乙同学.
14. (10分)甲、乙两人打赌,甲说往图中的区域掷石子,它一定会落在阴影部分上,乙说绝不会落在阴影部分上,你认为谁获胜的概率较大?通过计算说明.
15.(12分)某商人制成了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,若指针指向字母“A”,则收费2元,若指针指
向字母“B”,则奖3元;若指针指向字母“C”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什
么?
16.(13分) 在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A,B,C,D四种型号的小轿车共1 000辆进行展销.C型号轿车销售的成交率为50%,其他型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.
(1)参加展销的D型号轿车有多少辆?
(2)请你将图2的统计图补充完整;
(3)通过计算说明,哪一种型号的轿车销售情况最好?
(4)若对已售出轿车进行抽奖,现将已售出A,B,C,D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.
答案解析
1.【解析】选B.掷一枚质地均匀的硬币10次,可能有5次正面向上.
2.【解析】选B.打开电视,正在播广告是不确定事件;射击运动员射击一次,命中10环是不确定事件;在一个只装有红球的袋中摸出白球是不可能事件;投掷一枚普通的骰子,掷得的点数小于10是必然事件.故选B.
3.【解析】选D.8÷2
3
=12(个),12-8=4(个).
4.【解析】选A.设有A,B,C三枚硬币,共有以下几种情况(用1表示正,0表示反):1,1,1;0,0,0;1,1,0;1,0,0;1,0,1;0,1,1;0,1,0;
0,0,1.于是P(小强赢)=1
4,P(小亮赢)=3
8
,P(小文赢)=3
8

所以小强赢的概率最小.
5.【解析】选D.设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36,其中阴影部分面积为1
2
×(4+4+6+2)+2=10,则投中阴影部分的
概率为105
3618
=.
6.【解析】选B.从中任意抽取一件检验,则抽到不合格产品的概率是21
105
=.
7.【解析】选C.等待的时间不超过15分钟的概率为151
604
=.
8.【解析】“明天会下雨”这个事件可能发生,也可能不发生,因而是一个不确定事件.
答案:不确定
9.【解析】从2 cm,3 cm,4 cm,7 cm的四条线段中,任取其中三条有四种情况:2、3、4,2、3、7,2、4、7,3、4、7,只有2、3、4能构成三角形,所
以能组成三角形的概率是1
4
.
答案:1
4
10.【解析】共四种情况,其中以这三枚棋子所在的格点为顶点的三角形是直角
.
三角形的有三种情况,其概率为3
4
答案:3
4
11.【解析】他成为“幸运观众”的可能性=10÷4 000=0.25%.
答案:0.25%

12.【解析】两数和共9种情况,和为7的情况数有3种,王红获胜的概率为3
9
;所以王红获胜的可能性较大.
和为8的情况数有2种,刘芳获胜的概率为2
9
答案:王红
13.【解析】(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好
.
选中乙同学的概率是1
3
(2)从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲、乙)、(甲、丙)、(甲、丁)、(乙、丙)、(乙、丁)、(丙、丁),共有6种,它们出现的可能性相同,所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种,所以P(A)=31
=.
62
14.【解析】甲获胜的概率为123
=,
328
乙获胜的概率为:205
=.
328
可见乙获胜的概率大.
15.【解析】商人盈利的可能性大.
=40(次);
P A=80×4
8
P B=80×1
=10(次);
8
P C=80×3
=30(次);
8
理由:商人盈利:80×48
×2=80(元), 商人亏损:80×18
×3+80×38
×1=60(元), 因为80>60,
所以商人盈利的可能性大.
16.【解析】(1)因为1-35%-20%-20%=25%, 所以1 000×25%=250(辆). (2)如图,1 000×20%×50%=100.
(3)四种型号轿车的成交率:
A :
168350×100%=48%;B :98
200
×100%=49%; C :50%;D :130
250
×100%=52%.
所以D 种型号的轿车销售情况最好.
(4)因为
16816821
1689810013049662
==+++.
所以抽到A 型号轿车发票的概率为21
62
.。

相关文档
最新文档