(教案2)5.1相交线

合集下载

人教版《5.1相交线》七年级数学教案

人教版《5.1相交线》七年级数学教案

人教版《5.1相交线》七年级数学教案为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享人教版《5.1相交线》初一数学教案,希望大家在学习中得到提高。

[教学目标]1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达有公共的顶点O,而且的两边分别是两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2) 邻补角是互补的两个角,互补的两个角是邻补角(3) 对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交,求的度数。

初中数学_5.1 相交线教学设计学情分析教材分析课后反思

初中数学_5.1 相交线教学设计学情分析教材分析课后反思

四、《相交线》教学设计一、教学目标1、情感态度与价值观(1)通过分组讨论,培养学生合作交流的意识和探索精神;(2)通过对顶角、邻补角性质的研究,体会它们在解决实际问题中的作用,感受数学的严谨性以及数学结论的确定性.2、过程与方法(1)通过学习邻补角、对顶角等概念,进一步发展学生抽象概括能力;(2)通过对相交线、邻补角、对顶角的研究,•体会它们在解决实际问题中的作用,并能用它们解释生活中的一些现象.3、知识与技能(1)理解相交线、邻补角、对顶角的概念;毛(2)理解对顶角相等的性质.三、重点、难点重点:邻补角、对顶角的概念,对顶角性质与应用.难点:理解对顶角相等的性质.学习方法:采用“观察──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。

教学过程一、情景导入1、读一读,看一看教师在轻松欢快的音乐中演示有关平行线和相交线的多媒体课件。

师:生活中有许许多多的美,这些生活中的美都是有各种各样的线组成的。

线,在我们生活中无处不在,下面,请同学们欣赏图片(多媒体投影带有斜拉铁索大桥的图片、衣架图片和剪刀图片)师:同学们,在图片中你们看到了什么线?(生:相交线)谁还能举出我们生活中相交线的例子?生:、、、、、、、、、、、、、、、、、、、、、、、、师:看来同学们对相交线并不陌生,你们今天我们就来探究和相交线有观的问题教师板书:5.1.1相交线2、观察转动木条的过程,引入两条相交直线所成的角多媒体演示两根木条相交的过程,提出问题:两根木条相交时,给我们什么形象?你能用直线表示出这种情形吗?3、学生动手画图:一个学生黑板上画图[说明:从学生日常生活经验中发现问题、提出问题,引导学生初步地、概括地了解新的学习任务,为整节课的学习活动提供动力和规划方向。

自然引出本节课题。

]二、探究新知1、认识邻补角和对顶角,探索对顶角性质(1)学生画直线AB、CD相交于点O,并说出图中4个角,各对角的位置关系如何?根据不同的位置怎么将它们分类?(2)学生思考并在小组内交流,全班交流.当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:∠1和∠2有一条公共边OC,它们的另一边互为反向延长线.∠1和∠3有公共的顶点O,而是∠1的两边分别是∠2两边的反向延长线.三、师生交流概括形成邻补角、对顶角概念(1)师生共同定义邻补角、对顶角.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)练习:练习1、下列各图中∠1、∠2是对顶角吗?为什么?通过三个不同类型图形的判断,来加深对对顶角概念的理解。

《5.1.1 相交线》教学设计

《5.1.1 相交线》教学设计

《5.1.1 相交线》教学设计一、教材内容分析本节课是人教版七年级下第五章第一节第一课时相交线。

在七年级上册,我们已经初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角(余角)相等,能画出图形思考问题,初步掌握思考几何问题的方法,学会初步几何推理的方法。

在此基础上进一步研究平面内两条相交直线形成的4个角的位置和数量关系,为今后学习几何奠定了基础。

同时也为证明几何题提供了示范作用,本节课对于进一步培养学生的识图能力具有推动作用。

二、学生情况分析1、学生已经初步学习了角的相关内容和一些性质。

2、本课的教学对象是七年级的学生,思维活跃,模仿能力强。

三、教学目标(一)知识与技能1.理解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角。

2.掌握“对顶角相等”的性质。

3.理解“对顶角相等”的初步的几何推理(二)能力目标1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念2.通过分析具体图形得到对顶角,邻补角的概念,发展学生的抽象概括能力(三)情感目标1.通过相交线中有关角的探究,使学生初步认识数学与现实生活的密切联系2.通过师生的共同活动,促使学生在学习活动中培养良好的情感,形成合作交流、主动,参与的意识。

四、教学重点、难点重点:邻补角、对顶角的概念,“对顶角相等‘的性质.难点:“对顶角相等”的性质的探索过程.五、教学方法在教学中我采用启发式,引导学生思考,探究,交流,讲练结合。

教学手段则采用多媒体辅助教学。

六、教学过程(一)创设情境,引入课题教师演示以第五章章首图片为主体的课件.引导学生欣赏图片,找出图片中的相交线,平行线师:虽然图中的桥,电线等都是有限长的,但当我们把它们看成直线时,这些直线有些是相交线,有些是平行线,相交线、平行线都有许多重要性质,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.今天我们先研究直线相交的问题。

从而引入本节课题.(设计意图:让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线,平行线的几何图形。

人教版数学七年级下册5-1-1 相交线 教案

人教版数学七年级下册5-1-1  相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。

人教版数学七年级下册5.1.1 相交线教案

人教版数学七年级下册5.1.1 相交线教案

课题:5.1.1相交线(第1课时)一、教学目标1.知道什么是邻补角,会在图形中识别邻补角.2.知道什么是对顶角,会在图形中识别对顶角.二、教学重点和难点1.重点:邻补角、对顶角的概念.2.难点:在图形中识别邻补角、对顶角.三、教学过程(一)创设情境,导入新课(师出示下图)师:(指第一个图)这个图画的是什么?生:两条直线相交.师:(指第二个图)这个图画的是什么?生:两条直线平行.师:(指图)两条直线在同一平面内有两种位置关系:相交或者平行.从今天起我们学习第五章相交线与平行线(板书:第五章相交线与平行线).我们先学习相交线.(擦掉平行线图,并板书课题:5.1.1相交线)(二)尝试指导,讲授新课师:(边讲边标上字母)直线AB、CD相交于点O,(指准图)这两条直线相交,形成了四个角,是哪四个角?生:∠AOC、∠AOD、∠BOD、∠BOC(师标上∠1、∠2、∠3、∠4,如下图).师:(指图)∠1、∠2、∠3、∠4之间有什么位置关系呢?(遮住∠3、∠4)我们首先来看∠1与∠2的位置关系.请大家认真观察,说说∠1与∠2有什么样的位置关系?生:……(多让几位同学说)师:(指准图)∠1与∠2有一条公共边OA,换句话说,∠1与∠2是相邻的(板书:相邻).师:∠1加∠2等于多少度?生:180°.师:∠1加∠2等于180°,说明∠1与∠2互为补角(板书:互为补角).师:(指图)像∠1、∠2这样既相邻又互为补角的两个角叫做邻补角.(板书:∠1与∠2是邻补角)邻补角说的是两个角相互的关系,(指图)∠1是∠2的邻补角,反过来说,∠2也是∠1的邻补角. 师:(揭开∠3与∠4)∠2还与哪个角是邻补角? 生:∠2与∠3是邻补角.(师板书:∠2与∠3是邻补角)师:为什么说∠2与∠3是邻补角呢? 生:……(多让几位同学说) 师:(指准图)∠2与∠3有公共边OD ,它们是相邻的,同时∠2与∠3互为补角,所以∠2与∠3是邻补角.师:图中还有哪两个角是邻补角?生:∠3与∠4是邻补角,∠1与∠4是邻补角.(师板书:∠3与∠4是邻补角,∠1与∠4是邻补角) (三)试探练习,回授调节1.判断正误:对的画“√”,错的画“×”.(1)如图,∠1与∠2是邻补角; ( ) (2)如图,∠1与∠2是邻补角; ( ) (3)如图,∠1与∠2是邻补角; ( )第(1)题图 第(2)题图 第(3)题图(4)两个角有一条公共边,这两个角一定是邻补角; ( ) (5)两个角互为补角,这两个角一定是邻补角;( )(6)两个角有一条公共边并且互为补角,这两个角一定是邻补角.( )2.如图,填空:(1)∠AOC 的邻补角是∠ , ∠BOC 的邻补角是∠ ;(2)∠AOD 邻补角是∠ , ∠BOD 的邻补角是∠ . 3.如图,填空:(1)∠1与∠ 是邻补角, ∠1又与∠ 是邻补角;(2)∠2与∠ 是邻补角,∠2又与∠ 是邻补角;(3)如果∠1=40°,那么∠2= °,∠4= °,∠3= °. (四)尝试指导,讲授新课121212DC OB A 4321师:(指准图)我们已经知道,∠1与∠2是邻补角,∠1与∠4也是邻补角,那么∠1与∠3是什么关系的角呢?∠1与∠3是对顶角(板书:∠1与∠3是对顶角).和邻补角一样,对顶角说的也是两个角相互之间的关系,(指图)∠1是∠3的对顶角,反过来说,∠3也是∠1的对顶角.师:请大家仔细观察∠1与∠3,你认为什么样的两个角才是对顶角呢? 生:……(多让几位同学发表看法) 师:(指准图)∠1与∠3是对顶角,从图中可以看出,首先,∠1与∠3是两条直线相交形成的(板书:两直线相交);第二,∠1与∠3是相对的两个角(板书:相对).像∠1与∠3这样由两直线相交形成且相对的两个角叫对顶角. 师:图中还有哪两个角是对顶角?生:∠2与∠4是对顶角.(师板书:∠2与∠4是对顶角) (五)试探练习,回授调节4.判断正误:对的画“√”,错的画“×”. (1)如图,∠1与∠2是对顶角; ( ) (2)如图,∠1与∠2是对顶角; ( ) (3)如图,∠1与∠2是对顶角; ( ) (4)如图,∠1与∠2是对顶角;( )第(1)题图 第(2)题图 第(3)题图 第(4)题图(5)有同一顶点并且相对的两个角是对顶角; ( )(6)由两直线相交形成并且相对的两个角是对顶角. ( )5.如图,填空:(1)∠AOB 与∠ 是对顶角; (2)∠COD 与∠ 是对顶角; (3)∠BOC 的对顶角是∠ ; (4)∠AOE 的对顶角是∠ . 6.如图,填空:(1)∠AOE 的对顶角是∠ , ∠AOE 的邻补角是∠ 、∠ ;(2)∠DOE 的对顶角是∠ ,∠DOE 的邻补角是∠ 、∠ . (六)归纳小结,布置作业师:本节课我们学习了邻补角和对顶角的概念.(指准图)像∠1与∠2这样既相邻又互补的两个角叫做邻补角,像∠1与∠3这样由两条直线相交形成并且相对 的两个角叫做对顶角.12121212F E O A B CD O A BCD E师:邻补角、对顶角说的都是两个角之间的关系.如果老师说∠1是邻补角,或者说∠1是对顶角,你觉得教师这样说对吗?为什么?生:……(多让几位同学发表看法)师:说到邻补角、对顶角指的一定是两个角是邻补角或对顶角,这就好比我们不能说扎西是兄弟,卓玛是姐妹,我们一定需要说清扎西与谁是兄弟,卓玛与谁是姐妹.兄弟、姐妹说的是两个人之间的关系,同样邻补角、对顶角说的是两个角之间的关系.(作业:P习题1.2.(1)(2))7。

人教版七年级下-5.1.1相交线教案

人教版七年级下-5.1.1相交线教案

5.1.1 相交线教案【教学目标】知识与技能理解并掌握邻补角及对顶角的概念。

过程与方法1、通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力。

2、在具体情境中了解邻补角,对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题。

情感、态度、价值观引导学生观察图形,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的信心。

【重点难点】重点对顶角的性质。

难点探索并理解对顶角的性质。

【教学设计】一、创设情境,导入新课教师出示一块布和一把剪刀,表演剪布过程。

问题:剪刀两个把手之间的角发生了什么变化?剪刀张开的口又怎么变化?教师展示剪布的过程。

学生认真观察。

教师应先提出问题,以免在剪布过程中分散学生的注意力,使学生没有注意观察应该观察的内容。

学生观察以后,回答提出的问题。

教师引导:如果将剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题。

设计意图:通过动手操作,激发学生兴趣,同时使学生感受生活中的数学现象。

通过教师的引导,使学生将剪刀抽象成两条直线,将实际问题转化为数学间题。

二、探究邻补角与对顶角的概念如图,教师提出问题:(1)两条直线相交,形成了几个角?(2)将这些角两两配对,共能组成几对角,各对角存在怎惩样的位置关系?根据这种位置关系将它们分类。

教师画两条租交的直线,提出问题。

学生分组讨论在具体图形中得出的两条相交线构成的四个角,根据图形进行分类,然后描述邻补角和对项角的特征。

在这一活动中教师应该关注:(1)学生能否从位置上对这些角进行分类。

(2)学生能否正确区分邻补角、对项角。

(3)学生能否主动参与、勇于探究和发言。

师生共回归纳得出邻补角与对项角的概念。

设计意图:通过对图形中角与角的位置关系的探究,经历从图形到文字到符号的转化过程,使学生加深对相交概念的理解,积累一些研究图形的经验和方法。

5.1.1相交线(教案)2022春七年级下册初一数学(人教版)

5.1.1相交线(教案)2022春七年级下册初一数学(人教版)
二、核心素养目标
本章节的核心素养目标旨在培养学生以下能力:通过探究相交线的性质,增强学生的几何直观和空间想象力,提高其数学抽象素养;在对顶角和邻补角的学习过程中,加强学生的逻辑推理能力和数学思维能力,培养其严谨的科学态度;通过实际操作和问题解决,发展学生的数学建模素养,使其能够运用所学知识解决实际问题;同时,通过合作交流,提升学生的数学交流与表达能力,培养其团队合作精神。这些素养目标的实现将有助于学生形成稳固的数学基础,为未来的深入学习奠定坚实基础。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条道路交叉口的情况?”这个问题与我们将要学习好奇心,让我们一同探索相交线的奥秘。
(二)新课讲授(用时10分钟)
三、教学难点与重点
1.教学重点
-识别相交线:使学生能够正确画出两条相交直线,并识别出图形中的对顶角和邻补角。
-对顶角性质:理解对顶角相等的概念,并能运用这一性质解决相关问题。
-邻补角定义:掌握邻补角的定义,知道它们的和为180°,并能应用于实际问题的解决。
-实际操作:学会使用直尺和圆规进行基本作图,培养动手操作能力。
举例解释:在讲解对顶角性质时,通过具体图形,如交叉的剪刀或十字架等,让学生观察并理解对顶角的相等性。在解决实际问题时,如道路交叉口的角度问题,引导学生运用对顶角和邻补角的知识。
2.教学难点
-理解对顶角的对称性:学生可能难以理解对顶角为什么相等,需要通过直观演示和实际操作来加深理解。
-邻补角的辨识:在复杂图形中,学生可能难以快速辨识出邻补角,需要通过多次练习和指导。
5.1.1相交线(教案)2022春七年级下册初一数学(人教版)

人教版七年级数学 下册 第五章 5.1.1 相交线 教案(表格式)

人教版七年级数学 下册 第五章 5.1.1 相交线 教案(表格式)

教学设计一、导入新课,明确目标1、导入:相交线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备。

我们先研究直线相交的问题,从而引入本节课题。

2、出示学习目标,同学齐读,理解。

目标导学二:对顶角的性质问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?1.动手操作,推出性质已知,直线AB与CD相交于O点(如图),试猜想∠1、∠3的大小关系,并借助量角器或其他方式验证你的想法.答:∠1=∠3.思考:你能用说理的方法推出∠1=∠3吗?解:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).教师提醒:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.2.性质归纳:对顶角相等.目标导学三:与对顶角有关的探究问题我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对;(2)n(n≥2)条直线交于一点,对顶角有________对.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.(2)利用(1)中规律得出答案即可.由(1)得n(n≥2)条直线交于一点,故答案为n(n-1).方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.四、课堂总结今天我们共同探讨了相交线,知道两条直线相交,所组成的对顶角的性质及其简单应用,大家要加深理解和对概念的辨析。

内容及流程教师与学生活动备注检测目标1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2.如图(1),三条直线AB, CD,EF相交于一点O, ∠AOD的对顶角是_____,∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.1 相交线
教学目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题. 重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用. 难点:理解对顶角相等的性质的探索. 教学过程
一、读一读,看一看
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件. 学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
二、观察剪刀剪布的过程,引入两条相交直线所成的角
教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化? 学生观察、思想、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征. 三、认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
(1)
O D
C
B A
学生思考并在小组内交流,全班交流. 当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:
∠AOC 和∠BOC 有一条公共边OC,它们的另一边互为反向延长线.
∠AOC 和∠BOD 有公共的顶点O,而是∠AOC 的两边分别是∠BOD 两边的反向延长线. 2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.
3.学生根据观察和度量完成下表:
教师再提问:如果改变∠AOC 的大小, 会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念. (1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. (2)初步应用.
练习1:下列说法,你同意吗?如果错误,如何订正.
①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.
②邻补角可看成是平角被过它顶点的一条射线分成的两个角. ③邻补角是互补的两个角,互补的两个角也是邻补角? 5.对顶角性质.
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书:
在图1中,∠AOC 的邻补角是∠BOC 和∠AOD,所以∠AOC 与∠BOC 互补,∠AOC 与∠AOD 互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD. 教师板书对顶角性质:对顶角相等.
强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象. 四、巩固运用
1.例:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.
b
a
4
3
21
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程. 2.练习:
(1)课本练习.
(2)补充:判断下列图中是否存在对顶角.
2
1
2
1
2
12
1
五、作业
1.课本习题. 1,2, 7,8.
2.选用课时作业设计.
课时作业设计 一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( ) 二、填空题:
1.如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
F E O
D C
B
A F
E
O
D C B A
(1) (2) 2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________. 三、解答题:
1.如图,直线AB 、CD 相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.
O D C
B
A
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?
课时作业设计答案: 一、1.× 2.∨
二、1.∠AOF,∠EOC 与∠DOF,160 2.150
三、1.(1)分别是50°,150°,50°,130° (2)分别是49°,131°,49°,131°.。

相关文档
最新文档