双等腰三角形教师版

合集下载

北师大版八年级数学等腰三角形(2) (1)教案

北师大版八年级数学等腰三角形(2) (1)教案

1.1等腰三角形〔第二课时〕教学设计一、教材的地位和作用“等腰三角形〔第一课时〕〞选自《义务教育课程标准实验教科书〔北师大版〕·数学》八年级下册第一章第二节。

从图形的观察到猜测再到严谨的证明进一步研究等腰三角形的特殊性质,丰富了学生实践探究的过程体验,为开展学生数学实践探究能力提供了平台.本节课主要研究等腰三角形的特殊性质,特殊的等腰三角形〔等边三角形〕的性质,这是在已经学习了等腰三角形的性质、轴对称图形、全等三角形的知识上进行的,它既是拓展前面所学的知识,又为后面的几何证明打下更牢固的根底。

本节课是继八上《平行线的证明》后再次让学生感受了证明的必要性,深刻体验了“探索——发现——猜测——证明〞的全过程。

学生通过学习本节课的知识掌握了用综合法证明相关命题,感受了数学的严谨性,对缜密思维、探究能力的培养有着举足轻重的作用.二、学情分析在七年级下册第四章《三角形》,学生经探索得到了有关三角形全等和等腰三角形的有关命题;在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些根本的证明方法和根本标准,积累了一定的证明经验;而上一课时,学生刚刚证明了等腰三角形的性质,这为本课时拓展等腰三角形的性质、研究等腰三角形的判定定理都做了很好的铺垫。

八年级学生已经具备初步的演绎推理能力,但是完整标准的语言表达还是欠缺的。

所以在命题证明的过程中教师不仅要鼓励学生大胆表达自己的推理过程,而且要严格标准几何语言表述。

本节课需要创造时机给学生大胆做猜测,充分发挥学生的主体作用,重视知识的生成过程.三、教学目标1.进一步探究等腰三角形的特殊性质,掌握等边三角形的性质定理,并运用等边三角形的性质解决问题;2.探索——发现——猜测——证明等腰三角形中相等的线段,进一步熟悉证明的根本步骤和书写格式,体会证明的必要性;3.在图形的观察中,揭示等腰三角形对称性的本质,开展几何直观,体验数学充满着探索与创造,感受数学的严谨性.四、教学重难点重点:等腰三角形的特殊性质及等边三角形的性质;难点:等边三角形的性质及应用.五、教学关键运用观察、演绎推理来证明猜测,以全等三角形为推理工具,在交流中突破难点.六、教学方法在猜测验证、合作交流的根底上,教师先用讲授法引导学生证明性质及推理,然后用启发式教学法启发学生用相关知识解决问题、分析问题.七、教具学具准备PPT演示课件、实物展台、三角尺八、教学过程1.新知导入同学们,在上一节课的学习中,探究了等腰三角形的性质,下面请同学们答复以下问题:等腰三角形都有哪些性质呢?【设计】通过回忆等腰三角形的性质,为其特殊性质及等边三角形的性质的探究做好铺垫.2.新知探究【探究1】等腰三角形的特殊性质画一画:在等腰三角形中作两底角的角平分线、两腰上的中线、两腰上的高.图1追问1:作出的这些线段有什么关系?答案:如图1,作图观察,可以猜测:等腰三角形两底角的角平分线相等,两腰上的中线、两腰上的高相等.【学生活动】学生动手画图,并根据作图找出相等的线段,并得出猜测.【设计】通过动手操作、观察探究等活动得到猜测.追问2:你能证明猜测的结论吗?例1:证明:等腰三角形的两底角的角平分线相等.:如图2,在△ABC中,AB=AC,BD和CE是△ABC的角平分线.求证:BD=CE.证明:∵AB=AC,∴∠ABC=∠ACB〔等边对等角〕.∵BD,CE分别平分∠ABC和∠ACB,∴∠1=21∠ABC ,∠2=21∠ACB. 在△BDC 和△CEB 中,∵∠ABC=∠ACB ,BC =BC ,∠1=∠2, 图2∴△BDC ≌△CEB 〔ASA 〕∴BD =CE.即等腰三角形两底角的角平分线相等.【学生活动】在教师的引导下对猜测所得出的结论进行证明,证明完成后组内交流,并认真听教师讲评.变式1:证明:等腰三角形的两腰上的中线相等.:如图3,在△ABC 中,AB =AC , BD 和CE 是△ABC 两腰上的中线.求证:BD =CE.证明:∵AB =AC ,∴∠ABC=∠ACB 〔等边对等角〕.∵BD ,CE 分别平分AC 和AB ,∴CD=21AC ,BE=21AB , 在△BDC 和△CEB 中, 图3 ∵CD=BE ,∠ABC=∠ACB ,BC =BC ,∴△BDC ≌△CEB 〔SAS 〕∴BD =CE.即等腰三角形两腰上的中线相等.【学生活动】学生独立完成对猜测的证明,然后组内并派小组成员分享证明过程.【设计】通过猜测、证明的过程培养学生的几何推理能力和表达能力.议一议:如图4,在等腰三角形ABC 中,点D 、E 分别在AC 和AB 上.〔1〕如果∠ABD =31∠ABC ,∠ABE =31∠ACB ,那么BD =CE 吗?如果∠ABD =41∠ABC ,∠ABE =41∠ACB 呢?由此,你可以得到什么结论? 〔2〕如果CD =31AC ,BE =31AB ,那么BD =CE 吗?如果CD =41AC ,BE =41AB 呢?由此,你可以得到什么结论?图4结论:〔1〕在△ABC 中,如果AB =AC , ∠ABD =n 1∠ABC ,∠ABE =n 1∠ACB ,那么BD =CE.〔2〕在△ABC 中,如果AB =AC , CD =n 1AC ,BE =n1AB ,那么BD =CE. 【学生活动】学生口述答复并作简要证明.追问:为什么等腰三角形有这样的特殊性质?答:因为等腰三角形是轴对称图形,所以具有这样的特殊性质.【设计】通过对等腰三角形特殊性质的拓展,引导学生在图形的观察和证明的过程中揭示等腰三角形对称性的本质.变式2:证明:等腰三角形的两腰上的高相等.:如图5,在△ABC中,AB=AC,BD和CE是△ABC的高.求证:BD=CE.证明:∵AB=AC,∴∠ABC=∠ACB〔等边对等角〕.∵BD和CE是△ABC的高,∴∠CDB=∠BEC=90°.在△BDC和△CEB中,图5∵∠ABC=∠ACB,∠CDB=∠BEC=90°,BC=CB,∴△BDC≌△CEB〔AAS〕∴BD=CE.即等腰三角形两腰上的高相等.【学生活动】学生小组讨论得出结论,并对结论进行证明,然后组内交流,最后教师点评.【探究2】等边三角形的性质思考:等边三角形是特殊的等腰三角形,那么等边三角形的内角有什么特征呢?猜测:等边三角形的三个内角都相等,并且每个角都等于60°.例2::如图6,在△ABC中,AB=AC=BC.求证:△A=△B=△C=60°.证明:△AB=AC,△△B=△C(等边对等角).又△AC=BC,△△A =△B (等边对等角).△△A =△B =△C .在△ABC 中, 图6△△A +△B +△C =180°,△△A =△B =△C =60°.归纳:等边三角形的性质:等边三角形的三个内角都相等,且每个角都等于60° 符号语言:△△ABC 是等边三角形〔或AB =AC =BC 〕,△△A =△B =△C =60°.【学生活动】学生根据等腰三角形的性质进行猜测,然后对所猜测的结论进行证明,完成后班内交流.【设计】通过猜测、验证活动让学生体会等边三角形的性质及几何语言的标准表达.3.双基稳固例1:如图7,在△ABC 中,AB =AC ,以下条件中,不能使BD =CE 的是〔 〕A. BD ,CE 分别为AC ,AB 上的高B . BD ,CE 分别为∠ABC ,∠ACB 的平分线C. ∠ABD =31∠ABC ,∠ABE =31∠ACB D . ∠ABD =∠BCE【设计】考查学生对等腰三角形特殊性质的掌握情况. 图7例2:等边△ABC 的两条角平分线BD 和CE 相交所夹锐角的度数为___________.【设计】通过角度的计算题加强学生对等边三角形的性质运用.例3:如图8,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D,假设BD=BC,则∠A=____________.图8【设计】考查学生对等腰三角形性质的综合应用,利用方程思想与三角形内角和求角的度数.例4:如图9,△ABC与△BDE是等边三角形,连接AE,CD,求证:AE=CD.证明:∵△ABC与△BDE是等边三角形,∴△1=△3=60°,AB=BC,BE=BD∴△1+△2=△2+△3.即△ABE=△CBD.在△ABE和△CBD中,AB=BC,△ABE=△CBD,BE=BD,图9∴△ABE≌△CBD〔SAS〕∴AE=CD.【学生活动】学生先自主完成双基稳固练习,然后小组对答案并进行班级交流,教师点评.【设计】借助手拉手模型引导学生稳固等边三角形的性质,进一步训练学生标准的几何语言表达,开展几何证明能力.4.课堂小结在课堂的最后,我们一起回忆总结本节课所学的知识,同学们答复以下问题:问题1:说说等腰三角形的特殊性质?答案:〔1〕等腰三角形两底角的角平分线相等;〔2〕等腰三角形两腰上的中线相等;〔3〕等腰三角形两腰上的高相等.问题2:说说等边三角形的性质?答案:等边三角形的三个内角相等,并且每一个角都等于60°.问题3:本节课学习了哪些数学方法与数学思想?答案:特殊到一般的思想、方程思想、逻辑推理.5.变式拓展变式1:如图10,在等边△ABC中,M是AC上一点,N是BC上一点,且AM =BN,△MBC=25°,AN与BM交于点O,则△MON的度数为〔〕A.110°B.105°C.90°D.85° 图10变式2:〔20xx·玉林〕如图11,△AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是〔〕A.平行B.相交C.垂直D.平行、相交或垂直图11 【设计】两道变式训练一方面为了检查学生对双基稳固知识的掌握情况,另一方面训练学生的发散思维,引导学生利用等腰三角形的特殊性质、等边三角形的性质解决问题,开展应用意识.6.作业布置必做作业:P7习题第2、3题,变式拓展1、2题选做作业:学案选做7.板书设计教学设计说明与反思逻辑推理是六大数学核心素养之一,逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性根本保证,是人们在数学活动中进行交流的思维品质。

初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)初中数学等腰三角形的性质教案篇1一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。

等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。

等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。

同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。

2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。

如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:重点:等腰三角形性质的探索与应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设启发性强、学生感兴趣、有利于自主学习和探索的问题情境,让学生在活动丰富、思维积极的状态下进行探究学习,组织合作学习,引导合作过程,使学生朝着有利于知识建构的方向发展。

二、学情分析刚进入二年级的学生,观察、操作、猜测能力较强,但演绎推理、归纳和数学意识的应用能力较弱,缺乏思维的广泛性、敏捷性、紧凑性和灵活性,自主探究和合作学习的能力需要在课堂教学中进一步加强和引导。

初中数学教师面试《等腰三角形》试讲逐字稿全文

初中数学教师面试《等腰三角形》试讲逐字稿全文

精选全文完整版(可编辑修改)篇目八1.题目:《等腰三角形》2.内容:3.基本要求:(1)请在10分钟内完成试讲内容;(2)条理清晰,内容准确;(2)讲清证明思路和证明过程;(4)要求配合教学内容有板书和作图。

谢谢各位评委老师,我试讲的题目是《等腰三角形》,下面开始我的试讲。

上课!同学们好,请坐。

【导入】请同学们来看大屏幕,海上有B,C两处救生船接到了A处遇险船只的求救信号,测得∠B= ∠C,若两船以同样的速度同时出发,能不能同时赶到出事地点呢?请同学们思考这个问题如何解决。

【新授】老师看同学们都思考的差不多了,找一个同学来分享一下你的想法。

举手最快的那位同学你来说。

哦,你说,要想让B、C两处的救生船同时到达出事地点,AB必须等于AC才行。

因此需要证明,AB 等于AC。

想法很不错,那我们怎么来证明三角形的两条边相等呢?回忆一下,我们前面可以用什么知识证明?对,我们刚刚学习了等腰三角形,它的两条边是相等的。

但这里我们不知道它是否为等腰三角形,因此无法证明。

再往前回忆,我们还学过什么样的方法来证明三角形的两条边相等呢?最后那位同学你来说,恩,我们前面还学过,通过证明三角形全等来证明两条边相等,因此我们要想解决这个题目就需要构造全等三角形,思路很清楚。

那我们应该如何来构造全等三角形呢?请同学们独立思考两分钟,好,时间到,我看有些同学无从下手,老师在这里给大家一个提示,我们可以借助上节课学习的等腰三角形中三条特殊的线:角平分线、中线和高线。

下面,请大家用5分钟的时间进行小组讨论,试着通过做辅助线来构造全等三角形。

好,老师在巡视的过程中,对几个小组进行了指导。

现在有请5组派代表来黑板上写出你们组的讨论结果。

我们发现5组的同学通过做高线构造出了两个三角形,并且通过用AAS的方法证明两个三角形全等,进而得到两个全等三角形的对应边AB和AC相等。

他的思路非常清晰,步骤也很规范!还有其他做法吗?噢,7组同学说还可以做角平分线来构造全等三角形,那你来说,我们一起来写一下步骤。

初中数学教师面试《等腰三角形》试讲逐字稿

初中数学教师面试《等腰三角形》试讲逐字稿

初中数学教师面试《等腰三角形》试讲逐字稿题目:等腰三角形各位评委好,今天我给大家讲解一下初中数学的等腰三角形。

首先,让我们来回顾一下什么是等腰三角形。

等腰三角形是指至少有两条边长相等的三角形,也就是两个角度数相等的三角形。

我们可以借助图形来理解它的特点。

(画图)如图所示,三角形ABC满足AB=AC,那么角B和角C是相等的。

如果我们将三角形ABC翻转一下,那么我们还是可以得到同样的三角形,这就说明等腰三角形具有对称性。

接下来,让我们来看一下等腰三角形的性质。

我们可以将等腰三角形分成两个部分:底边和两条腰,分别讨论它们的性质。

首先,底边中线。

这里我画一个图,大家可以跟我一起看。

(画图)在等腰三角形ABC中,BD是底边AC的中线。

我们可以通过三角形重心定理来证明BD=AD,即底边中线等于底边中点到顶点的距离。

这是一个很重要的性质,在我们后面的计算中会经常用到。

接下来是等腰三角形的另一个重要性质:对称轴。

如图所示,三角形ABC的中线BD就是它的对称轴。

(画图)我们可以想象一下,如果我们将三角形ABC绕着BD翻转180度,那么它还是等腰三角形,这就是对称轴的概念。

最后,让我们来看一下等腰三角形的面积公式。

假设等腰三角形的底边长为b,腰长为a,那么它的面积为:S = ab/2这个公式非常容易理解,因为等腰三角形有对称轴,所以我们可以将它分割成两个完全相等的三角形,再用三角形面积公式计算出它们的面积之和,就得到了等腰三角形的面积。

好的,今天我给大家讲解了初中数学的等腰三角形,包括定义、性质和面积公式。

谢谢各位评委的聆听!。

北师大版2024八年级数学下册 1.1.2 等腰三角形(2)(课件)

北师大版2024八年级数学下册 1.1.2 等腰三角形(2)(课件)

等边三角 形的性质
等边三角形的三个内角都相等,并且 每个角都等于60°
谢谢~
∵ D,E是BC的三等分点, ∴ BD=DE=EC,∴BD=AD,
BD
EC
∴ ∠ABD= ∠BAD= 30°(三角形的外角性质).
同理, ∠ ACE= ∠CAE= 30°.
∴ ∠BAC= ∠BAD+ ∠DAE+ ∠BAD= 120°.
课堂小结
等腰三角 形重要线 段的性质
底角的两条角平分线相等 两条腰上的中线相等 两条腰上的高相等
情境导入
在七下我们已经知道了“三边相等的三角形是等边三角 形”,生活中有很多等边三角形,如交通图标、台球室的三角 架等,它们都是等边三角形.
思考:在上一节课我们证明等腰三角形的两底角相等,那等边三 角形的各角之间有什么关系呢?等腰三角形中有哪些相等的线段?
探究新知
核心知识点一: 等腰三角形的重要线段的性质
已知:如图,在△ABC 中,AB=AC,BD 和CE
是△ABC的角平分线.
A
求证:BD = CE.
E 1
B
D 2
C
Hale Waihona Puke 探究新知证明:∵AB=AC,
∴∠ABC=∠ACB (等边对等角).
∵BD,CE 分别平分∠ABC 和∠ACB ,
A
∴ 1= 1 ABC , 2= 1 ACB.
2
2
∴ ∠1=∠2.
在△BDC 和△CEB 中,
随堂练习
6.已知:如图,在△ABC中,AB=AC,AD平分∠BAC交BC于 点D,点M,N分别在AB,AC边上, AM=2MB, AN=2NC. 求证:DM=DN.
随堂练习
证明:∵AM=2MB,∴AM= 2AB.

等腰三角形教案设计

等腰三角形教案设计

等腰三角形教案设计等腰三角形教案设计作为一名老师,常常需要准备教案,借助教案可以更好地组织教学活动。

来参考自己需要的教案吧!下面是小编为大家整理的等腰三角形教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

等腰三角形教案设计1等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。

教学难点等腰三角形的判定与性质的区别。

教具准备作图工具和多媒体课件。

教学方法引以学生为主体的讨论探索法;教学过程Ⅰ.提出问题,创设情境1.等腰三角形性质是什么?性质1 等腰三角形的两底角相等.(等边对等角)性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.(等腰三角形三线合一)2、提问:性质1的逆命题是什么?如果一个三角形有两个角相等,那么这个三角形是等腰三角形。

这个命题正确吗?下面我们来探究:Ⅱ.导入新课大胆猜想:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.[例1]已知:在△ABC中,∠B=∠C(如图).求证:AB=AC. 教师可引导学生分析:BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC 为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. (学生板演证明过程)证明:作∠BAC的平分线AD. 在△BAD和△CAD中1??2,? ??B??C,AD?AD,? ∴△BAD≌△CAD(AAS).∴AB=AC.提问:你还有不同的证明方法吗?(由学生口述证明过程)等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:在△ABC中∵ ∠B=∠C ∴ AB=AC (等角对等边)4、等腰三角形的性质与判定有区别吗? 性质是:等边等角判定是:等角等边小结:证明三角形是等腰三角形的`方法:①等腰三角形定义;②等腰三角形判定定理.下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.(演示课件)[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.这个题是文字叙述的证明题,?我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).求证:AB=AC.同学们先思考,再分析.(由学生完成)要证明AB=AC,可先证明∠B=∠C.接下来,可以找∠B、∠C与∠1、∠2的关系.(演示课件,括号内部分由学生来填)证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).看大屏幕,同学们试着完成这个题.(课件演示)已知:如图,AD∥BC,BD平分∠ABC.求证:AB=AD.(投影仪演示学生证明过程)证明:∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等).又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD(等角对等边).下面来看另一个例题.(演示课件)例2、已知等腰三角形的底边等于a,底边上的高等于b,你能用尺规作图的方法作出EA12DBCADBCM A这个等腰三角形吗? ab作法:(1)作线段BC,使BC=a;(2)作BC的垂直平分线MN,交BC于D; (3)在MN上截取DA=h,得A点;(4)连结AB、AC,则△ABC即为所求等腰三角形。

双等腰三角形教师版

双等腰三角形教师版

双等腰三角形等腰三角形是几何题目中常见的基本图形,两个等腰三角形为背景的题目也屡见不鲜,多数为两个等腰三角形共点旋转,或两个等腰三角形的底在同一直线上,或两个等腰三角形的腰在同一直线上,那么有着特殊位置的两个等腰三角形会有什么结论那?共腰双等腰首先我们就一起研究一下两个共腰的等腰三角形有什么特性及其应用。

共腰双等腰是指两个等腰三角形各有一条腰在同一直线上,而剩余的腰和底不在同一直线上,那么两个等腰三角形剩余腰与腰的夹角为两个等腰三角形剩余底与底夹角的2倍。

模型一、如图,AB=AC,AD=AE,求证:∠BAD=2∠EDC。

A ∵AB=AC,∴设∠ABC=∠ACB=α,∵AD=AE,∴设∠ADE=∠AED=β,E其中两个等腰三角形的一条腰AE与AC共线,那么剩余的底DE与剩余的底BC的夹角∠EDC=β-α,B CD那么剩余的腰AB与剩余的腰AD的夹角∠BAD=∠ADC-∠ABC=2β-2α,∴∠BAD=2∠EDC。

模型一变式、①如图,AB=AC,∠BAD=2∠EDC,求证:AD=AE。

②如图,AD=AE,∠BAD=2∠EDC,求证:AB=AC。

A AE EB CD B CD模型二、如图,AB=AC=A,D求证:(1)∠CAD=2∠CBD;(2)∠BAC=2∠BDC。

∵AB=AD,∴设∠ABD=∠ADB=α,A ∵AB=AC,∴设∠ABC=∠ACB=β,其中两个等腰三角形的一条腰AB与AB共线,那么剩余的底BD与剩余的底BC的夹角∠DBC=β-α,那么剩余的腰AC与剩余的腰AD的夹角∠CAD=∠BAD-∠BAC=2β-2α,∴∠CAD=2∠CBD。

同理可证,∠∠。

BAC=2BDC模型二变式、①如图,,∠∠,求证:。

AB=AC CAD=2CBD AB=AD BCD②如图,AB=AC,∠BAC=2∠BDC,求证:AB=AC。

模型二思考、等腰△ABC与等腰△ACD也可以看成是两个共腰的等腰三角形,那么图中谁是剩余腰与腰的夹角,谁是剩余底与底的夹角,它们之间还是否满足2倍的关系?模型三、如图,AB=AC=A,D求证:(1)∠CAD=2∠CBD;(2)∠BAC=2∠BDC;(3)∠BAD=2∠BCD。

2023年暑假新八年级数学预习专题7:等腰三角形(精讲教师版)

2023年暑假新八年级数学预习专题7:等腰三角形(精讲教师版)
四、等边三角形的判定 等边三角形的判定: ①三条边都相等的三角形是等边三角形; ②三个角都相等的三角形是等边三角形; ③有一个角是 60°的等腰三角形是等边三角形.
五、含 30°的直角三角形的性质定理 在直角三角形中,如果有一个锐角是 30°,那么它所对的直角边等于斜边 的一半.
攻略 1 判定等腰三角形的方法: 1.定义法:有两边相等的三角形是等腰三角形;
第 1页(共 15页)
三、等边三角形的性质 1.三边都相等的三角形叫等边三角形. 2.等边三角形三个内角都相等,并且每一个内角都等于 60°. 注意:①每条边上的中线、高线、所对角的角平分线互相重合(三线合一) ②等边三角形也是轴对称图形,它有三条对称轴,三线合一所在的直线即 为等边三角形的对称轴,对称轴的交点是等边三角形的中心点. 3.常见有关等边三角形的旋转题图形
第 2页(共 15页)
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写 成“等角对等边”). 数学语言:在△ABC 中,∵∠B=∠C,∴AB=AC(等角对等边). 【注意】1.“等角对等边”不能叙述为:如果一个三角形有两个底角相等, 那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底 角”“腰”这些名词,只有等腰三角形才有“底角”“腰”. 2.“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相 等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是 等腰三角形的判定. 攻略 2 判定等边三角形的方法: 1.定义法:三边都相等的三角形是等边三角形. 2.三个角都相等的三角形是等边三角形. 3.有一个角是 60°的等腰三角形是等边三角形. 攻略 3 一在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边 等于斜边的一半. 【注意】1.该性质是含 30°角的特殊直角三角形的性质,一般的直角三角 形或非直角三角形没有这个性质,更不能应用. 2.这个性质主要应用于计算或证明线段的倍分关系. 3.该性质的证明出自于等边三角形,所以它与等边三角形联系密切. 4.在有些题目中,若给出的角是 15°时,往往运用一个外角等于和它不相 邻的两个内角的和将 15°的角转化后,再利用这个性质解决问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B CBB CB双等腰三角形等腰三角形是几何题目中常见的基本图形,两个等腰三角形为背景的题目也屡见不鲜,多数为两个等腰三角形共点旋转,或两个等腰三角形的底在同一直线上,或两个等腰三角形的腰在同一直线上,那么有着特殊位置的两个等腰三角形会有什么结论那?共腰双等腰首先我们就一起研究一下两个共腰的等腰三角形有什么特性及其应用。

共腰双等腰是指两个等腰三角形各有一条腰在同一直线上,而剩余的腰和底不在同一直线上,那么两个等腰三角形剩余腰与腰的夹角为两个等腰三角形剩余底与底夹角的2倍。

模型一、如图,AB=AC,AD=AE,求证:∠BAD=2∠EDC。

∵AB=AC,∴设∠ABC=∠ACB=α,∵AD=AE,∴设∠ADE=∠AED=β,其中两个等腰三角形的一条腰AE与AC共线,那么剩余的底DE与剩余的底BC的夹角∠EDC=β-α,那么剩余的腰AB与剩余的腰AD的夹角∠BAD=∠ADC-∠ABC=2β-2α,∴∠BAD=2∠EDC。

模型一变式、①如图,AB=AC,∠BAD=2∠EDC,求证:AD=AE。

②如图,AD=AE,∠BAD=2∠EDC,求证:AB=AC。

模型二、如图,AB=AC=AD,求证:(1)∠CAD=2∠CBD;(2)∠BAC=2∠BDC。

∵AB=AD,∴设∠ABD=∠ADB=α,∵AB=AC,∴设∠ABC=∠ACB=β,其中两个等腰三角形的一条腰AB与AB共线,那么剩余的底BD与剩余的底BC的夹角∠DBC=β-α,那么剩余的腰AC与剩余的腰AD的夹角∠CAD=∠BAD-∠BAC=2β-2α,∴∠CAD=2∠CBD。

同理可证,∠BAC=2∠BDC。

模型二变式、①如图,AB=AC,∠CAD=2∠CBD,求证:AB=AD。

②如图,AB=AC,∠BAC=2∠BDC,求证:AB=AC。

模型二思考、等腰△ABC与等腰△ACD也可以看成是两个共腰的等腰三角形,那么图中谁是剩余腰与腰的夹角,谁是剩余底与底的夹角,它们之间还是否满足2倍的关系?模型三、如图,AB=AC=AD,求证:(1)∠CAD=2∠CBD;(2)∠BAC=2∠BDC;(3)∠BAD=2∠BCD。

∵AB=AD,∴设∠ABD=∠ADB=α,∵AB=AC,∴设∠ABC=∠ACB=β,BFFCBF 其中两个等腰三角形的一条腰AB 与AB 共线,那么剩余的底BD 与剩余的底BC 的夹角∠DBC=β+α, 那么剩余的腰AC 与剩余的腰AD 的夹角∠CAD=2β+2α, ∴∠CAD=2∠CBD 。

同理可证∠BAC=2∠BDC ;∠BAD=2∠BCD 。

模型二与模型三都可以看成点A 为△BCD 的外心。

模型一、二、三中两个等腰三角形不光共腰,它们还共点,那是不是一定要满足共点这个条件那? 模型四、如图,等腰△ABC 中,AB=AC ,等腰△DEF 中,DE=DF ,图中AB 与DE 共线,那么剩余的腰或底在图中没有交点,就需要我们找到剩余的腰或底所在直线,进而找到剩余腰与腰的夹角和剩余底与底的夹角, 通过前面的方法可证∠CPF=2∠FQC 。

典型例题赏析例1:如图,Rt △ABC 中,AB=AC ,D 、E 分别是BC 、AC 边上一点,连接AD 、DE ,若∠BAD=2∠CDE ,CD=4,AE=24,求AC 的长。

例1解析:由AB=AC 和∠BAD=2∠CDE,可得AD=AE=24, 解△ACD ,可得AC=。

例2:如图,正方形ABCD ,过点A 作∠EAF=90°,两边分别交直线BC 于点E ,交线段CD 于点F ,G 为AE 中点,连接BG ,过点G 作BG 的垂线交对角线AC 于点H ,连接HF ,若CH=3AH ,请你探究HF 与AF 之间的数量关系.例2解析:由BG 是直角三角形ABE 的斜边中线,得BG=AG ,由正方形ABCD ,得∠BAC=45°,题中已知∠BGH=90°得∠BGH=2∠BAH , 由模型二的变式可得GH=GB ,为接下来固定图形起到了至关重要的作用,设AH=k ,CH=3k ,BC=,连接BH,得,由△GBH 为等腰直角三角形,得,,AB=,得k,由△ADF ≌△ABE ,k ,,k ,解△CFH ,得,得FH.GAAA例3:如图,在菱形ABCD的对角线AC上取点E,连接BE,使∠BEC=60°,在CD边上取点F,连接EF,且∠CEF=21∠ABE,若CF=4,CE=16,求AE的长.例3解析:本题由菱形构成,菱形四条边相等,所以不缺少等腰三角形,但是∠CEF=21∠ABE这个条件不知如何使用。

连接DE,△ABE≌△ADE,∠ABE=∠ADE,由DA=DC,∠CEF=21∠ADE,得DE=DF,设EO=k,BE=2k,DE=DF=2k,DC=BC=2k+4,CO=16-k,,勾股△BOC,得k=5,AE=6。

例4:在平面直角坐标系中,抛物线2y x bx c=-++与x轴正半轴交于点A,与y轴交于点B,直线AB的解析式为3y x=-+.(1)求抛物线解析式;(2)P为线段OA上一点(不与O、A重合),过P作PQ⊥x轴交抛物线于Q,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系;(3)在(2)的条件下,连接QN并延长交y轴于E,连接AE,求t为何值时,MN∥AE. 错误!未找到引用源。

例4解析:有已知可容易得(1)答案223y x x=-++。

(2)∠BAO=21∠NMP,MA=MP,得MN=MP,得△NMP为等腰直角三角形,过M作x轴的垂线,过N作y 轴的垂线,可得△NFM≌△MGP,设点P(t,0),Q(t,223t t-++),由M为AQ中点,MG=21322t t-++,A共腰双等腰部分(2)共腰双等腰部分NAPC BC DBNF=MG=21322t t -++,所以n =OG-NF=21122t t -。

(3)MN=MP=MQ ,得∠NQP=21∠NMP=45°,∠NHQ=∠AHP=45°,得∠QNH=90°,得EQ ⊥AB ,MN ∥AE ,由M 为AQ 的中点,得N 为EQ 的中点,得AN 垂直平分EQ ,得AQ=AE ,∠EAO=∠AEB-90°=(45°+∠AEQ)-90°=∠AEQ-45° 又∵∠AQP=∠AQE-45°,∴∠EAO=∠AQP ,∠EOA=∠QPA=90°,△APQ ≌△OEA ,AO=PQ=3,由Q(t ,223t t -++),得2233t t -++=,10t =(舍),22t =。

强化训练习题1、如图:在△ABC 中,AB=AC ,D 、E 分别是BC 、AC 边上一点,且AD=AE ,∠BAD=68°,求∠CDE 的度数.2、如图,在△ABC 中,∠ABC=∠C ,D 、E 分别在CB 、AB 的延长线上,连接AD 、DE ,且∠E=∠ADE ,若∠BDE=50°,求∠DAC 的度数.3、如图,在△ABC 中,线段BC 的垂直平分线交AB 于点F ,垂足为E ,D 为EF 上一点,连接AD、BD 、CD ,若△ACD 为等边三角形,EF=2,求BF 的长.(3)共腰双等腰部分NPBACBACAC4、如图,在四边形ABDC中,连接AD、BC,AB=BC=BD,∠DAC的正切值为31,若AB=5,求CD的长.5、如图,在菱形ABCD中,tan∠DAB=34,AE=AB, AH⊥BE于点H,连接DE交AH于点G,连接BG,BG=10,求BE的长.6、如图,Rt△ABC中,∠B=90°,∠BAC=60°,点E是AC边的中点,D为BC上一点,若BA=BD,求sin ∠ADE的值.7、已知,在△ABC中,AC=BC,∠ACB=90º,D是AC的中点,E为AC垂直平分线上的动点,连接CE,过E作EF⊥CE,垂足为E,射线EF交直线AB于F,若AC=4,四边形BCEF的面积为4.5时,求AF的长.8、如图,在四边形ABCD中,连接AC、BD,AC=AD=BC,∠ABC=60°,AD=,CD=BD的长.B C9、如图,等边△ABC 中, D 为直线BC 下方一点,满足∠BDC=90°,将点C 沿直线BD 折叠得到点E ,连接DE 、AE ,交射线DB 于点F.(1)求证:∠AEC=30°;(2)请你猜想AE 、CE 、BF 之间的数量关系,并证明你的结论. 10、如图,在Rt △ABC 中,∠ACB=90°,点O 在AB 边上,OB=OC ,点D 在OC 的延长线上,连接AD ,点E 在AD 上,OE 交AC 于点F ,OE=OC ,∠ABC=∠CAD+30°,若OF=4,DE=3,求OD 的长.答案:1、∠CDE=68°2、∠DAC=100°3、BF=4 4、5、BE=6、sin ∠ADE=127、AF=AF=8、BD=8 9、(1)略;(2)3CE+BF=AE 10、OD=7EB EB E 共底双等腰接下来我们就一起研究一下两个共底的等腰三角形有什么特性及其应用。

共底双等腰是指两个等腰三角形的底在同一直线上,而剩余的腰不在同一直线上,那么两个等腰三角形腰与腰的夹角等于两个等腰三角形剩余腰与腰的夹角。

模型一、如图,AB=AC ,BD=DE ,(1)求证:∠ABD=∠CDE ;(2)延长ED 交AB 于F ,求证:∠BDC=∠BFE 。

证明:(1)∵AB=AC ,∴设∠ABC=∠ACB=α,∵DB=DE ,∴设∠DBE=∠DEB=β, 其中两个等腰三角形的底BC 与BE 共线,那么腰AB 与腰BD 的夹角∠ABD=∠ABC-∠DBE=α-β,那么剩余的腰AC 与剩余的腰DE 的夹角∠CDE=∠ACB-∠DEB=α-β, ∴∠ABD=∠CDE 。

(2)∵AB=AC ,∴设∠ABC=∠ACB=α,∵DB=DE ,∴设∠DBE=∠DEB=β, 其中两个等腰三角形的底BC 与BE 共线,那么腰AB 与腰DE 的夹角∠BFE=180°-∠ABC-∠DEB=180°-α-β,那么剩余的腰AC 与剩余的腰BD 的夹角∠BDC=180°-∠ACB-∠DBE=180°-α-β, ∴∠BDC=∠BFE 。

模型一变式、①如图,AB=AC ,∠ABD=∠CDE ,求证:BD=DE 。

②如图,BD=DE ,∠ABD=∠CDE ,求证:AB=AC 。

模型二、如图,点D 为射线CA 上一点,点E 为BC 上一点,AB 交DE 于F ,若AB=AC ,DB=DE , 求证:(1)∠ABD=∠CDE ;(2)∠BDC=∠BFE 。

相关文档
最新文档