2_湍流基础 很好的
2 湍流基础

11:07
2.1.2 湍流的统计平均方法
14
C. 概率平均法 系综平均法 概率平均法(系综平均法 系综平均法)
时均法只适用于定常湍流,而体均法只适用于均匀湍流。 时均法只适用于定常湍流,而体均法只适用于均匀湍流。 对于一般的非定常、非均匀湍流, 对于一般的非定常、非均匀湍流,可以采用随机变量的 一般平均法, 概率平均法。 一般平均法,即概率平均法。
1 A= T
t0 +T
∫
t0
AT A dt = =A T
②脉动值的平均值等于零: 脉动值的平均值等于零:
A′ = A − A = A − A = 0
③脉动值乘以常数的平均值等于零: 脉动值乘以常数的平均值等于零:
cA′ = c A′ = 0
④脉动值与任一平均值乘积的平均值等于零: 脉动值与任一平均值乘积的平均值等于零:
C. 对湍流的归纳性解释: 对湍流的归纳性解释:
湍流是一种浑沌的、不规则的流动状态, 湍流是一种浑沌的、不规则的流动状态,其流动 参数随时间与空间作随机的变化, 参数随时间与空间作随机的变化,因此本质上是 三维非定常流动, 三维非定常流动,且流动空间分布着无数形状与 大小各不相同的旋涡。可以说, 大小各不相同的旋涡。可以说,湍流是随机的三 维非定常有旋流动。 维非定常有旋流动。
Navier-Stokes方程 方程
∂u ∇p + u ⋅ ∇u = f − + ν∇ 2 u ρ ∂t
∇⋅ u = 0
∂u ∇p + ∇ ⋅ ( uu ) = f − + ν∇ 2 u ρ ∂t
1 ∂p ∂ui ∂ul ui ∂ 2 ui + = fi − +ν ρ ∂x i ∂t ∂x l ∂x l ∂x l
大气吸收与湍流基础的总结

一、激光大气衰减基础:激光大气衰减包括大气气体分子对激光的吸收和散射、气溶胶粒子的吸收和散射,激光信号通过均匀大大气介质之后,其电磁辐射强度满足:比尔-郎伯-布格定律:;:为波数,I()为信号传输l距离之后的电磁辐射强度,代表消光系数,为进入介质前的光辐射能量。
透过率函数:;其中,也被称作光学厚度,是一种无量纲的物理量;其中,既包括了大气分子的吸收()和散射()系数,也包括了气溶胶的吸收和散射()系数:在实际的大气信道中,随着高度(z)的变化(假设大气具有分层均匀特性),即可以表示为,,当信号光以天顶角入射到大气介质中时,光学厚度可以表示为:(,)其中,其他的消光系数表如附图所示:大气分子吸收效应的从测量:二、大气光学湍流:1、大气湍流模型的描述:均匀各向同性湍流、非均匀各向同性湍流均匀各向同性湍流(是一种理想化的大气湍流模型,在复杂地形区和高空,对流层以上的区域,满足该理论条件的大气湍流区域有限,特别是近年来对大气湍流间歇性现象的发现,更证明了Kolmogorov模型应用的局限性。
目前工程中常需要借助大量的实验观测数据对该模型进行修正。
)查理森级串模型:湍流可以视作由气体流动形成的差别较大的涡旋,大涡旋不稳定,其从外界获取能量后,通过分裂等一系列复杂的运动将能量传递给次级涡旋,最后再最小的涡旋中通过气体黏性损耗。
在一定的区域内,涡旋级串达到某种平衡状态,形成局部均匀各向同性湍流,具有普适性的统计规律。
为了确定气体湍流的统计规律,基于不同的假设条件,提出了许多统计模型,其中使用最广泛的为柯尔莫哥洛夫(Kolmogorov )模型: 柯尔莫哥洛夫(Kolmogorov )模型:模型假设:(1) 当雷诺数足够大时,存在具有各向同性结构的高波数区,在该区里,气体运动的统计特征只决定于流体的黏性系数 和能量耗散率 。
(雷诺数:雷诺数的定义为:L 为气体运动的尺度,v 为流体速度, 为分子)基于上述假设,建立起了湍流长度( 、 )、速度、时间的尺度,其中, 、 分别为湍流的内尺度和外尺度;;(2) 当雷诺数足够大时,扰动统计特征只依赖于扰动能量的耗散率 ,此惯性区域的尺度 满足:柯尔莫哥洛夫(Kolmogorov )模型的特征参数:随机场的空间统计特性通常用结构函数等相关函数关系描述,包括风速结构率函数、折射率结构函数等,由于在湍流效应的研究中,主要考虑大气折射率起伏对光传输的影响,故又称为大气光湍流。
2_湍流基础 很好的

ui ul ui 2 ui 1 p fi t xl xi xl xl
ui ui 2 ui 1 p ul t xl xi xl xl
不可压缩流体湍流时均Navier-Stokes方程为
ui ui 2 ui u 1 p l ui ul t xl xi xl xl xl
上述两方程相减,得
例如:
A 1 lim t N N A 1 N (k ) 1 lim A lim N N N t k 1 t N k 1 t
N (k )
A A t k 1
N (k )
由上述可知,脉动值对时间或空间坐标的各阶偏导数的 平均值等于零:
表示,且为对称张量。不可压缩湍流平均动量方程可写成
ui ul ui 1 pli p li fi t xl xl xl
其中
u j ui 1 ij 2 xi x j
24
pij p ij 2 ij , p ij ui u j ,
不可压缩湍流平均动量方程(亦称Reynolds方程)成为
ui ul ui 2 ui u 1 p l ui fi t xl xi xl xl xl
u 通常称 u i j 为Reynolds应力(二阶张量)。用 P e i e j pij
7
2.1.2 湍流的统计平均方法
16
2.1.3 平均值与脉动值的性质
最常用的描述湍流的近似方法是平均值方法,即将湍流的 任意参数A的瞬时随机值分解为平均量Ā与脉动量A′之和: A=Ā+A′ 为了今后对湍流运动微分方程进行平均化处理,须了解平 均值与脉动值的性质,这将用到Reynolds平均法则:
四种湍流模型介绍

由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
九章 湍流基础

湍流研究大致有三方面内容:
(1)湍流机理 (2)湍流的流动结构 (3)湍流预测(湍流模型) 9.1 湍流统计理论 9.1.1 湍流的统计方法 (1) 各态遍历假说 最常用的描述湍流统计的近似方法是平均方法。平均方法有 时均法、体均法及概率平均法(系综平均法)。 a. 时均法:定义物理量V(x,t)对时间的平均值 V ( x, t ) ,适合定 常湍流
湍流理论就是研究脉动的关联量与平均值之间的相互关系!
9.1.3 湍流的基本方程-湍流连续性方程及雷诺方程 多年实践证明粘性流体的运动方程和连续性方程对于湍流的 瞬时运动同样适用。 (1)连续性方程 (2)雷诺方程
Vi 0 ——脉动流动的连续性方程 xi
由不计质量力的不可压缩流体的瞬时流动的 N-S 方程
单位质量流体的平均运动的动能 单位质量流体的湍动能 (2)湍流度e:脉动速度的均方根与当地平均速度绝对值之比, 反映当地脉动运动的强度 1
e i ) 2 (V iV
1
(V iV i ) 2
(3)关联函数
利用关联来考察脉动量在时间序列上或空间分布的统计相关特性
(b)二阶空间关联Rij(x,t;r):同一时刻,相隔给定空间位移r的两个 脉动量之积的平均值定义为两脉动量之间的二阶空间关联
x j
雷诺应力的性质: (1)雷诺应力是二阶对称张量,有六个独立分量。
j 是一点,即 0, r 0 的二阶互关联: ViV
j V jVi, ViV Rij R ji
ViV j pij ij p 2 ij , p ij
K 1 1 1 1 i V iV i (V i V i )( V i V i ) V i V i V iV 2 2 2 2
第七章 湍流理论基础

第七章湍流理论基础认识湍流——雷诺实验湍流具有——随机性、非线性性123(,,,)i i u u x x x t =湍流是三维空间中的不规则非定常流动。
学习湍流——预测、控制•各项物理意义如下:各项物义如下(1)总动能的当地变化率,由湍流流动的不恒定性而引起。
恒定性而引起(2)总动能的迁移变化率,由时均流场的空间不均匀性引起。
(3)时均总势能的迁移变化率,反映时均场)时均总势能的迁移变化率反映时均场的空间不均匀性。
(4)由脉动场的空间不均匀引起的脉动压能和脉动动能的迁移变化率和脉动动能的迁移变化率。
(5)时均粘性应力与时均流速的乘积,为粘性应力作功的功率(6)湍流切应力对时均流场作功的功率。
(7)脉动粘性应力对脉动流场作功的功率。
(8)时均流动耗散项,即粘性应力所作的变)时均流动耗散项即粘性应力所作的变形功。
(9)脉动流动耗散项,即脉动粘性应力对脉动流场的变形速率所作的脉动变形功。
动流场的变形速率所作的脉动变形功各项物理意义:(1)单位体积流体所具时均动能的当地变化率(2)单位体积流体所具时均动能的迁移变化率(3)压差与重力对流体作功的功率,单位体积流体所具时均势能的迁移变化率(4)时均粘性应力作功而传递能量的扩散项(5)单位体积流体的耗散项,时均粘性应力所做的变形功(6)雷诺应力作功的扩散项)雷诺应力对时均流场所作的变形功脉动(7)雷诺应力对时均流场所作的变形功,脉动能量的产生项,对时均流是能量的损失。
各项物理意义:(1)单位体积流体所具脉动动能的当地变化率。
(2)单位体积流体所具脉动动能的迁移变化率。
(3)由脉动场的空间不均匀引起的脉动压能和脉动动能的迁移变化率。
(4)脉动粘性应力对脉动流场作功的功率。
)脉动粘性应力对脉动流场作功的功率(5)脉动流动耗散项,即脉动粘性应力对脉动流场的变形速率所作的脉动变形功。
的变速率所作的脉动变功(6)脉动动能产生项。
§7-3 湍流流动的基本性质73湍流能量的输运性和耗散性以及湍流的有旋性是湍流的重要特性一、湍流能量的输运性分子的动能输运率表现为宏观的粘性,分子的分子的动能输运率表现为宏观的粘性分子的内能输运率表现为热传导。
第9章湍流基础

第9章湍流基础透平叶栅中的流动是一种性质极为复杂的流动,由于在现代透平中流动的雷诺数很高,同时透平转子对流动的强烈影响,都使得流道中的实际流动呈现湍流状态]1[。
如果仍然采用层流模型进行数值研究,结果与真实值间的差距就会加大。
此外,湍流其本身也是一个很复杂的问题,一方面它是流体力学领域中尚未解决的问题之一;另一方面,在求解湍流模型的过程中还会产生很多数学上的问题]2[。
如此一来,叶栅流道内的三维湍流的数值计算就吸引了众多的学者和工程技术人员。
9.1 湍流的基本概念9.1.1 湍流的概念和基本结构自然界中的流动问题和工程实践中所处理的各种流体运动问题更多的是湍流流动问题。
如水在江河中的流动水通过各种水工建筑物、水处理建筑物的流动,管道中水的流动,污染物质在河流及海洋中的扩散,大气边界层流动等均多为湍流。
湍流是不同于层流的又一种流动形态。
英国的雷诺于1883年,通过其著名的圆管实验深入的揭示了这两种不同的粘性流动形态]3[。
虽然一百多年来人们对湍流的研究不断深入,但是由于湍流运动的极端复杂性,它的基本机理至今仍未被人们所掌握,甚至至今仍然没有一个精确的定义。
雷诺(Osborne Reynolds,1842年—1912年)把湍流定义为一种蜿蜒曲折、起伏不定的流动(sinuous motion)。
泰勒(G.I.Taylor 1886年—1975年)和冯·卡门对湍流的定义是“湍流是常在流体流过固体表面或者相同流体分层流动中出现的一种不规则的流动”。
欣策(J.O.Hinze )在他的著作“Turbulence”一书中则认为湍流的更为确切的定义应该是“湍流是流体运动的一种不规则的情形。
在湍流中各种流动的物理量随时间和空间坐标而呈现出随机的变化,因而具有明确的统计平均值”。
同时,在这本书中还把泰勒和卡门对湍流所下定义中提到的两种流动状况给予专门名称:“壁面湍流”表示流过固体壁面的湍流,“自由湍流”表示流动中没有固体壁面限制的湍流流动。
九章 湍流基础

单位质量流体的平均运动的动能 单位质量流体的湍动能 (2)湍流度e:脉动速度的均方根与当地平均速度绝对值之比, 反映当地脉动运动的强度 1
e i ) 2 (V iV
1
(V iV i ) 2
(3)关联函数
利用关联来考察脉动量在时间序列上或空间分布的统计相关特性
(b)二阶空间关联Rij(x,t;r):同一时刻,相隔给定空间位移r的两个 脉动量之积的平均值定义为两脉动量之间的二阶空间关联
j ij ViV
单位时间内,过dx2dx3的质量为ρV1/dx2dx3 它在三个坐标轴方向具有的动量为:
1dx 2 dx 3 , V1V 2dx 2 dx 3 , V1V 3dx 2 dx 3 V1V
9.1.5 雷诺应力输运方程和湍动能输运方程 x3
t x j
u w v w w w
x j
j 表示单位质量流体所具有雷 说明:在本教材中引入 Rij ViV 诺应力。在均质不可压湍流中,密度为常数,常常可用单位质量 流体所具有的雷诺应力表示。
(ViV j ) 1 p ij pij 雷诺方程也可写成 Vi ( )
湍流研究大致有三方面内容:
(1)湍流机理 (2)湍流的流动结构 (3)湍流预测(湍流模型) 9.1 湍流统计理论 9.1.1 湍流的统计方法 (1) 各态遍历假说 最常用的描述湍流统计的近似方法是平均方法。平均方法有 时均法、体均法及概率平均法(系综平均法)。 a. 时均法:定义物理量V(x,t)对时间的平均值 V ( x, t ) ,适合定 常湍流
A( p ) ( x i , t )
以下的讨论均建立在各态遍历假说成立的前提下! (2)时均值和脉动值的性质 流体力学中讨论湍流问题,通常采用时均的方法。 瞬时量=平均值A +脉动值A/ ,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13:37
2.1.1 湍流的基本特征
9
B. 湍流研究的基本现状:
100多年来,人类对湍流的研究取得了不少进展 并解决了不少工程问题。但由于湍流运动的极端 复杂性,其基本的流动机理至今未被人类所掌握, 甚至对于湍流至今缺乏一个严格的定义。 湍流是一种浑沌的、不规则的流动状态,其流动 参数随时间与空间作随机的变化,因此本质上是 三维非定常流动,且流动空间分布着无数形状与 大小各不相同的旋涡。可以说,湍流是随机的三 维非定常有旋流动。
动均匀化,也就是使上层流速较快的流动变缓,使下层流 du1 速较慢的流动加速。因此它与平均粘性切应力 p21 dx2 作用方向相同,该结论可推广到三维情况。
13:37
2.2.2 湍流时均动量方程(Reynolds方程)
26
2.2.3 湍流Reynolds应力输运方程
不考虑质量力,或重力场下,p表示动压强时,不可压缩 流体湍流瞬时流场Navier-Stokes方程为
(V )
1 A ( t ) lim V V
V
A( x , y , z , t )dV
(V )
A ( t ) ——随机量的整体平均值。
V —— 包含进行测量的空间点(x,y,z)在内的足够大的体 积。 上式为描述对体均值而言的统计均匀湍流流场(可以是
非定常流场)。按照随机性的性质,其整体平均值应与 所取的体积V的大小及其所处的坐标位臵无关 。
13:37
2.2 湍流的基本方程
22
ui ul ui 2 ui 1 p fi t xl xi xl xl
取平均值
ui ul ui 2 ui 1 p fi t xl xi xl xl
ui t
1 p xi
2 ui x l x l
2 湍流基础
☆ 流体运动的基本概念和基本方程 ★ 湍流基础 ☆ 扩散理论 ☆ 剪切流中的离散 ☆ 射流基础
本章主要内容
2.1 湍流的基本概念
2.2 湍流的基本方程
2.3 一阶封闭湍流模型(零方程模型)
2.4 二阶封闭湍流模型
2.5 二阶封闭湍流模型的变异
13:37
2 湍流基础
2
管口出流——层流
13:37 2 湍流基础 3
③脉动值乘以常数的平均值等于零:
cA c A 0
④脉动值与任一平均值乘积的平均值等于零:
AB AB 0
13:37 2.1.3 平均值与脉动值的性质 18
⑤瞬时值对时间或空间坐标的各阶偏导数的平均值等于平 均值的各阶导数:
A A A A m n A m n A , , m n m n t t xi xi t xi t xi
G. I. Taylor和T. von Ká rmá n:“湍流是常在流 体流过固体表面或者相同流体的分层流动中出 现的一种不规则的流动”。 J. O. Hinze:“湍流是流体运动的一种不规则 的情况。在湍流中各种流动的物理量随时间和 空间坐标而呈现随机的变化,因而具有明确的 统计平均值”。
2.1 湍流的基本概念 8
0
0
u ( ul u ul ui u ul u lu i l )(ui ui ) l ui i xl xl xl xl xl
ul ui u lu i x l x l
13:37 2.2.2 湍流时均动量方程(Reynolds方程) 23
u p 2 u u f u t u 0 p u 2 ( uu) f u t
ui ul ui 2 ui 1 p fi t xl xi xl xl
管口出流——湍流
13:37 2 湍流基础 4
13:37
2 湍流基础
5
13:37
2 湍流基础
6
2.1 湍流的基本概念
2.1.1 湍流的基本特征 2.1.2 湍流的统计平均方法
2.1.3 平均值与脉动值的性质
13:37
2 湍流基础
7
2.1.1 湍流的基本特征
A. 科学家对湍流现象的描述:
O. Reynolds:一种蜿蜒曲折、起伏不定的流动。 (1883年著名的圆管试验)
ui ui 2 ui 1 p ul t xl xi xl xl
不可压缩流体湍流时均Navier-Stokes方程为
ui ui 2 ui u 1 p l ui ul t xl xi xl xl xl
上述两方程相减,得
③湍流场中任意两个相邻空间点上的运动参数有某种程度 的相关或关联,如速度的关联、速度与压强的关联等等。 边界条件不同的湍流具有不同的关联特征 。
13:37
2.1.1 湍流的基本特征
11
2.1.2 湍流的统计平均方法
准确描述湍流运动随时间和空间的变化是不现实 的,故Reynolds首先转而研究湍流的平均运动。 统计平均方法是处理湍流运动的基本方法,主要 包括:
即一次试验中,从任何时刻开始进行平 均都不影响时间平均值的大小。 T —— 平均周期,理论上应趋于无穷大,实际上只需取 足够长的有限时间间隔。 上式为描述对时均值而言的统计定常湍流运动,按照随 机性的性质,其时间平均值与t0和T的选择无关。
13:37 2.1.2 湍流的统计平均方法 13
B. 整体平均法(体均法)
2.1.1 湍流的基本特征 10
C. 对湍流的归纳性解释:
13:37
D. 湍流的最基本的特征——随机性:
①湍流的流体质点的运动类似于分子运动,在时间与空间 上具有完全不规则的瞬息万变的运动特征。
②湍流的运动参数虽是随机量,但在一定程度上符合概率 规律,具有某种规律的统计平均特征。由于湍流场中存 在着拟序结构,它们都以大尺度旋涡运动为特征,因此 湍流也服从自然界中最基本的物理定律。
13:37
2.1.2 湍流的统计平均方法
14
C. 概率平均法(系综平均法)
时均法只适用于定常湍流,而体均法只适用于均匀湍流。 对于一般的非定常、非均匀湍流,可以采用随机变量的 一般平均法,即概率平均法。
(ห้องสมุดไป่ตู้p)
( p)
1 A ( x, y, z , t ) lim N N
A( x , y , z , t )
2 u u u u u u 1 p i i i i i l ui ul u u l l t xl xl xl xi xl xl xl
13:37 2.2 湍流的基本方程 27
2 u u u u u u 1 p i i i i i l ui ul u u l l t xl x l x l xi x l x l x l
k 1
N (k )
A ( x , y, z , t ) ——随机量的概率平均值。
(k )
A( x , y , z , t ) —— 为第k次试验的分布函数。
N —— 重复试验的次数。实际上N是无法做到的, 可以取足够多次的试验测量结果进行平均。
13:37
2.1.2 湍流的统计平均方法
15
上述三种平均方法在物理概念上是有区别的,但根据随机 理论中的各态遍历假设可知,一个随机变量在重复多次的 试验中出现的所有可能值,能够在相当长时间内(或相当 大的空间范围内)的一次试验中出现许多次,并具有相同 的概率,亦即假设上述三种平均值是相同的:
l处流体微团受到 u 的作用而向上运动到一个新位臵时, 2 0 其原平均速度 u1l u1 , 使得新位臵处x1方向的速度出现负
0 ,反之亦然。可见,u1 与 u 扰动,即 u1 2 的值总是符号
相反。该图中Reynolds切应力 u i u j作用的结果总是使流
不可压缩湍流平均动量方程(亦称Reynolds方程)成为
ui ul ui 2 ui u 1 p l ui fi t xl xi xl xl xl
u 通常称 u i j 为Reynolds应力(二阶张量)。用 P e i e j pij
例如:
A 1 lim t N N A 1 N (k ) 1 lim A lim N N N t k 1 t N k 1 t
N (k )
A A t k 1
N (k )
由上述可知,脉动值对时间或空间坐标的各阶偏导数的 平均值等于零:
13:37 2.2.2 湍流时均动量方程(Reynolds方程)
的物理意义 u iuj
——由于湍流脉动引起的单位面积上的动量输运率。
平面流动脉动流速示意图
13:37
2.2.2 湍流时均动量方程(Reynolds方程)
25
以图示二维流动为例,
u1 u1 ( x2 ), u2 u3 0, du1 / dx2 0
A B A B cA cA AB AB lim A limA
其中A和B为任意函数,c为常数。
13:37 2.1 湍流的基本概念 17
平均值与脉动值有下列性质:
①平均值的平均仍为该平均值:
1 A T AT A dt A T
t0 T
t0
②脉动值的平均值等于零:
A A A A A 0
13:37
20世纪60年代以来:随着湍流试验技术的进步, 使人们对湍流现象有了进一步的认识。尤其湍 流中大涡拟序结构的发现改变了对湍流的某些 传统看法。
近十多年来:混沌理论(chaos theory)已成为非 线性科学的主要研究对象,应用混沌理论研究 湍流问题也许会给湍流研究带来更多的希望。