燃料电池(Fuel cell )材料
燃料电池-固体氧化物燃料电池

熔融碳酸盐燃料电池 (Molten carbonate fuel cell MCFC) -----熔融的锂钾或锂钠碳酸盐为电解质
固体氧化物燃料电池 (Solid oxide fuel cell----- SOFC) --------氧化钇稳定的氧化锆膜为氧离子导体Βιβλιοθήκη SOFC阳极材料的基本要求:
(1)稳定性 在燃料气氛中,阳极材料必须在化学性质、 形貌和尺度上保持稳定。
(2)电导率 阳极材料在还原气氛中要具有足够高的电子 导电率,以降低阳极的欧姆极化,同时还具备高的氧离子 导电率,以实现电极立体化。
(3)相容性 阳极材料与相接触的其它电池材料必须在室 温至制备温度范围内化学上相容。
轧膜常用黏结剂为聚乙烯醇或聚醋酸乙烯酯等有机高分子化合物,有时还加入 分散剂,增塑剂等 轧膜成型的优点是工艺简便,轧出的膜片表面光滑,均匀,致密 反复轧膜,常会引入少量杂质,有时对产品电性能产生不利影响 费时也较长,不便连续化操作 主要用于薄片状电容器坯片、压电陶瓷扬声器(蜂鸣片)、滤波器坯片和厚膜电 路基板坯片等
燃料电池-固体氧化物燃料电池
(4)热膨胀系数 阳极材料必须与其他电池材料热膨胀系 数相匹配。
(5)孔隙率 阳极必须具有足够高的孔隙率,以确保燃料 的供应及反应产物的排出。
(6)催化活性 阳极材料必须对燃料的电化学氧化反应具 有足够高的催化活性。
(7)阳极还必须具有强度高、韧性好、加工容易、成本低 的特点。
固体氧化物燃料电池 ( Solid oxide fuel cell---- SOFC )
燃料电池用质子交换膜简介

燃料电池用质子交换膜综述1.1 概述世界范围内的能源短缺问题越来越严重。
对于传统的化石燃料不可再生,且使用过程中造成的环境污染严重。
然而,绝大多数能量的转化是热机过程实现的,转化效率低。
在过去30年里,化石燃料减少,清洁能源需求增多。
寻求环保型的再生能源是21世纪人类面临的严峻的任务。
因此,针对上述传统能源引来的诸多问题,提高能源的转换效率和寻求清洁新能源的研究获得越来越广泛的。
燃料电池(Fuel cell)是一种新型的能源技术,其通过电化学反应直接将燃料的化学能转化为电能[1, 2]。
而且,不受地域以及地理条件的限制。
近年来,燃料电池得到了长足的发展,并且在不同的领域已得到了实际的应用。
1.2 燃料电池燃料电池不受卡诺循环的限制,理论能量转化率高(在200°C以下,效率可达80%),实际使用效率则是普通内燃机的2~3倍,所用的燃料为氢气、甲醇和烃类等富氢物质[3],环境友好。
因此,燃料电池具有广阔的应用前景。
下面从组成、分类和特点3个方面具体介绍一下燃料电池:1.2.1 燃料电池的组成燃料电池本质上是水电解的一个逆装置。
在燃料电池中,氢和氧通过化学反应生成水,并放出电能。
燃料电池基本结构主要由阳极、阴极和电解质3部分组成。
通常,阳极和阴极上都含有一定量的催化剂,加速电极上的电化学反应。
两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等五大类型。
以H2/O2燃料电池为例(图1-1):H2进入燃料电池的阳极部分,阳极上的铂层将氢气转化成质子和电子。
中间的电解质仅允许质子通过到达燃料电池的阴极部分。
电子则通过外线路流向阴极形成电流。
氧气进入燃料电池的阴极和质子,电子相结合生成水[4]。
图1.1燃料电池工作示意图1.2.2燃料电池的分类通常燃料电池根据所用电解质的不同来划分,因为它决定了燃料电池的工作温度、电极上所采用的催化剂以及发生反应的化学物质。
燃料电池按电解质的不同可分为五类:碱性燃料电池、磷酸燃料电池、固体氧化物燃料电池、熔融碳酸盐燃料电池和质子交换膜燃料电池。
燃料电池讲解:PPT课件

这艘212型潜艇是世界上最现代化的常规潜艇。潜艇采用的 燃料电池推进系统可使潜 艇保持更长的潜航时间,更不容 易被敌人探测到。
德 国 海 军 新 一 代 燃 料 电 池 潜 艇 服 役
甲 醇 燃 料 電 池 , 燃 料 電 池 的 层 狀 結 构
燃料电池其原理是一种电化学装置,其组成与一般电池相 同。其单体电池是由正负两个电极(负极即燃料电极和正 极即氧化剂电极)以及电解质组成。不同的是一般电池的 活性物质贮存在电池内部,因此,限制了电池容量。而燃 料电池的正、负极本身不包含活性物质,只是个催化转换 元件。因此燃料电池是名符其实的把化学能转化为电能的 能量转换机器。电池工作时,燃料和氧化剂由外部供给, 进行反应。原则上只要反应物不断输入,反应产物不断排 除,燃料电池就能连续地发电。这里以氢-氧燃料电池为 例来说明燃料电池 氢-氧燃料电池反应原理 这个反映是电觧水的逆过程。 电极应为: 负极:H2 +2OH-→2H2O +2e正极:1/2O2 +H2O+ 2e-→2OH电池反应:H2 +1/2O2==H2O
但是,由于多年来在燃料电池研究方面投入资金 数量很少,就燃料电池技术的总体水平来看,与 发达国家尚有较大差距。我国有关部门和专家对 燃料电池十分重视,1996年和1998年两次在香山 科学会议上对中国燃料电池技术的发展进行了专 题讨论,强调了自主研究与开发燃料电池系统的 重要性和必要性。近几年中国加强了在PEMFC方 面的研究力度
3,高效率的发电装置 4,分散型的发电装置 规模最大的可以替代火力发电或核能发电,用于 商业发电。不需要庞大的设备,不需要变送电系 统;与核能相比,发生事故的危险性较小。可以 建在大城市的近郊。规模稍小的可以建在住宅小 区、办公楼、厂区甚至城市的中心地带。可以减 少因长距离输送电力而产生的损耗。面向个人用 途的超小型燃料电池可以作为笔记本电脑和移动 便携电话的电源。
燃料电池简介

H2 2H++2e
阴极:
1/2O2+2H++2e
H2O
燃料电池的分类
目前,燃料电池按电解质划分已有6个种类得到了发展:
碱性燃料电池(Alkaline Fuel Cell,AFC)
采用氢氧化钾溶液作为电解液
磷酸盐型燃料电池(Phosphoric Acid Fuel Cell,PAFC)
总结
燃料电池的出现与发展,将会给便携式电子设备带来一场 深刻的革命,并且还会波及到汽车业,住宅,以及社会各 方面的集中供电系统。在21世纪中它将会把人类由集中供 电带进一种分散供电的新时代。
燃料电池供电,没有二氧化碳的排放,可减轻温室效应使 全球气候变暖问题,解决了火力发电使全球环境污染的问 题,是一个纯正的绿色清洁能源。所以,我们要加速实现 燃料电池的商品化进程,中国人应该在这场能源革命中有 所作为,跟上全球技术发展的步伐。
DMFC:直接甲醇燃料电池; MCFC:熔融碳酸盐型燃料电池; PAFC:磷酸盐型燃料电池
资料来源:Fuel Cell Today
燃料电池的发展现状
全球燃料电池生产数量的区域分布
资料来源:Fuel Cell Today
最新科技
------美国空军学院研究无人机用氢燃料电池技术
我国研究开发进展
我国2类碱性石棉膜型氢氧燃料电池系统通过了航天环境模拟试验。 国家已将质子交换膜燃料电池列为重点攻关项目,以大连化学物理所 为牵头单位,在国内全面开展了质子交换膜燃料电池的材料和电池系 统的研究,并组装了多台各种功率(1kw~25kw)的电池组和电池系
采用200℃高温下的磷酸作为其电解质
熔融碳酸盐型燃料电池(Molten Carbonate Fuel Cell,MCFC)
燃料电池的电极材料

燃料电池的电极材料燃料电池(Fuel Cell)是指直接将化学能转化为电能的装置。
在燃料电池中,燃料(一般指氢气)和氧气在电极和催化剂的作用下,发生氧化还原反应,产生电子和离子,进而产生电流。
其中,电极材料是燃料电池中至关重要的一个组成部分,直接影响到燃料电池的性能和效率。
燃料电池的电极材料主要包括阴极和阳极两种。
阴极材料的主要作用是促进氧气的还原反应,一般采用的是铂(Pt)或其他贵金属材料,因为这些材料具有较高的电催化活性和稳定性。
同时,为了提高阴极材料的利用效率,还可以采用载体材料(如炭黑)来增加表面积,使得反应速率更快。
阳极材料则主要用于促进燃料(一般指氢气)的氧化反应,因此需要具有较好的催化性能和电导性能。
目前,常用的阳极材料是铂钴合金(Pt-Co),因为铂钴合金具有较高的活性和较低的电极负载,可以提高燃料电池的效率和长期稳定性。
此外,也可以在阳极上使用一些非贵金属材料作为催化剂,如过渡金属氧化物化合物和碳材料等,这些材料具有较好的催化性能和较低的成本,可以帮助降低燃料电池的制造成本。
除了阴极和阳极材料外,燃料电池的电极材料还包括电解质、导电材料和气体扩散层等。
其中,电解质的作用是分离阳、阴极,以免出现短路现象,如目前常用的电解质有聚合物电解质、固体氧化物电解质等。
导电材料则是将电极材料与电流输出部分连通,在燃料电池中,常使用炭黑和碳纤维等导电材料。
气体扩散层则是将燃料和氧气输送至阴、阳极反应表面的媒介,通常采用多孔铜箔或碳纤维纸作为扩散层。
总之,燃料电池的电极材料是燃料电池能否高效运行和长期稳定的关键因素。
随着技术的不断发展,越来越多的研究者开始寻找非贵金属材料替代阴极和阳极材料,以降低燃料电池的制造成本和提高应用范围,这也将是未来研究的一个重要方向。
而基于燃料电池的技术,在节能减排和提高能源利用效率方面无疑具有广阔的应用前景。
燃料电池(课件)

得失电子数目的求算
燃料分子失电子的数目,可根据整体化合价变化情况 进行求算,也可以直接根据分子所含的原子数目进行 计算。1mol的CxHyOz失去电子的数目为4x+y- 2z(碳四氢一氧减二)。我们可以计算,每个C₃H₈失电 子数为4×3+1×8=20,每个C₂H₅OH分子失电子数 为4×2+1×6-2=12。
电解质为固体电解质 (如固体氧化锆—氧 化钇)O2+4e-=2O2-。
燃料电池负极反应式的书写
产物判断规则
一般来说,负极反应物一般为燃料,常常含有碳元素和 氢元素,有时也含有氧元素。在酸性溶液(如硫酸溶液) 下,负极燃料失电子,C元素变为+4价,转化为CO₂; H元素转化为H⁺,氧元素结合H⁺转化为水。在碱性溶 液(如氢氧化钠溶液)下,负极燃料失电子,C元素转化 为碳酸根离子,+1价的氢元素不能在碱性条件下以离 子形态稳定存在,结合OHˉ生成水,氧元素变成氢氧根 离子或者水。
谢谢
燃料电池
基础知识
燃料电池(Fuel cell),是一种不经过燃烧,将燃料化学能经过电化学反 应直接转变为电能的装置。它和其它电池中的氧化还原反应一样,都是自 发的化学反应,不会发出火焰,其化学能可以直接转化为电能,且废物排 放量很低。其中燃料电池电化学反应的最终产物与燃料燃烧的产物相同
基础知识
燃料电池的两极材料都是用多孔碳、多孔镍、铂、钯等兼有催化剂特性 的惰性金属,两电极的材料相同。 燃料电池的电极是由通入气体的成分来决定。通入可燃物的一极为负极 ,可燃物在该电极上发生氧化反应;通入空气或氧气的一极为正极,氧 气在该电极上发生还原反应。
量为1mol,在标准状况下为22.4L,D错误;【答案】C
真题突破
(2019·全国高考真题)利用生物燃料电池原理研究室温下氨 的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意 图如下所示。下列说法错误的是
燃料电池的工作原理和分类
燃料电池的工作原理和分类燃料电池(Fuel Cell,FC)是一种将氢气与氧气反应产生电能的化学电源,它通过将燃料(如氢气、甲醇、乙醇等)与氧气经过电化反应产生电能,是一种高效、清洁、无污染的能源转换技术。
燃料电池的工作原理是将氢气通过阳极从燃料电池进入电解质层,同时让氧气通过阴极接触电解质层,这样氢气经过堆中催化剂的作用与氧气氧化反应形成水,同时释放出电子,从而产生电能。
燃料电池的分类主要有以下几种:1、聚合物电解质膜燃料电池(PEMFC)聚合物电解质膜燃料电池是燃料电池中使用最广泛的一种类型,也是最具有商业化前景的燃料电池。
它采用一种聚合物电解质膜作为电解质,在膜中间为阳极和阴极分别分布两边,并在两面贴合有催化剂的电极,由于聚合物电解质膜可以通过水分子进行质子传输,所以也称为质子交换膜燃料电池。
PEMFC 的优点是启动快、反应迅速、效率高,具有能量密度高、容量大、重量轻等特点,可以在低温下运行,所以被广泛应用于汽车动力系统等领域。
2、固体氧化物燃料电池(SOFC)固体氧化物燃料电池是一种以固态材料作为电解质的燃料电池,其电解质层一般采用氧离子传递材料,电极上面涂有催化剂,将氢气从阳极侧注入,氧气从阴极侧流入,反应时释放出电子和氧离子。
SOFC 的优点是电池效率高、燃料适应性强、发电环境友好等。
缺点是启动时间较长,高温下稳定性难以保证,体积较大,制造成本高等。
3、碳酸盐燃料电池(MCFC)碳酸盐燃料电池是将燃料和氧气通过催化剂反应产生电能,并且在电解质层内引入一些碳酸盐,通过扭曲形成碱性环境来促进反应的进行,同时能够达到能量的高效利用。
DMFC 的优点是可以直接使用常温常压的甲醇溶液作为燃料,体积小,重量轻,但功率输出低,效率低。
缺点是甲醇的毒性大,制造成本高等。
总的来说,不同类型的燃料电池各有特点,在不同的应用领域可以灵活选择,燃料电池的应用前景十分广阔。
燃料电池成本结构拆分
燃料电池成本结构拆分燃料电池(Fuel Cell)是一种能够将化学能转化为电能的装置,其工作原理是利用氧气和氢气之间的化学反应产生电能。
燃料电池的成本结构主要包括以下几个方面。
一、材料成本燃料电池的核心是电解质膜,其材料成本较高。
当前常用的电解质材料有质子交换膜(Proton Exchange Membrane,PEM)和固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)的氧离子传导膜。
此外,燃料电池还需要使用贵金属作为催化剂,如铂、钯等,这也是成本的重要组成部分。
二、制造成本燃料电池的制造过程相对复杂,需要进行多道工序的加工和组装。
其中,最关键的工序是电解质膜的涂覆和电极的制备。
此外,燃料电池还需要进行密封、冷却等处理,这些都对制造成本造成了一定的影响。
三、系统成本燃料电池系统除了核心的燃料电池堆外,还包括氢气供应装置、氧气供应装置、电池管理系统等。
这些附属设备的成本也是构成燃料电池系统成本的一部分。
此外,燃料电池系统还需要考虑安全性、可靠性等因素,这也会增加系统成本。
四、维护成本燃料电池的使用寿命受到很多因素的影响,如温度、湿度、负载等。
在实际使用过程中,燃料电池需要进行定期保养和维护,以确保其正常运行。
这些维护成本包括维修费用、更换部件费用等。
五、废弃物处理成本燃料电池使用过程中产生的废弃物主要包括水和二氧化碳。
这些废弃物需要进行处理,以符合环境保护要求。
废弃物处理的成本也是燃料电池成本的一部分。
六、经济规模效应与许多其他技术一样,燃料电池的成本还受到经济规模效应的影响。
随着生产规模的扩大,燃料电池的成本会逐渐下降。
此外,技术进步和创新也会推动燃料电池成本的降低。
总结起来,燃料电池的成本结构包括材料成本、制造成本、系统成本、维护成本、废弃物处理成本以及经济规模效应。
为了降低燃料电池的成本,需要在材料选择、制造工艺、系统设计等方面进行优化和创新。
同时,政府和企业也应加大对燃料电池技术的支持和投入,推动其商业化应用,促进成本的进一步降低。
燃料电池的材料科学研究进展
燃料电池的材料科学研究进展在当今能源领域,燃料电池作为一种高效、清洁的能源转换装置,正引起越来越广泛的关注。
燃料电池的性能和成本很大程度上取决于其所使用的材料,因此,材料科学的研究进展对于推动燃料电池技术的发展至关重要。
燃料电池的工作原理是通过化学反应将燃料(如氢气、甲醇等)和氧化剂(通常为氧气)的化学能直接转化为电能。
在这个过程中,需要一系列的材料来实现高效的电荷转移、催化反应和离子传输等关键步骤。
首先,电极材料是燃料电池的核心组成部分之一。
对于阳极,需要能够有效地催化燃料的氧化反应。
目前,常用的阳极催化剂主要是铂基材料,但其高昂的成本和有限的资源供应限制了燃料电池的大规模应用。
因此,研究人员一直在努力寻找替代材料或改进现有催化剂的性能。
例如,非贵金属催化剂如镍、钴等以及它们的合金和化合物,在某些特定条件下表现出了一定的催化活性,但其稳定性和性能仍有待进一步提高。
同时,通过纳米技术对催化剂进行形貌和结构的调控,增加其比表面积和活性位点,也是提高催化性能的重要途径。
在阴极方面,氧气还原反应(ORR)的动力学过程较为缓慢,需要高效的催化剂来加速反应。
铂基催化剂同样是阴极的常用选择,但同样面临成本和资源的问题。
近年来,基于过渡金属氮碳化合物(MNC)的无铂催化剂成为研究热点。
这些材料通过合理的设计和合成,能够在一定程度上模拟铂的催化性能,同时降低成本。
此外,通过对催化剂的载体进行优化,如使用碳纳米管、石墨烯等具有高导电性和良好稳定性的材料,也有助于提高阴极的性能。
电解质材料在燃料电池中起着传递离子的重要作用。
质子交换膜燃料电池(PEMFC)中常用的质子交换膜是全氟磺酸膜,如 Nafion 膜。
这类膜具有高质子传导率和良好的化学稳定性,但在高温和低湿度条件下性能会下降。
为了克服这些问题,研究人员开发了一系列新型质子交换膜,如部分氟化膜、非氟质子交换膜等。
此外,高温质子交换膜燃料电池(HTPEMFC)使用的磷酸掺杂聚苯并咪唑膜等,能够在较高温度下工作,提高了燃料电池的热管理和抗杂质能力。
燃料电池技术的研究与应用前景
燃料电池技术的研究与应用前景1.前言燃料电池技术是一种新型的能源转换技术,通过将化学能转化为电能实现能量的转换。
在全球温室气体排放的限制和节能减排的趋势下,燃料电池技术被认为是一种具有潜力的能源源,其发展前景也备受关注。
本文将介绍燃料电池技术的基础原理、发展历程以及应用前景。
2.基础原理燃料电池(Fuel Cell)是一种将氢气或其他燃料直接转化成电能的电化学装置。
它是一种通过电化学反应来将化学能直接转化为电能的装置。
其基本原理是将氢或有机物燃料和氧气进行氧化还原反应,通过电化学反应直接将化学能转化为电能,同时产生水和二氧化碳等的化学副产物。
通常燃料电池由电极、电解质、氧化物和燃料等组成。
电极由两种不同的材料组成,负极为负极催化剂层,正极为正极催化剂层。
电解质通常为固态或液态电解质,用于阻止电解质中离子的相互扩散。
氧化损失层通常为空气或氧气进入电极的媒介,以便电化学反应的正常进行。
燃料则可以为氢气、甲烷、丙烷、乙醇等,并在电极上得到催化加速。
3.发展历程燃料电池的发展历程源远流长,最早可以追溯到19世纪中期。
在19世纪初期,Hydrogen-Oxygen Fuel Cell的概念被首次提出,但是直到20世纪60年代,燃料电池的研究才得以开始。
在20世纪后期,随着环保意识的加强和节能减排的需求不断增长,燃料电池技术得到了广泛关注和研究,同时也得到了不断创新和突破。
目前燃料电池分为多种类型,包括碱性燃料电池、直接甲醇燃料电池、固体氧化物燃料电池等,其各自的特点和应用领域也不同。
在这些类型中,PEM燃料电池最为突出,PEM燃料电池是基于质子交换膜实现的燃料电池,其性能相对稳定,并且响应速度较快等优点,因此得到广泛的应用和研究。
4.应用前景随着全球能源危机和环境污染等问题不断加剧,燃料电池技术的应用前景也不断扩大。
当前,燃料电池主要应用于汽车领域、能量储存领域以及航空航天领域。
4.1 汽车领域燃料电池汽车可以说是燃料电池技术的最佳代表之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.燃料电池介绍
3.1.1 简介 (1)什么是燃料电池? 简单地说,燃料电池1(Fuel Cell,简称FC)是
一种将存在燃料和氧化剂中的化学能直接转化为 电能的电化学装置。
作为一种新型化学电源,燃料电池是继火电、 水电和核电之后的第四种发电方式.与火力发电 相比,关键的区别在于燃料电池的能量转变过程 是直接方式,如图 1-1 所示.
燃料电池(Fuel cell )材料
介绍内容
3.1,燃料电池介绍 3.2,质子交换膜燃料电池材料 3.3,碱性燃料电池材料 3.4,磷酸型燃料电池材料 3.5,直接醇类燃料电池材料 3.6,熔融碳酸盐燃料电池材料 3.7,固体氧化物燃料电池材料 3.8,金属/空气燃料电池材料 3.9,燃料电池的应用与前景
下面以简单的酸性电解质氢氧燃料电池为例说明燃料 电池的工作原理。
氢气作为燃料被通入燃料电池的阳极,发生如下氧化 电极反应
H2 + 2H2O
2H3O+ + 2e-
氢气在催化剂上被氧化成质子,与水分子结合成水合
质子,同时释放出两个自由电子。
电子通过电子导电的阳极向阴极方向运动,而水合质 子则通过酸性电解质往阴极方向传递。在阴极上,氧气在 电极上被还原,发生如下电极反应
热能
动能
传统技术
化学能
燃料电池
电能
图1-1 燃料电池直接发电与传统间接发电的比较
(2) 燃料电池发展过程中的重大事件
1839年,格罗夫发明“气体伏打电池”,格罗夫也被称 为“燃料电池之父”;
1889年,蒙德和朗格尔改进氢氧“气体电池”并正式确 定其名称为“燃料电池”;
1896年,雅克研制成功第一个数百瓦(大约300瓦)的煤 燃料电池;
一般采用多孔材料.各
种燃料电池的材料也都
有各自的特点.
燃料电池的基本反应
3.1.3 燃料电池(Fuel Cell)与电池(Battery)的区别
(1)相同点:将化学能转变为电能的装置,有许多 相似之处。
(2)不同点:燃料电池是能量转换装置 电池是能量储存装置。
一次电池:化学能储存在电池物质中, 当电池放电电时,电 池物质发生化学反应,直到反应物质全部反应消耗完毕, 电池就再也发不出电了.所以原电池所发出的最大电能等 于参与电化学反应的化学物质完全反应时所产生的电能.
(2) 燃料电池发展过程中的重大事件
1986年,洛斯阿拉莫斯国家实验室开发成功第一辆磷酸燃 料电池公共汽车;
1988年,第一艘碱性燃料电池潜艇在德国出现; 1991年,日本千叶县的11MW磷酸燃料电池试验电厂达 到设计功率; 1993年,巴拉德电力系统公司开发成功第一辆质子交换膜 燃料电池公共汽车; 1996年,美国加利福尼亚州的2MW 熔融碳酸盐燃料电池 试验电厂开始供电;
1897年,能斯特发明“能斯特物质”----YSZ (化8物5%燃Z料r电O2池+1的5%电Y解2O质3)材,该料物;质是目前广泛使用的高温固体氧
1899年,施密特发明第一个空气扩散电极; 1959年,培根和弗洛斯特研制成功6KW碱性燃料电池系 统,并用来驱动叉车、圆盘锯和电焊机; 1959年,艾丽斯-查尔莫斯公司开发出第一辆碱性燃料电 池拖拉机,可以推动3000lb(1lb=0.4536kg)的重物;
严格地讲,燃料电池是电化学能量发 生器,是以化学反应发电;一次电池是电 化学能量生产装置,可一次性将化学能转 变成电能;二次电池是电化学能量的储存 装置,可将化学反应能与电能可逆转换。
3.1.4 燃料电池的工作原理
虽然燃料电池的种类很多并 且不同类型的燃料电池的电极反应 各有不同,但都是由阴极﹑阳极﹑ 电解质这几个基本单元构成,其工 作原理是一致的。
-----------
3.1.2 燃料电池的构造 阴极
燃料电池
阳极
电解质
典型的燃料电池的构造如右下图所示.在阳极(负极) 上连续吹充气态燃料,如2氢气.在阴极(正极)上连 续吹充氧气(或由空气提供),这样就可以在电极上连 续发生电化学反应,并产生电流.由于电极上发生的反 应大多为多相界面反应,
为提高反应速率,电极
二次电池:利用外部供给的电能,使电池反应向逆方向进 行,再生成电化学反应物质.从能量角度看,就是将外部 能量充给电池,使其再发电,实现反复使用的功能.
燃料电池:从理论上讲, 只要不断向其供给燃料 (阳极反应物质,如H2), 及氧化剂(阴极反应物 质实,际如上O,23由),于就元可件以老连化续和不故断障地等发原电因,,因燃而料其电容池量有是一无定限的的. 寿命.
燃料气(氢气﹑甲烷等)在阳极催化剂的作 用下发生氧化反应,生成阳离子并给出自由电子; 氧化物(通常为氧气)在阴极催化剂的作用下发 生还原反应,得到电子并产生阴离子;阳极产生 的阳离子或者阴极产生的阴离子通过质子导电而 电子绝缘的电解质运动到相对应的另外一个电极 上,生成反应产物并随未反应完全的反应物一起 排到电池外,与此同时,电子通过外电路由阳极 运动到阴极,使整个反应过程达到物质的平衡与 电荷的平衡,外部用电器就获得了燃料电池所提 供的电能。
(2) 燃料电池发展过程中的重大事件
1960年,通用电气公司开发成功质子交换膜燃料电池; 1962年,质子交换膜燃料电池应用于双子星座飞船; 1965年,碱性燃料电池用于阿波罗登月飞船; 1967年,通用汽车开发成功第一辆碱性燃料电池电动汽 车Electrovan; 1970年,科尔地什组装了第一辆碱性燃料电池-铅酸电池 混合动力轿车; 1972年,杜邦公司和格罗特发明了全氟磺酸质子交换膜; 1979年,在美国纽约完成了4.5MW磷酸燃料电池电厂的 测试; 1986年,洛斯阿拉莫斯国家实验室(LANL)开发成功第 一辆磷酸燃料电池公共汽车;
O2 + 4H3O+ + 4e-
6H2O
氧气分子在催化剂的作用下,结合从电解质子,生成水分子。总
的电池反应为:
2H2 + O2
2H2O
从此可以看出,燃料电池是一个能量转化装 置,只要外界源源不断地提供燃料和氧化剂,燃 料电池就能持续发电。
从根本上讲,燃料电池与普通一次电池一样, 是使电化学反应的两个电极半反应分别在阴极和 阳极上发生,从而在外电路产生电流来发电的。 所不同的是,普通一次电池,例如锌锰电池,是 一个封闭体系,与外界只有能量交换而没有物质 交换。换句话说,电池本身既作为能量的转换场 所也同时作为电极物质的储存容器,