理论力学质点的振动

合集下载

理论力学a实验报告

理论力学a实验报告

理论力学a实验报告理论力学实验报告实验目的:1. 通过实验验证牛顿第二定律F=ma,了解质点运动的基本规律。

2. 了解不同质量和不同力作用下质点的加速度变化规律。

3. 学会使用实验数据进行数据处理和结果分析。

实验器材和仪器:1. 弹簧片、纸尺、质量块、电子天平、细线、定滑轮、螺旋测微器等。

实验原理:1. 牛顿第二定律:当质点受到的合外力F(施加力)作用时,它在单位时间内改变的动量等于力乘以时间,即F=ma。

2. 质点的运动方程:当质点受到外力F(恒力)并且无法运动阻力(忽略空气阻力)时,其运动方程为F=ma。

实验内容:1. 利用弹簧片制作一个简单的弹簧振子,测量弹簧振子的恢复力和质量。

2. 在水平桌面上,用细线连接一个质量块和一个拉动质量块的滑轮,用螺旋测微器测量质量块的加速度和受力。

1. 制作弹簧片振子:将弹簧片固定在木板上,细线穿过弹簧片中央孔,并系上质量块于另一端。

2. 用电子天平测量弹簧片和质量块的质量,并测量弹簧片振子的原始长度。

3. 将质量块从平衡位置拉开一小段距离后释放,测量弹簧片振子的振动时间,重复多次并取平均值。

4. 根据实验数据计算弹簧片振子的恢复力和质量,并进行数据处理和分析。

5. 利用细线连接质量块和拉动质量块的滑轮,将螺旋测微器固定在质量块上,并用纸尺测量螺旋测微器的刻度值。

6. 在拉力滑轮上施加一恒力,使质量块受到恒力作用。

同时,利用螺旋测微器测量质量块的加速度,并记录数据多次。

7. 根据实验数据计算质量块的加速度和受力,并进行数据处理和分析。

实验结果与分析:1. 弹簧片振子的恢复力与振子长度成正比,即F=kx,其中k 表示弹性系数,x 表示弹簧片振子的位移。

2. 通过实验数据计算出弹性系数和质量块的质量,并进行误差分析。

3. 质量块的加速度与施加力成正比,即a=F/m,其中F 表示受力,m 表示质量。

4. 通过实验数据计算出质量块的加速度,并进行误差分析。

5. 实验结果与理论分析一致,验证了牛顿第二定律F=ma。

理论力学课后答案第五章

理论力学课后答案第五章

第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q &是不是只相差一个乘数m ?为什么a p 比aq &更富有意义? 5.4既然aq T &∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。

理论力学 第十章振动

理论力学 第十章振动

k2
k1
δ st
r F1
k eq = k1 + k 2
δ st r
r mg
keq k1 + k 2 = m m
m
r F2
mg = k eqδ st
keq称为等效弹簧刚性系数 并联系统的固有频率为
mg k2
ωn =
当两个弹簧并联时,其等效弹簧刚度等于两个弹簧刚度的和。 这一结论也可以推广到多个弹簧并联的情形。
O
δ st
x
r F r P
则解为:
x = A sin(ω nt + θ )
表明:无阻尼自由振动是简谐振动。 其运动图线为:
x
A
x
x0
θ ωn
O
t
t+T
x
2.无阻尼自由振动的特点 无阻尼自由振动的特点
(1)固有频率 )
无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时t, 无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时 ,其 运动规律x(t)总可以写为: 运动规律 ( )总可以写为: x(t)= x(t+T) () ( ) T为常数,称为周期,单位符号为s。 为常数, 周期, 符号为 为常数 称为周期 单位符号 。 这种振动经过时间T后又重复原来的运动 后又重复原来的运动。 这种振动经过时间 后又重复原来的运动。 考虑无阻尼自由振动微分方程 考虑无阻尼自由振动微分方程
r F r P
x
两个根为: r1 = +iω n 方程解表示为:
r2 = −iω n
x = C1 cos ω nt + C2 sin ω nt
x = C1 cos ω nt + C2 sin ω nt

理论力学(周衍柏)第一章质点力学

理论力学(周衍柏)第一章质点力学

(1)矢量形式的运动学方程
rr(t)
理论力学:Theoretical mechanics 当质点运动时r是时间t的单值连续函数。此方程常用来 进行理论推导。它的特点是概念清晰,是矢量法分析质点 运动的基础。
(2)直角坐标形式的运动学方程
x x(t)
y
y (t)
z z ( t )
这是常用的运动学方程,尤其当质点的轨迹未知时。它是 代数方程,虽然依赖于坐标系,但是运算容易。
说明: ① 参照物不同,对同一个物体运动的描述结果可能不同;
② 观察者是站在参照系的观察点上; ③ 不特别说明都以地球为参照系。
2. 坐标系
理论力学:Theoretical mechanics 为了定量研究的空间位置,就必须在参考系上建立坐标 系。参照系确定后,在参照系上选择适宜的坐标系,便于 用教学方式描述质点在空间的相对位置(方法)。
ji
解: 确定动系和静系 静系:河岸 动系:河流 研究对象:小船
理论力学:Theoretical mechanics
:0 牵连速度, : 绝对速度, :相 对 速度
ji
由:
0
0
c2i
r d
dt
j
c1 cosi c1 sin
j
i
选取极坐标, 得
理论力学:Theoretical mechanics
0:人行走速度, : 风速(相对于地), :风 相对于人的速
度 由:
得: 理论力学:Theoretical mechanics
得: 解得:
y
2
2
理论力学:Theoretical mechanics
因此:x 4,y 4
风速: x2y2 4 2km/h

理论力学第10章 质点动力学

理论力学第10章 质点动力学
4 4
y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。

机械振动与波动

机械振动与波动

机械振动与波动机械振动与波动是物理学中的重要概念和研究领域。

本文将从机械振动的基本原理、波动的特性以及它们在生活中的应用等方面展开论述。

一、机械振动机械振动是指物体周围环境中某个物理量周期性地变化。

在机械振动中,物体会围绕平衡位置做前后或上下的周期性振动。

机械振动的基本元素有质点、弹簧和阻尼器。

1. 质点振动在质点振动中,一个物体被假设成一个质点,不考虑其大小和形状。

质点在线性回复力作用下,在某个平衡位置附近做简谐运动。

质点振动的周期T和频率f与质点的质量m和弹簧的劲度系数k有关,分别由公式T=2π√(m/k)和f=1/T得出。

2. 弹簧振动弹簧振动是机械振动中常见的一种形式。

当弹簧受到外力拉伸或压缩时,会发生弹性畸变,当外力撤离时,弹簧会恢复原状。

弹簧振动是由弹性势能和动能之间的转换所驱动的周期性运动。

3. 阻尼振动在实际的振动系统中,会存在阻力的存在,使振动系统减弱并最终停止。

这种减弱称为阻尼。

根据阻尼的不同程度,振动系统可以分为无阻尼振动、欠阻尼振动和过阻尼振动三种情况。

二、波动波动是指物理量在空间和时间上周期性地传播和变化。

波动可以分为机械波和非机械波两种类型。

1. 机械波机械波是指需要介质传播的波动现象。

根据波动传播的方向,机械波可分为横波和纵波。

横波传播方向垂直于波动方向,如水波;纵波传播方向与波动方向平行,如声波。

机械波的传播速度与介质的性质有关。

2. 非机械波非机械波是指不需要介质传播的波动现象。

电磁波和光波是两种常见的非机械波。

非机械波可以在真空中传播,并且传播速度快,通常以光速传播。

三、机械振动与波动的应用机械振动与波动在生活中有许多实际应用。

下面将列举其中几个。

1. 音乐乐器音乐乐器的演奏就是利用了机械振动和波动的原理。

例如,弹奏吉他时琴弦的振动产生声波,通过空气传播到人的耳朵,使人产生听觉感受。

2. 地震测量地震测量利用了机械振动和波动的原理。

通过监测地震波在地壳中的传播速度和路径,可以判断地震的强度和震源位置,为地震预测和防灾提供帮助。

《理论力学》第九章质点动力学

《理论力学》第九章质点动力学
《理论力学》第九章质点动力 学

CONTENCT

• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω

理论力学(金尚年-XXX编著)课后习题答案详解

理论力学(金尚年-XXX编著)课后习题答案详解

理论力学(金尚年-XXX编著)课后习题答案详解高等教育出版社的《理论力学课后题答案》一书中,第一章包含了以下三个问题的解答:1.2 题目要求写出在铅直平面内的光滑摆线,并分方程。

解答中使用了微积分和力学原理,得出了运动微分方程。

最后证明了质点在平衡位置附近作振动时,振动周期与振幅无关。

1.3 题目要求证明单摆运动的振动周期与摆长无关。

解答中使用了微积分和力学原理,得出了运动微分方程。

最后通过进一步计算,得出了单摆运动的振动周期公式。

1.5 题目要求使用拉格朗日方程计算质点的运动。

解答中使用了拉格朗日方程,并通过进一步计算得出了质点的运动轨迹。

如图,在半径为R时,地球表面的重力加速度可以由万有引力公式求得:g=\frac{GM}{R^2}$$其中M为地球的质量。

根据广义相对论,地球表面的重力加速度还可以表示为:g=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)$$其中c为光速。

当半径增加到R+ΔR时,总质量仍为M,根据XXX展开,可以得到:frac{1}{(R+\Delta R)^2}=\frac{1}{R^2}-\frac{2\DeltaR}{R^3}+\mathcal{O}(\Delta R^2)$$代入上式可得:g'=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)\left(1+\frac{2\Delta R}{R}\right)$$ 化简后得:g'=g-\frac{2g\Delta R}{R}$$因此,当半径改变时,表面的重力加速度的变化为:Delta g=-\frac{2g\Delta R}{R}$$2.在平面极坐标系下,设质点的加速度的切向分量和法向分量都是常数,即$a_t=k_1$,$a_n=k_2$(其中$k_1$和$k_2$为常数)。

根据牛顿第二定律,可以得到质点的运动方程:r\ddot{\theta}+2\dot{r}\dot{\theta}=k_2$$ddot{r}-r\dot{\theta}^2=k_1$$其中$r$为极径,$\theta$为极角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处理才能化成线性的。 ● 在质点受到扰动而脱离其平衡位置后,会受到一个恒指向这平衡
位置而促使质点返回的力,这种力称为恢复力。 ● 当恢复力的大小和质点到平衡位置的距离成正比时,则称为线性
恢复力。 ● 质点振动时还可能受阻力作用,这里只考虑与速度一次方成正比
-2 质点的自由振动
M具有速度 v ,摆线 OM与铅垂线的夹角是 。
可得物块的运动微分方程
m x mg k(sx)
F0 M
G (a)
O xF
M xG (b)
§9-2 质点的自由振动
m x mg k(sx)
考虑到关系式 mgks,上式写成
m x kx 或 x02x0
其中02 k m,可见,M 仍在平衡位置附近作无阻尼自由振动。
O 与水平质量一弹簧系统比较,铅直悬挂质量一弹簧系统质 点上只有增加了一个常力,这力只引起平衡位置的改变,而不 影响振动的规律(如周期、频率、相位)。
解: 圆盘绕杆轴转动微分方程为 J kn
或 振动周期
kn 0
J
Tn
2π kn
J
kn
O
φ
§9-2 质点的自由振动
例题9-1
例9-1 求单摆(数学摆)的运动规律。
O φ0
φ l
m
§9-2 质点的自由振动
例题9-1
解: 把单摆看成一个在圆弧上运动的质点 M, 设其质量为 m,摆线长 l 。又设在任一瞬时质点
xF
利用弹簧自由悬挂时的静伸长λs,来求出系统的固有频率,有
0
k m
g, mg k

0
g s
M xG
§9-2 质点的自由振动
如图所示为一弹性杆支持的圆盘,弹性杆扭转刚度为kn , 圆盘对杆轴的转动惯量为J。
§9-2 质点的自由振动
§9-2 质点的自由振动
如图所示为一弹性杆支持的圆盘,弹性杆扭转刚度为kn , 圆盘对杆轴的转动惯量为J。
§9-2 质点的自由振动
一、自由振动的微分方程及其解
取坐标轴Ox,原点O是质点M的平衡位置。如图(a )所示。 当M的坐标是x时,弹簧作用于M的力F的大小表示成
F k x
式中c称为弹簧的刚度系数,简称刚度。 因F 恒指向平衡位置O,故它可写成
Fx cx
于是,质点M的运动微分方程写成
l0
OM
(a)
M F
通常把上二式写成
xAsin 0t()
x A 0co0 st ()
利用三角变换,可以确定
A
x02
( x0 )2
0
,
tan 0x0
x0
§9-2 质点的自由振动
xx0cos0tx 00si n0t
xAsin 0t()
A
x02
( x0 )2
0
,
tan 0x0
x0
可见,质点无阻尼自由振动是简谐振动,其运动如图所示。
x
T
O
t
§9-2 质点的自由振动
二、自由振动的基本参数
x
T
(1)振幅和相角
O
t
由式(a)可见质点相对于振动中
心(平衡位置)的最大偏离
xm ax A
x
2 0
( x0 ) 2 0
xA sin 0t()
(a)
称为振幅。(ω0t+α)称为相角,而α称为初相角。 由式 (b)可见,振幅和初相角都和运动的初始
动力学

§9–1 概 述


§9–2 质点的自由振动


§9–3 质点的衰减振动



§9–4 质点的强迫振动
目录
§9-1 概 述
§9-1 概 述
● 振动是指运动在其稳定位置附近所作的周期性往复运动。
振动实例
§9-1 概 述
几个概念
● 振动 是指运动在其稳定位置附近所作的周期性往复运动。 ● 线性振动的运动微分方程都是线性的。实际系统往往要经过近似
O
x
x
(b)
m x kx 或
x k x 0 m
§9-2 质点的自由振动
引入参量
2 0
k m
则上式可写成标准形式
x02x 0
这就是在线性恢复力单独作用下,质点受初扰动后的无阻尼自 由振动微分方程,它是二阶常系数线性齐次微分方程。
其通解为
xC 1co 0 ts C 2sin 0 t
把上式对时间求导数,得
自由振动是质点仅在恢复力作用下进行的振动。
质量一弹簧系统
简单的模型为下面所示的质量一弹簧系统。
m k
§9-2 质点的自由振动
自由振动是质点仅在恢复力作用下进行的振动。简单的模型如 图(a)所示的质量一弹簧系统。
l0
OM
(a)
M F
O
x
x
(b)
质点受到初始扰动后,将得到初位移和初速度,此后质点在 弹簧力维持下的运动,即为自由振动。
(b)
C1 x0

C2
x0 0
这样,质点无阻尼自由振动规律和速度变化规律分别是
xx0cos0tx 00si n0t
x x 00si0 n t x 0co0 ts
§9-2 质点的自由振动
这样,质点无阻尼自由振动规律和速度变化规律分别是
xx0cos0tx 00si n0t
x x 00si0 n t x 0co0 ts
扰动 (
x0) ,有x0关。
A
x02
( x0 )2
0
,
tan 0x0
x0
(b)
§9-2 质点的自由振动
(2)周期和频率
x
● 周期
每重复一次运动状态所需的时间间隔,
O
称为周期,并用T 表示。
T
t
每隔一个周期T,相角应改变 ω0T=2π。因
此,周期可以表示成
T 2π 2π m
0
k
周期一般以s计。
v x C 10 si0 tn C 20 co 0 ts
§9-2 质点的自由振动
xC 1co 0 ts C 2sin 0 t
l0
OM
v x C 10 si0 tn C 20 co 0 ts
当 t=0时,质点的初坐标和初速度
(a)
M F
x x0,
v x0
O
x
x
令t=0且 x x0 和 x x0 ,就可以确定积分常数
§9-2 质点的自由振动
三、铅直悬挂质量一弹簧系统
用λs代表当物块在重力G 和弹簧力
F0的作用下在平衡位置静止时弹簧所具
有的变形,即静变形(如图a)。
l0
显然,由平衡条件G -F0=0有
λs
mgks
(1)
以平衡位置O作为原点,令轴Ox铅直
向下,则当物块在任意位置x时,弹簧力F
在轴x上的投影 Fx=-k( λs+x)(如图b)。
周期仅和系统本身的固有参数(质量m与刚度)有关,而和运动 的初始条件无关。
§9-2 质点的自由振动
● 频率
x
T
单位时间内振动的次数,称为频率,记作 f。
f 1 0
O
t
T 2π
每2π秒内振动的次数称为圆频率,表示为
0 2π f
k m
ω0 只和系统的固有的性质有关,而和运动的初始条件无关系。 因此,ω0称为系统的固有频率或自然频率。
相关文档
最新文档