2015年高考数学真题分类汇编:专题(08)直线与圆(文科)及

合集下载

专题13 直线与圆—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题13 直线与圆—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题13 直线与圆一、选择题1. 【2014高考北京文第7题】已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( ) A.7 B.6 C.5 D.4 2. 【2015高考北京,文2】圆心为()1,1且过原点的圆的方程是( ) A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=3. 【 2014湖南文6】若圆221:1C x y +=与圆222:680C x y x y m +--+=相外切,则m =( ).21A .19B .9C .11D -4. 【2014全国2,文12】设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D)⎡⎢⎣⎦5. 【2014四川,9文】设,过定点的动直线和过定点的动直线交于点,则的取值范围是( )ABCD 、 6.【2015高考四川,文10】设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 7.【2014年.浙江卷.文5】已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( )A.2-B. 4-C. 6-D.8- 8.【2014,安徽文6】过点(P 的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )m R ∈A 0x my +=B 30mx y m --+=(,)P x y ||||PA PB +A.]60π,( B.]30π,( C.]60[π, D.]30[π, 9. 【2015高考安徽,文8】直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( ) (A )-2或12 (B )2或-12 (C )-2或-12 (D )2或1212.【2014上海,文18】 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k , 21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 13. 【2014福建,文6】已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是 ( ).20.20.30.30A x y B x y C x y D x y +-=-+=+-=-+=14. 【2015湖南文9】已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++ 的最大值为( )A 、6B 、7C 、8D 、9 15. 【2015新课标2文7】已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.34D.3二、填空题1. 【2015高考湖南,文13】若直线3450x y -+=与圆()2220x y r r +=>相交于A,B 两点,且120oAOB ∠=(O 为坐标原点),则r =_____.2. 【2014山东.文14】 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为 .3. 【2014高考重庆文第14题】已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为_________.4. 【2015高考重庆,文12】若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.5. 【2014年普通高等学校招生全国统一考试湖北卷17】已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上那个任意一点M ,都有||||MA MB λ=,则:(1)=b ; (2)=λ .6. 【2015高考湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.7.【2017江苏,13】在平面直角坐标系中,点在圆上,若则点的横坐标的取值范围是 ▲ . 三、解答题1. 【2015高考广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.xOy (12,0),(0,6),A B -P 2250O x y +=:20,PA PB ⋅≤P2. 【2015高考新课标1,文20】(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点. (I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .3.【2017课标3,文20】在直角坐标系xOy 中,曲线与x 轴交于A ,B 两点,点C 的坐标为.当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.专题14 椭圆及其相关的综合问题1.【2017浙江,2】椭圆22194x y +=的离心率是A.3B.3C .23D .592.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞ B.[9,)+∞ C .(0,1][4,)+∞D.[4,)+∞3.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.3B.3C.3D .134.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )(A )13 (B )12 (C )23 (D )3422y x mx =+-(0,1)5.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PFx ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )346.【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A )3 (B )6 (C )9 (D )127.【2015高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . (]B .3(0,]4C .D .3[,1)48.【2015高考广东,文8】已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .29.【2015高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by xc=的对称点Q 在椭圆上,则椭圆的离心率是 . 10.【2017课标II ,文20】设O 为坐标原点,动点M 在椭圆C上,过M 作x轴的垂线,垂足为N ,点P 满足2NP NM =(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F.11.【2017山东,文21】(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为. (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,圆N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与圆N 分别相切于点E ,F ,求∠EDF 的最小值.12.【2017天津,文20】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率;(II )设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . (i )求直线FP 的斜率; (ii )求椭圆的方程.13.【2017北京,文19】已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x 轴上,离. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.14.【2017江苏,17】 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F , 2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.15.【2015高考北京,文20】(本小题满分14分)已知椭圆C:2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(I )求椭圆C 的离心率;(II )若AB 垂直于x 轴,求直线BM 的斜率;(III )试判断直线BM 与直线D E 的位置关系,并说明理由.16.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =2k <<. 17.【2016高考北京文数】(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交(第17题)于点N ,求证:四边形ABNM 的面积为定值.18. 【2015高考山东,文21】平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b bαα12)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii)求ABQ ∆面积的最大值.19. 【2016高考山东文数】(本小题满分14分)已知椭圆C :(a >b >0)的长轴长为4,焦距为2 . (I )求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B . (i)设直线PM 、QM 的斜率分别为k 、k',证明为定值. (ii)求直线AB 的斜率的最小值.20.【2015高考陕西,文20】如图,椭圆2222:1(0)x y E a b a b+=>>经过点(0,1)A -,且离(I)求椭圆E 的方程;(II)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.21.【2016高考天津文数】(设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.22.【2015高考四川,文20】如图,椭圆E :22221x y a b+=(a >b >0),点P (0,1)在短轴CD 上,且PC PD ⋅=-1 (Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.23.【2015高考重庆,文21】如题(21)图,椭圆22221x y a b+=(a >b >0)的左右焦点分别为1F ,2F ,且过2F 的直线交椭圆于P,Q 两点,且PQ ⊥1PF . (Ⅰ)若|1PF |2PF ,求椭圆的标准方程. (Ⅱ)若|PQ|=λ|1PF |,且3443λ≤≤,试确定椭圆离心率的取值范围.24.【2016高考四川文科】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的一个焦点与短轴的两个端点是正三角形的三个顶点,点1)2P 在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:MA MB MC MD ⋅=⋅.25.【2015高考安徽,文20】设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .26.【2015高考天津,文19】(本小题满分14分) 已知椭圆22221(a b 0)x y a b+=>>的上顶点为B ,左焦点为F ,离心率为5 (I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ l .(i )求l 的值;(ii )若||sin PM BQP Ð,求椭圆的方程. 27.【2015新课标2文20】(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>> 的离点(在C 上. (I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.。

2015年高考数学真题分类汇编:专题(10)立体几何(文科)及答案

2015年高考数学真题分类汇编:专题(10)立体几何(文科)及答案

2015年高考数学真题分类汇编 专题10 立体几何 文1.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A【解析】采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.【考点定位】直线、平面的位置关系.【名师点睛】本题主要考查空间直线、平面的位置关系.解答本题时要根据空间直线、平面的位置关系,从定理、公理以及排除法等角度,对个选项的结论进行确认真假.本题属于容易题,重点考查学生的空间想象能力以及排除错误结论的能力.2.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是14圆锥,底面周长是两个底面半径与14圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.3.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .4033cm【答案】C 【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 【考点定位】1.三视图;2.空间几何体的体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.4.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A) 123π+ (B) 136π (C) 73π (D) 52π【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B.【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.5.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D【解析】由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.6.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交【答案】A【解析】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A .【考点定位】空间点、线、面的位置关系.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要注意选项中的重要字眼“至少”、“至多”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60o ,B 为斜足,平面α上的动点P 满足30∠PAB =o ,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C【解析】由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60o 角的平面截圆锥,所得图形为椭圆.故选C.【考点定位】1.圆锥曲线的定义;2.线面位置关系.【名师点睛】本题主要考查圆锥曲线的定义以及空间线面的位置关系.解答本题时要能够根据给出的线面位置关系,通过空间想象能力,得到一个无限延展的圆锥被一个与之成60o 角的平面截得的图形是椭圆的结论.本题属于中等题,重点考查学生的空间想象能力以及对圆锥曲线的定义的理解.8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A .【解析】若p :12,l l 是异面直线,由异面直线的定义知,12,l l 不相交,所以命题q :12,l l 不相交成立,即p 是q 的充分条件;反过来,若q :12,l l 不相交,则12,l l 可能平行,也可能异面,所以不能推出12,l l 是异面直线,即p 不是q 的必要条件,故应选A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.9、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.【考点定位】简单几何体的三视图;球的表面积公式;圆柱的测面积公式【名师点睛】本题考查简单组合体的三视图的识别,是常规提,对简单组合体三三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状,再根据“长对正,宽相等,高平齐”的法则组合体中的各个量.10.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )A .822+B .1122+C .1422+D .15【答案】B【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为2+2+4+22=8+22, 所以该几何体的表面积为1122+,故选B .【考点定位】三视图和表面积.【名师点睛】本题考查三视图和表面积计算,关键在于根据三视图还原体,要掌握常见几何体的三视图,比如三棱柱、三棱锥、圆锥、四棱柱、四棱锥、圆锥、球、圆台以及其组合体,并且要弄明白几何体的尺寸跟三视图尺寸的关系;有时候还可以利用外部补形法,将几何体补成长方体或者正方体等常见几何体,属于中档题.11.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )错误!未找到引用源。

2015年高考数学(新课标Ⅱ版)分项汇编专题08直线与圆(含解析)文

2015年高考数学(新课标Ⅱ版)分项汇编专题08直线与圆(含解析)文

专题08 直线与圆
一.基础题组
1. 【2005全国3,文2】已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()
A.0 B.-8 C.2 D.10
【答案】B
2. 【2010全国新课标,文13】圆心在原点且与直线x+y-2=0相切的圆的方程为________.【答案】:x2+y2=2
3.
4. 【2005全国2,文14】圆心为且与直线相切的圆的方程为_____________________.
【答案】
二.能力题组
1. 【2007全国2,文21】(本小题满分12分)
在直角坐标系xOy中,以O为圆心的圆与直线:相切
(1)求圆O的方程
(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求
的取值范围。

三.拔高题组
1. 【2014全国2,文12】设点,若在圆上存在点,使得,则的取值范围是()
(A)(B)(C)(D)
【答案】A
【解析】依题意,直线MN与圆有公共点即可,即圆心到直线MN的距离小于等于1即可,过作MN,垂足为A,在中,因为,故,所以,则,解得.
2. 【2006全国2,文15】过点的直线将圆分成两段弧,当劣弧所对的圆心角最小时,直线的斜率
【答案】
【解析】。

【高考解码】2015届高三数学二轮复习(新课标) - 直线与圆]

【高考解码】2015届高三数学二轮复习(新课标) - 直线与圆]

第14讲(理) 第13讲(文)直线与圆1.(2014·浙江高考)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8 【解析】 圆的标准方程为(x +1)2+(y -1)2=2-a ∴圆心坐标(-1,1)半径r 2=2-a ,圆心到直线x +y +2=0的距离 d =|-1+1+2|2= 2∴22+(2)2=2-a ,解得a =-4. 【答案】 B 2.(2014·福建高考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【解析】 若k =1,则S △ABC =12,若S △ABC =12,则k =1或k =-1,故选A.【答案】 A 3.(2014·湖南高考)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9 D .-11【解析】 C 1的圆心为(0,0),半径r =1,C 2的圆心为(3,4),半径R =25-m ,又∵|C 1C 2|=5,由题意知5=1+25-m , ∴m =9,故选C. 【答案】 C 4.(2014·陕西高考)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.【解析】 因为点(1,0)关于直线y =x 的对称点为(0,1),即圆心C 为(0,1),又半径为1,∴圆C 的标准方程为x 2+(y -1)2=1.【答案】 x 2+(y -1)2=1 5.(2014·四川高考)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是________.【解析】 根据直线方程分别确定定点A ,B 的坐标,根据两条动直线的方程可知两直线垂直,从而可确定点P 满足的条件,最后根据基本不等式求|P A |+|PB |的取值范围.由动直线x +my =0知定点A 的坐标为(0,0),由动直线mx -y -m +3=0知定点B 的坐标为(1,3),且两直线互相垂直,故点P 在以AB 为直径的圆上运动.故当点P 与点A 或点B 重合时,|P A |+|PB |取得最小值,(|P A |+|PB |)min =|AB |= 10.当点P 与点A 或点B 不重合时,在Rt △P AB 中,有|P A |2+|PB |2=|AB |2=10.因为|P A |2+|PB |2≥2 |P A | |PB |,所以2(|P A |2+|PB |2)≥(|P A |+|PB |)2,当且仅当|P A |=|PB |时取等号,所以|P A |+|PB |≤ 2 |P A |2+|PB |2= 2× 10=2 5,所以 10≤|P A |+|PB |≤2 5,所以|P A |+|PB |的取值范围是[ 10,2 5]. 【答案】 [ 10,2 5]从近三年高考来看,该部分高考命题的热点考向为: 1.直线方程与两条直线的位置关系①该考向常考内容有直线的倾斜角、斜率、方程,两直线垂直、平行关系及交点的求解;试题设计常与圆锥曲线交汇命题,先求直线方程,再进一步解答其他方面的内容.②从题型上看,单独考查时以选择题为主,突出考查学生的基础知识、基本技能,属中、低档题.2.圆的方程①该考向主要考查求圆的方程及圆的性质的应用,待定系数法在此有时会有所体现. ②主要以选择题、填空题的形式出现,很少出现在解答题中,属中、低档题. 3.直线与圆、圆与圆的位置关系①该考向主要考查直线与圆的相交、相切、相离关系的判断与应用,弦长、面积的求法等及圆与圆的位置关系,并常与圆的几何性质交汇.②从题型上主要以选择题、填空题的形式呈现,属于中、低档题.直线方程与两条直线的位置关系【例1】 (1)直线2x cos α-y -3=0(α∈[π6,π3])的倾斜角的变化范围是( )A .[π6,π3]B .[π4,π3]C .[π4,π2]D .[π4,2π3](2)(2014·福建高考)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0 (3)(2013·辽宁高考)已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a )=0D .|b -a 3|+|b -a 3-1a|=0【解析】 (1)∵2x cos α-y -3=0,∴y =2cos α·x -3. ∵π6≤α≤π3,∴12≤cos α≤32, ∴1≤2cos α≤ 3.∴k ∈[1,3].∴θ∈[π4,π3].故选B.(2)所求直线过圆心(0,3),且斜率k 为1,∴直线l 的方程为y -3=1×(x -0),整理得x -y +3=0,故选D.(3)根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a =-1,所以a (a 3-b )=-1,即b -a 3-1a=0. 以上两种情况皆有可能,故只有C 满足条件. 【答案】 (1)B (2)D (3)C【规律方法】 1.区别直线的斜率与倾斜角:每条直线都有倾斜角,但不是每条直线都有斜率;斜率和倾斜角都反映了直线相对于x 轴正方向的倾斜程度.2.求直线方程的方法:(1)直接法:直接选用恰当的直线方程的形式,写出方程.(2)待定系数法:即先由直线满足的一个条件设出直线方程,使方程中含有一待定系数,再由题目中另一条件求出待定系数.3.两条直线平行与垂直的判定:(1)若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1. (2)两条不重合的直线a 1x +b 1y +c 1=0和a 2x +b 2y +c 2=0平行的充要条件为a 1b 2-a 2b 1=0且a 1c 2≠a 2c 1或b 1c 2≠b 2c 1.(3)垂直的充要条件为a 1a 2+b 1b 2=0.判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况.[创新预测]1.(1)(2014·浙江名校联考)已知直线l 1:x +(a -2)y -2=0,l 2:(a -2)x +ay -1=0,则“a =-1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 (2)(2014·广州检测)一条光线沿直线2x -y +2=0入射到直线x +y -5=0后反射,则反射光线所在的直线方程为________.【解析】 (1)一方面,若a =-1,则l 1:x -3y -2=0,l 2:-3x -y -1=0,显然两条直线垂直;另一方面,若l 1⊥l 2,则(a -2)+a (a -2)=0,∴a =-1或a =2,因此,“a =-1”是“l 1⊥l 2”的充分不必要条件,故选A.(2)取直线2x -y +2=0上一点A (0,2),设点A (0,2)关于直线x +y -5=0对称的点为B (a ,b ),则⎩⎨⎧a 2+b +22-5=0,b -2a =1,解得⎩⎪⎨⎪⎧a =3b =5,∴B (3,5).由⎩⎪⎨⎪⎧ 2x -y +2=0,x +y -5=0,解得⎩⎪⎨⎪⎧x =1,y =4.∴直线2x -y +2=0与直线x +y -5=0的交点为P (1,4),∴反射光线在经过点B (3,5)和点P (1,4)的直线上,其直线方程为y -4=4-51-3×(x -1),整理得x -2y +7=0.【答案】 x -2y +7=0圆的方程【例2】 (1)(2014·山东高考)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.(2)(2013·全国新课标Ⅱ高考)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.①求圆心P 的轨迹方程;②若P 点到直线y =x 的距离为22,求圆P 的方程.【解】 (1)∵圆心在直线x -2y =0上, ∴可设圆心为C (2b ,b ). ∴r =2b (b >0).设圆C 与x 轴交于A ,B 两点,作CD ⊥x 轴垂足为D , ∴CD =b ,CB =2b .在Rt △CBD 中,|BD |=CB 2-CD 2=3b , ∴|AB |=2|BD |=2 3. ∴23b =2 3. ∴b =1.∴C (2,1),r =2.∴圆的标准方程为:(x -2)2+(y -1)2=4 (2)①设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. ②设P (x 0,y 0),由已知得 |x 0-y 0|2=22. 又P 在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0(λ≠-1),y 0=-1.此时,圆P 的半径r = 3. 由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3. 故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3. 【答案】 (1)(x -2)2+(y -1)2=4 (2)见解析 【规律方法】 圆的方程的求法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程;(2)代数法,用待定系数法先设出圆的方程,再由条件求得各系数.从而求得圆的方程一般采用待定系数法.注意:根据条件,设圆的方程时要尽量减少参数,这样可减少运算量.[创新预测]2.(1)(2014·北京西域区期末)若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( )A .-1<m <1B .-3<m < 3C .-2<m < 2D .-22<m <22(2)(2014·温州十校联考)已知抛物线C 1:x 2=2y 的焦点为F ,以F 为圆心的圆C 2交C 1于A ,B ,交C 1的准线于C ,D ,若四边形ABCD 是矩形,则圆C 2的方程为( )A .x 2+⎝⎛⎭⎫y -122=3B .x 2+⎝⎛⎭⎫y -122=4 C .x 2+(y -1)2=12 D .x 2+(y -1)2=16【解析】 (1)因为原点在圆(x -m )2+(y +m )2=4的内部,所以2m 2<4,解得-2<m <2,故选C.(2)如图,连接AC ,BD ,由抛物线的定义与性质可知圆心坐标为F ⎝⎛⎭⎫0,12,而|F A |=|AD |=|FB |为圆的半径r ,于是A ⎝⎛⎭⎫32r ,12+12r ,而A 在抛物线上,故⎝⎛⎭⎫32r 2=2⎝⎛⎭⎫12+12r ,∴r =2,故选B.【答案】 (1)C (2)B直线与圆、圆与圆的位置关系【例3】 (1)(2014·重庆高考)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.(2)(2013·陕西高考)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定【解析】 (1)依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|1·a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15. (2)由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交.故选B.【答案】 (1)4±15 (2)B【规律方法】 1.直线与圆的位置关系探究: (1)直线与圆的位置关系22222时,要用半径、弦心距、半弦长构成的直角三角形.当然,不失一般性,弦长公式d =|x 1-x 2|·1+k 2也应引起足够的重视.2.圆上的点到直线的距离问题的求解策略:(1)转化为两平行线间的距离以及直线与圆的交点个数问题求解; (2)转化为圆心到直线的距离与半径之间的关系问题; (3)直接设点,利用方程思想解决.[创新预测]3.(1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切 D .相离 (2)(2014·福建福州质检)若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A 、B 两点,则CA →·CB →的值为________.【解析】 (1)比较两圆圆心距与两圆半径和差的大小关系进行判定.两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)依题意,点C 的坐标为(3,3).由⎩⎪⎨⎪⎧ y =x +2,(x -3)2+(y -3)2=4,解得⎩⎪⎨⎪⎧ x =3,y =5,或⎩⎪⎨⎪⎧x =1,y =3.可令A (3,5)、B (1,3),∴CA →=(0,2),CB →=(-2,0),∴CA →·CB →=0. 【答案】 (1)B (2)0 [总结提升] 失分盲点(1)忽略直线的斜率不存在:当解题中需要利用直线斜率表达直线方程时,不要遗忘直线的斜率可能不存在的情况. (2)忘记使用圆的几何性质:在直线与圆的位置关系的处理上要充分利用圆的几何性质,简化计算. 答题指导(1)看到直线与圆的位置关系,想到圆心到直线的距离. (2)看到弦长,想到弦长公式.(3)看到两圆的位置关系,想到两圆圆心距与两圆半径和(或差的绝对值)间的关系. 方法规律(1)直线与圆位置关系的判断方法:①代数法:利用判别式判断;②几何法:利用圆心到直线的距离与圆的半径的大小进行判断.(2)圆与圆位置关系的判断方法:利用两圆的圆心距与两圆半径之间的大小关系判断. (3)两圆公共弦方程求法:把两圆方程中的平方项消掉即得,即利用一般方程两圆相减即可.思维能力与运算技能结合思维能力与运算技能主要包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列的思维能力,也包括在实施过程中遇到障碍而调整运算的能力.针对直线和圆这类问题.运算能力主要体现在直线与圆相交后研究弦长的多角度运算.【典例】 一直线过点P ⎝⎛⎭⎫-3,-32被圆x 2+y 2=25截得的弦长为8,求此弦所在的直线方程.【解】 当斜率不存在时,直线为x =-3,代入x 2+y 2=25得|y 1-y 2|=8,满足题意.当斜率存在时,设所求直线方程为y +32=k (x +3),即kx -y +3k -32=0,弦心距为d =52-42=3,所以⎪⎪⎪⎪k ×0-0+3k -32k 2+1=3,解得k =-34,则所求直线方程为y +32=-34(x +3),即3x +4y +15=0.【规律方法】 有关直线与圆相交的问题很多,涉及弦长时,可以依据圆内的直角三角形利用勾股定理来处理,此时要注意圆心到直线距离的运算,当直线斜率不存在时,点到直线的距离公式不能使用,可能因此而漏解,在运算时要及时调整.。

2015年北京市高考数学试卷(文科)(解析版)

2015年北京市高考数学试卷(文科)(解析版)

C.充分必要条件
D.既不充分也不必要条件
在抽取的样本中,青年教师有 320 人,则该样本的老年教师人数为( )
7.(5 分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
类别
人数
老年教师
900
中年教师
1800
青年教师
1600
合计
4300
A.90
B.100
C.180
5.(5 分)执行如图所示的程序框图,输出的 k 值为(
2.(5 分)圆心为(1,1)且过原点的圆的标准方程是( )
A.(x﹣1)2+(y﹣1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x﹣1)2+(y﹣1)2=2
【考点】J1:圆的标准方程. 菁优网版 权所有
【专题】11:计算题;5B:直线与圆. 【分析】利用两点间距离公式求出半径,由此能求出圆的方程. 【解答】解:由题意知圆半径 r= , ∴圆的方程为(x﹣1)2+(y﹣1)2=2. 故选:D. 【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
19.(13 分)设函数 f(x)= ﹣klnx,k>0. (1)求 f(x)的单调区间和极值; (2)证明:若 f(x)存在零点,则 f(x)在区间(1, ]上仅有一个零点.
20.(14 分)已知椭圆 C:x2+3y2=3,过点 D(1,0)且不过点 E(2,1)的直线与椭圆 C 交于 A, B 两点,直线 AE 与直线 x=3 交于点 M.

2015高考数学(文)真题分类汇编:专题08+直线与圆

2015高考数学(文)真题分类汇编:专题08+直线与圆

1.【2015高考北京,文2】圆心为()1,1且过原点的圆的方程是( ) A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-= 【答案】D【解析】由题意可得圆的半径为r =()()22112x y -+-=,故选D .【考点定位】圆的标准方程.【名师点晴】本题主要考查的是圆的标准方程,属于容易题.解题时一定要抓住重要字眼“过原点”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程,即圆心(),a b ,半径为r 的圆的标准方程是()()222x a y b r -+-=.2.【2015高考四川,文10】设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力.【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x =ty +m ,可以避免忘掉对斜率不存在情况的讨论.在对r 的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t =0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r 取值范围即可.属于难题.3.【2015高考湖南,文13】若直线3450x y -+=与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=(O 为坐标原点),则r =_____. 【答案】【解析】如图直线3450x y -+=与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且120o AOB ∠=,则圆心(0,0)到直线3450x y -+=的距离为12r ,12r r =∴,=2 .故答案为2.【考点定位】直线与圆的位置关系【名师点睛】涉及圆的弦长的常用方法为几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则222().2lr d =-本题条件是圆心角,可利用直角三角形转化为弦心距与半径之间关系,再根据点到直线距离公式列等量关系.4.【2015高考安徽,文8】直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( ) (A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12 【答案】D【解析】∵直线b y x =+43与圆心为(1,1),半径为1的圆相切,∴224343+-+b =1⇒2=b 或12,故选D .【考点定位】本题主要考查利用圆的一般方程求圆的圆心和半径,直线与圆的位置关系,以及点到直线的距离公式的应用.【名师点睛】在解决直线与圆的位置关系问题时,有两种方法;方法一是代数法:将直线方程与圆的方程联立,消元,得到关于x (或y )的一元二次方程,通过判断0;0;0<∆=∆>∆来确定直线与圆的位置关系;方法二是几何法:主要是利用圆心到直线的距离公式求出圆心到直线的距离d ,然后再将d 与圆的半径r 进行判断,若r d >则相离;若r d =则相切;若r d <则相交;本题考查考生的综合分析能力和运算能力.5.【2015高考重庆,文12】若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.【答案】250x y +-=【解析】由点(1,2)P 在以坐标原点为圆心的圆上知此圆的方程为:225x y +=,所以该圆在点P 处的切线方程为125x y ⨯+⨯=即250x y +-=,故填:250x y +-=. 【考点定位】圆的切线.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.6.【2015高考湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.【答案】(Ⅰ)22(1)(2x y -+-=;(Ⅱ)1-.【解析】设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T即01x =,半径0r y =.又因为2AB =,所以222011y +=,即0y r ==,所以圆C 的标准方程为22(1)(2x y -+-=,令0x =得:1)B +.设圆C 在点B 处的切线方程为1)kx y -+=,则圆心C 到其距离为:d ,解之得1k =.即圆C 在点B 处的切线方程为x 1)y =++,于是令0y =可得x 1=,即圆C 在点B 处的切线在x 轴上的截距为1-,故应填22(1)(2x y -+-=和1-.【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题.【名师点睛】将圆的标准方程、圆的切线方程与弦长问题联系起来,注重实际问题的特殊性,合理的挖掘问题的实质,充分体现了数学学科特点和知识间的内在联系,渗透着方程的数学第16题图思想,能较好的考查学生的综合知识运用能力.其解题突破口是观察出点C 的横坐标. 7.【2015高考广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34k =±. 【解析】试题分析:(1)将圆1C 的方程化为标准方程可得圆1C 的圆心坐标;(2)先设线段AB 的中点M 的坐标和直线l 的方程,再由圆的性质可得点M 满足的方程,进而利用动直线l 与圆1C 相交可得0x 的取值范围,即可得线段AB 的中点M 的轨迹C 的方程;(3)先说明直线L 的方程和曲线C 的方程表示的图形,再利用图形可得当直线L:()4y k x =-与曲线C 只有一个交点时,k 的取值范围,进而可得存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点.试题解析:(1)圆1C :22650x y x +-+=化为()2234x y -+=,所以圆1C 的圆心坐标为()3,0(2)设线段AB 的中点00(,)x y M ,由圆的性质可得1C M 垂直于直线l .设直线l 的方程为mx y =(易知直线l 的斜率存在),所以1C 1k m M ⋅=-,00mx y =,所以130000-=⋅-x y x y ,所以0320020=+-y x x ,即49232020=+⎪⎭⎫ ⎝⎛-y x .因为动直线l 与圆1C 相交,所以2132<+m m ,所以542<m . 所以202022054x x m y <=,所以20200543x x x <-,解得350>x 或00<x ,又因为300≤<x ,所以3350≤<x . 所以),(00y x M 满足49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x即M 的轨迹C 的方程为492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x .(3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线.结合图形,492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x 表示的是一段关于x 轴对称,起点为⎪⎪⎭⎫ ⎝⎛-352,35按逆时针方向运动到⎪⎪⎭⎫⎝⎛352,35的圆弧.根据对称性,只需讨论在x 轴对称下方的圆弧.设P ⎪⎪⎭⎫⎝⎛-352,35,则752354352=-=PT k ,而当直线L 与轨迹C 相切时,2314232=+-k k k,解得43±=k .在这里暂取43=k ,因为43752<,所以k k PT <.结合图形,可得对于x 轴对称下方的圆弧,当0k ≤≤34k =时,直线L 与x 轴对称下方的圆弧有且只有一个交点,根据对称性可知:当0k ≤<或34k =-时,直线L 与x 轴对称上方的圆弧有且只有一个交点.综上所述,当752752≤≤-k 或34k =±时,直线L:()4y k x =-与曲线C 只有一个交点.考点:1、圆的标准方程;2、直线与圆的位置关系.【名师点晴】本题主要考查的是圆的标准方程、直线与圆的位置关系,属于难题.解题时一定要注意关键条件“直线l 与圆1C 相交于不同的两点A ,B ”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程和直线与圆的位置关系,即圆22D F 0x y x y +++E +=的圆心D ,22E ⎛⎫-- ⎪⎝⎭,直线与圆相交⇔d r <(d 是圆心到直线的距离),直线与圆相切⇔d r =(d 是圆心到直线的距离).8.【2015高考新课标1,文20】(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点. (I )求k 的取值范围;L(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I)(II )2(II )设1122(,),(,)M x y N x y . 将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=,所以1212224(1)7,.11k x x x x k k++==++21212121224(1)1181k k OM ON x x y y k x x k x x k+?+=++++=++, 由题设可得24(1)8=121k k k +++,解得=1k ,所以l 的方程为1y x =+.故圆心在直线l 上,所以||2MN =.考点:直线与圆的位置关系;设而不求思想;运算求解能力【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.。

2015年重庆市高考数学试卷(文科)答案与解析

2015年重庆市高考数学试卷(文科)答案与解析

2015年重庆市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)(2015 ?重庆)已知集合A={1 ,2,3} ,B={1 ,3} ,则A∩B=()A .{ 2} B.{1,2} C.{ 1,3} D.{ 1,2,3}考点:交集及其运算.专题:集合.分析:直接利用集合的交集的求法求解即可.解答:解:集合A={1 ,2,3} ,B={1 ,3} ,则A ∩B={1 ,3} .故选:C.点评:本题考查交集的求法,考查计算能力.2﹣2x+1=0 ”的()2.(5 分)(2015 ?重庆)“x=1”是“xA .充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.2分析:先求出方程x ﹣2x+1=0 的解,再和x=1 比较,从而得到答案.2解答:解:由x ﹣2x+1=0 ,解得:x=1,2故“x=1”是“x ﹣2x+1=0 ”的充要条件,故选:A.点评:本题考察了充分必要条件,考察一元二次方程问题,是一道基础题.23.(5 分)(2015 ?重庆)函数f(x)=log 2(x+2x﹣3)的定义域是()A .[﹣3,1] B.(﹣3,1)C.(﹣∞,﹣3]∪[1,D.(﹣∞,﹣3)∪(1,+∞)+∞)考点:一元二次不等式的解法;对数函数的定义域.专题:函数的性质及应用;不等式.分析:利用对数函数的真数大于0 求得函数定义域.2解答:解:由题意得:x+2x﹣3>0,即(x﹣1)(x+3)>0解得x>1 或x<﹣3所以定义域为(﹣∞,﹣3)∪(1,+∞)故选D.点评:本题主要考查函数的定义域的求法.属简单题型.高考常考题型.4.(5 分)(2015 ?重庆)重庆市2013 年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()1A .19 B.20 C.21.5 D.23考点:茎叶图.专题:概率与统计.分析:根据中位数的定义进行求解即可.解答:解:样本数据有12 个,位于中间的两个数为20,20,则中位数为,故选:B点评:本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.5.(5 分)(2015 ?重庆)某几何体的三视图如图所示,则该几何体的体积为()A .B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:利用三视图判断直观图的形状,结合三视图的数据,求解几何体的体积即可.解答:解:由题意可知几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧与一个底面半径为1,高为 1 的半圆锥组成的组合体,几何体的体积为:= .故选:B.点评:本题考查三视图的作法,组合体的体积的求法,考查计算能力.6.(5 分)(2015 ?重庆)若tanα= ,tan(α+β)= ,则tanβ=()A .B.C.D.考点:两角和与差的正切函数.专题:三角函数的求值.分析:由条件利用查两角差的正切公式,求得tanβ=tan[(α+β)﹣α]的值.2解答:t anβ=tan[(α+β)﹣解:∵tanα= ,tan(α+β)= ,则α] = = = ,故选:A.点评:本题主要考查两角差的正切公式的应用,属于基础题.7.(5 分)(2015 ?重庆)已知非零向量满足||=4| |,且⊥()则()的夹角为A .B.C.D.考点:数量积表示两个向量的夹角.题:平面向量及应用.专分析:由已知向量垂直得到数量积为0,于是得到非零向量的模与夹角的关系,求出夹角的余弦值.解答:||=4| |,且⊥(),设两个非零向量解:由已知非零向量满足θ,的夹角为所以?()=0,即 2 =0,所以cosθ= ,θ∈[0,π],所以;故选C.点评:本题考查了向量垂直的性质运用以及利用向量的数量积求向量的夹角;熟练运用公式是关键.8.(5 分)(2015 ?重庆)执行如图所示的程序框图,则输出s 的值为()3A .B.C.D.考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k,s的值,当k=8 时不满足条件k<8,退出循环,输出s 的值为.解答:解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s= +满足条件k<8,k=6,s= + +满足条件k<8,k=8,s= + + + =不满足条件k<8,退出循环,输出s 的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.9.(5 分)(2015 ?重庆)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F 做A 1A2 的垂线与双曲线交于B,C 两点,若 A 1B⊥A 2C,则该双曲线的渐近线的斜率为()A .B.C.±1 D.±±±考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求得A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),利用A1B⊥A2C,可得,求出a=b,即可得出双曲线的渐近线的斜率.解答:解:由题意,A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),∵A 1B⊥A 2C,4∴,∴a=b,∴双曲线的渐近线的斜率为±1.故选:C.点评:本题考查双曲线的性质,考查斜率的计算,考查学生分析解决问题的能力,比较基础.10.(5 分)(2015?重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m 的值为()A .﹣3 B.1 C.D.3考点:二元一次不等式(组)与平面区域.专题:开放型;不等式的解法及应用.分析:作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.解答:解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即C(2,0),则C(2,0)在直线x﹣y+2m=0 的下方,即2+2m>0,则m>﹣1,则C(2,0),F(0,1),由,解得,即A(1﹣m,1+m),由,解得,即B(,).|AF|=1+m ﹣1=m,则三角形ABC 的面积S= ×m×2+ (﹣)= ,2即m+m﹣2=0,解得m=1 或m=﹣2(舍),故选:B5点评:本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.(5 分)(2015?重庆)复数(1+2i)i 的实部为﹣2 .考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.2分析:利用复数的运算法则化简为a+bi 的形式,然后找出实部;注意i=﹣1.2解答:解:(1+2i)i=i+2i=﹣2+i,所以此复数的实部为﹣2;故答案为:﹣2.2点评:本题考查了复数的运算以及复数的认识;注意i=﹣1.属于基础题.12.(5 分)(2015?重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为x+2y ﹣5=0 .考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P 处的切线的方程.解答:解:由题意可得OP 和切线垂直,故切线的斜率为﹣= =﹣,故切线的方程为y﹣2=﹣(x﹣1),即x+2y﹣5=0,故答案为:x+2y ﹣5=0.点评:本题主要考查直线和圆相切的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.13.(5 分)(2015?重庆)设△ABC 的内角A,B,C 的对边分别为a,b,c,且a=2,cosC= ﹣,3sinA=2sinB ,则c= 4 .6考点:正弦定理的应用.题:解三角形.专分析:由3sinA=2sinB 即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.解答:解:∵3sinA=2sinB ,∴由正弦定理可得:3a=2b,∵a=2,∴可解得b=3,,又∵cosC=﹣2 2 2∴由余弦定理可得:c﹣2abcosC=4+9﹣2×=16,=a +b∴解得:c=4.故答案为:4.点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.(5 分)(2015?重庆)设a,b>0,a+b=5,则的最大值为 3 .考点:函数最值的应用.题:计算题;函数的性质及应用.专分析:利用柯西不等式,即可求出的最大值.解答:解:由题意,()2≤(1+1)(a+1+b+3)=18,∴的最大值为 3 ,故答案为: 3 ..点评:本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键215.(5 分)(2015?重庆)在区间[0,5]上随机地选择一个数p,则方程x +2px+3p﹣2=0 有两个负根的概率为.考点:几何概型.专.题:开放型;概率与统计分析:由一元二次方程根的分布可得p 的不等式组,解不等式组,由长度之比可得所求概率.解答:2解:方程x+2px+3p﹣2=0 有两个负根等价于,解关于p 的不等式组可得<p≤1 或p≥2,∴所求概率P= =故答案为:7点评:本题考查几何概型,涉及一元二次方程根的分布,属基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12 分)(2015 ?重庆)已知等差数列{a n} 满足a3=2,前3 项和S3= .(Ⅰ)求{a n} 的通项公式;(Ⅱ)设等比数列{b n} 满足b1=a1,b4=a15,求{b n} 前n 项和T n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件列式求得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n项和公式求得{b n} 前n 项和T n.解答:解:(Ⅰ)设等差数列{a n} 的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{b n} 的公比为q,则,从而q=2,故{b n} 的前n 项和.点评:本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n 项和,是中档题.17.(13 分)(2015?重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2010 2011 2012 2013 2014时间代号t 1 2 3 4 5储蓄存款y(千亿元) 5 6 7 8 10(Ⅰ)求y 关于t 的回归方程= t+ .(Ⅱ)用所求回归方程预测该地区2015 年(t=6)的人民币储蓄存款.附:回归方程= t+ 中8.考回归分析的初步应用.点:专计算题;概率与统计.题:分(Ⅰ)利用公式求出a,b,即可求y 关于t 的回归方程= t+ .析:该地区2015 年的人民币储蓄存款.(Ⅱ)t=6,代入回归方程,即可预测解解:(Ⅰ)答:由题意,=3,=7.2,2=55﹣5×3 =10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6,∴y 关于t 的回归方程=1.2t+3.6 .(Ⅱ)t=6 时,=1.2×6+3.6=10.8(千亿元).档题.点本题考查线性回归方程,考查学生的计算能力,属于中评:218.(13 分)(2015 ?重庆)已知函数f(x)= sin2x﹣c os x.(Ⅰ)求f(x)的最小周期和最小值;到函数g (Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得(x)的图象.当x∈时,求g(x)的值域.9考点:三角函数中的恒等变换应用;函数y=Asin (ωx+ φ)的图象变换.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣)﹣,从而可求最小周期和最小值;(Ⅱ)由函数y=Asin (ωx+φ)的图象变换可得g(x)=sin(x﹣)﹣,由x∈[ ,π] 时,可得x﹣的范围,即可求得g(x)的值域.解答:2解:(Ⅰ)∵f(x)= sin2x﹣c osx= sin2x﹣(1+cos2x)=sin(2x﹣)﹣,∴f(x)的最小周期T= =π,最小值为:﹣1﹣=﹣.(Ⅱ)由条件可知:g(x)=sin(x﹣)﹣当x∈[ ,π]时,有x﹣∈[ ,],从而sin(x﹣)的值域为[,1],那么sin(x﹣)﹣的值域为:[ ,],故g(x)在区间[,π]上的值域是[,].点评:本题主要考查了三角函数中的恒等变换应用,函数y=Asin (ωx+ φ)的图象变换,属于基本知识的考查.3 19.(12 分)(2015 ?重庆)已知函数f(x)=ax +x 2(a∈R)在x= 处取得极值.(Ⅰ)确定 a 的值;x(Ⅱ)若g(x)=f(x)e ,讨论g(x)的单调性.考点:函数在某点取得极值的条件.专题:综合题;导数的综合应用.分析:3 2(Ⅰ)求导数,利用f(x)=ax (a∈R)在x= 处取得极值,可得f′(﹣)=0,+x即可确定 a 的值;3 2 x(Ⅱ)由(Ⅰ)得g(x)=(x )e ,利用导数的正负可得g(x)的单调性.+x解答:解:(Ⅰ)对f(x)求导得f′(x)=3ax 2 +2x.3 2∵f(x)=ax (a∈R)在x= 处取得极值,+x∴f′(﹣)=0,∴3a? +2?(﹣)=0,10∴a= ;32x(Ⅱ)由(Ⅰ)得 g ( x )=( x)e ,+x2 x32xx∴g ′(x )=( x)e+2x )e +( x +x= x (x+1)(x+4) e ,令 g ′(x )=0,解得 x=0,x=﹣1 或 x=﹣4, 当 x <﹣4 时, g ′(x )< 0,故 g (x )为减函数; 当﹣4< x <﹣1 时, g ′(x )> 0,故 g ( x )为增函数; 当﹣1< x <0 时, g ′(x )< 0,故 g (x )为减函数; 当 x > 0 时, g ′(x )> 0,故 g (x )为增函数;综上知 g (x )在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞) 内为增函数.点评:本 题考查导数的运用:求单调区间和极值,考查分类讨论的思想方法,以及函数和方 程的转化思想,属于中档题.20.(12 分)(2015 ?重庆)如题图,三棱锥 P ﹣A BC 中,平面 PAC ⊥平面 ABC ,∠ABC= ,点 D 、E 在线段A C 上,且 AD=DE=EC=2 ,PD=PC=4 ,点 F 在线段A B 上,且 EF ∥B C . (Ⅰ)证明: AB ⊥平面 PFE .(Ⅱ)若四棱锥 P ﹣D FBC 的体积为 7,求线段B C 的长.考点 :直 线与平面垂直的判定;棱柱、棱锥、棱台的体积. 专题 :开 放型;空间位置关系与距离. 分析:( Ⅰ)由等腰三角形的性质可证PE ⊥AC ,可证 PE ⊥A B .又 EF ∥B C ,可证 AB ⊥EF ,从而 AB 与平面 PEF 内两条相交直线 PE ,EF 都垂直,可证 AB ⊥平面 PEF . (Ⅱ)设B C=x ,可求 AB ,S △ABC ,由 EF ∥B C 可得 △AFE ≌△ABC ,求得 S △A FE = S △A BC , 由 AD= AE ,可求 S △A FD ,从而求得四边形 DFBC 的面积,由(Ⅰ )知 PE 为四棱锥 P ﹣D FBC 的高,求得 PE ,由体积 V P ﹣D FBC =S DFBC ?PE=7,即可解得线段B C 的长.解答:解 :(Ⅰ)如图,由 DE=EC ,PD=PC 知, E 为等腰 △PDC 中 DC 边的中点,故 PE ⊥A C ,又平面 PAC ⊥平面 ABC ,平面 PAC ∩平面 ABC=AC , PE? 平面 PAC ,PE ⊥AC , 所以 PE ⊥平面 ABC ,从而 PE ⊥AB . 因为∠ABC=,EF ∥B C ,11故AB ⊥E F,从而AB 与平面PEF 内两条相交直线PE,EF 都垂直,所以AB ⊥平面PEF.B C=x ,则在直角△ABC 中,AB= = ,(Ⅱ)设从而S△ABC= AB ?BC= x ,由EF∥B C 知,得△AFE ≌△ABC ,2故=()= ,即S△AFE= S△ABC,由AD= AE ,S△AFD= = S△ABC = S△ABC= x ,D FBC 的面积为:S DFBC=S△A BC﹣S AFD= x ﹣从而四边形x = x .由(Ⅰ)知,PE⊥平面ABC ,所以PE 为四棱锥P﹣D FBC 的高.在直角△PEC 中,PE= = =2 ,= S DFBC?PE= x =7,故体积V P﹣D FBC4 2 2 236x故得x﹣+243=0,解得x =9 或x =27,由于x>0,可得x=3 或x=3 .所以:BC=3 或BC=3 .点评:本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空题.间想象能力和推理论证能力,考查了转化思想,属于中档21.(13 分)(2015 ?重庆)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,F2 的直线交椭圆于P,Q 两点,且PQ⊥P F1.且过.(Ⅰ)若|PF1|=2+ ,|PF2|=2﹣,求椭圆的标准方程(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.12考点:椭圆的简单性质.专题:开放型;圆锥曲线中的最值与范围问题.分析:(I)由椭圆的定义可得:2a=|PF1|+|PF2|,解得a.设椭圆的半焦距为c,由于PQ⊥PF1,2 2 2利用勾股定理可得2c=|F1F2|= ,解得c.利用 b ﹣c=a .即可得出椭圆的标准方程.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,可得|QF1|= ,由椭圆的定义可得:|PF1|+|PQ|+|QF1|=4a,解得|PF1|= .|PF2|=2a﹣|PF1|,由勾股定理可得:2c=|F1F2|= ,代入化简.令t=1+λ,则上式化2为e= ,解出即可.解答:解:(I)由椭圆的定义可得:2a=|PF1|+|PF2|=(2+ )+(2﹣)=4,解得a=2.设椭圆的半焦距为c,∵PQ⊥PF1,∴2c=|F1F2|= = =2 ,∴c= .2 2 2∴b ﹣c=a =1.∴椭圆的标准方程为.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,∴|QF1|= = ,由椭圆的定义可得:2a=|PF1|+|PF2|=|QF1|+|QF2|,∴|PF1|+|PQ|+|QF1|=4a,∴|PF1|=4a,解得|PF1|= .|PF2|=2a﹣|PF1|= ,13由勾股定理可得:2c=|F1F2|= ,2∴+ =4c ,2∴+ =e .令t=1+λ,则上式化为= ,∵t=1+λ,且≤λ<,∴t 关于λ单调递增,∴3≤t<4.∴,∴,解得.∴椭圆离心率的取值范围是.”,考点评:本题考查了椭圆的定义标准方程及其性质、勾股定理、不等式的性质、“换元法查了推理能力与计算能力,属于中档题.14*** ***。

专题13直线与圆—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

专题13直线与圆—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

一、选择题1. 【 2014 高考北京文第7 题】已知圆C : x2y2m,0 ,3 4 1和两点 AB m,0 m 0 ,若圆C上存在点 P ,使得APB 90 ,则 m 的最大值为()A. 7 B. 6 C. 5 D. 4 【答案】 B考点:本小题主要考察两圆的地点关系,考察数形联合思想,考察剖析问题与解决问题的能力.2.【2015高考北京,文2】圆心为1,1 且过原点的圆的方程是()A.x 1 C.x 1 212B . x2y 12 y 1 1 1212D . x2y 12 y 2 1 2【答案】 D【分析】由题意可得圆的半径为 r 2 ,则圆的标准方程为2 2x 1 y 12 ,应选D.【考点定位】圆的标准方程.【名师点晴】此题主要考察的是圆的标准方程,属于简单题.解题时必定要抓住重要字眼“过原点”,不然很简单出现错误.解此题需要掌握的知识点是圆的标准方程,即圆心a, b ,半径为 r 的圆的标准方程是x a 2y2r 2.b3.【 2014 湖南文6】若圆C1: x2 y 2 1与圆 C2 : x2 y2 6x 8 y m 0 相外切,则 m ()A.21B.19 C .9 D . 11【答案】 C【分析】由于 x2 y 2 6x 8y m 0 x2y225 m ,所以25 m 0 3 4m 25 且圆C2的圆心为3,4 , 半径为25 m ,依据圆与圆外切的判断( 圆心距离等于半径和 ) 可得2 23 04 01 25 m m 9,应选C.【考点定位】圆与圆之间的外切关系与判断【名师点睛】此题主要考察了圆与圆的地点关系,解决问题的要点是依据条件获得圆的半径及圆心坐标,而后依据两圆知足的几何关系进队列式计算即可.4. 【 2014 全国2,文 12】设点M x0 ,1 ,若在圆O : x2 +y2 1上存在点N ,使得OMN 45 ,则x0的取值范围是()( A )1, 1 ( B) 1 , 1 ( C)2, 2 ( D) 2 , 22 2 2 2 【答案】 A【考点定位】直线与圆的地点关系【名师点睛】此题考察直线与圆的地点关系,联合是迅速解得此题的策略之一.5.【2014四川,9文】设,过定点属于中档题,直线与直线设出角的求法,的动直线和过定点的动直线数形A 、交于点B、,则的取值范围是(C、)D、【答案】 B 【分析】试题剖析:易得.设,则消去得:,所以点P 在以AB 为直径的圆上,,所以,令| PA| 10 sin ,|PB | 10cos ,则|PA| |PB| 10 sin 10 cos 2 5 sin( ) .由于|PA| 0,|PB| 0,所以40 .所以2) 1, 10 |PA| |PB| 2 5.选B.sin(2 2 4法二、由于两直线的斜率互为负倒数,所以,点 P 的轨迹是以 AB 为直径的圆 . 以下同法一 .【考点定位】 1、直线与圆; 2、三角代换 .【名师点睛】在几何意义上表示P 点到与的距离之和,解题的要点是找 P 点的轨迹和轨迹方程;也能够使用代数方法,第一表示出,这样就转变为函数求最值问题了 .6. 【 2015 高考四川,文 10】设直线 l 与抛物线 y2= 4x 订交于 A, B 两点,与圆 C: (x-5) 2 +y2=r 2(r> 0)相切于点 M,且 M 为线段 AB 中点,若这样的直线l 恰有 4 条,则 r 的取值范围是 ( )(A)(1, 3) (B)(1 , 4) (C)(2, 3) (D )(2, 4)【答案】 D当 t=0 时,若 r ≥5,知足条件的直线只有 1 条,不合题意,若 0< r < 5,则斜率不存在的直线有 2 条,此时只要对应非零的t 的直线恰有2条即可.当 t≠0 时,将 m= 3- 2t2代入△=16t2+16m,可得3- t2> 0,即0< t2< 3又由圆心到直线的距离等于半径,| 5 m | 2 2t 2 t 2可得 d = r =t 21 2 11 t 2由 0< t 2<3,可得 r ∈ (2, 4).选 D【考点定位】此题考察直线、圆及抛物线等基本观点,考察直线与圆、 直线与抛物线的地点 关系、 参数取值范围等综合问题, 考察数形联合和分类与整合的思想, 考察学生剖析问题和办理问题的能力 .【名师点睛】此题本质是考察弦的中垂线过定点问题,注意到弦的斜率不行能为 0,但有可 能不存在,故将直线方程设为x = ty + m ,能够防止忘记对斜率不存在状况的议论.在对 r 的议论中,要注企图形的对称性,斜率存在时,直线必然是成对出现,所以,斜率不存在 (t = 0)时也一定要有两条直线知足条件 .再依据方程的鉴别式找到此外两条直线存在对应的r 取值范围即可 .属于难题 .7. 【 2014 年 . 浙江卷 . 文 5】已知圆 x 2y 22x 2 y a 0 截直线 xy 2 0 所得弦的长度为 4,则实数 a 的值为( )A. 2B.4C.6D.8【答案】 B考点:直线与圆订交,点到直线的距离公式的运用,简单题 .【名师点睛】 此题主要考察直线与圆订交的弦长问题,解决问题的要点点在议论相关直线与圆的订交弦问题时, 如能充足利用好平面几何中的垂径定理, 并在相应的直角三角形上当算,常常能事半功倍.8. 【 2014,安徽文 6】过点 P( 3,1) 的直线 l 与圆 x 2 y 21有公共点,则直线 l 的倾斜角的取值范围是()(0, ]B.(0, ]C.[0, ]D.[0, ]A.3636【答案】 D .【分析】试题剖析:以以下图,要使过点P 的直线 l 与圆有公共点,则直线 l 在 PA 与 PB 之间,由于sin 1,则AOB 2 ,所以直线 l 的倾斜角的取值范围为[0, ]. ,所以2 63 3应选 D.考点: 1.直线的倾斜角; 2.直线与圆的订交问题 .【名师点睛】研究直线与圆的订交问题,应牢切记着三长关系,即半弦长l、弦心距 d 和l 2半径长r 之间形成的数目关系为 2 2 2( ) d r . 常利用数形联合的方但在详细做题过程中,2程进行求解,经过图形会很快认识详细的量的关系.此外,直线的倾斜角和斜率之间的关系也是重要考点,见告斜率的范围要能求出倾斜角的范围,反之同样 .当90 ,斜率不存在.9. 【2015 高考安徽,文 8】直线 3x+4y=b 与圆x2 y 2 2 x 2 y 1 0 相切,则b=()(A) -2 或 12 ( B)2 或 -12 (C)-2 或-12 (D)2 或 12【答案】 D【考点定位】此题主要考察利用圆的一般方程求圆的圆心和半径,直线与圆的地点关系,以及点到直线的距离公式的应用.【名师点睛】在解决直线与圆的地点关系问题时,有两种方法;方法一是代数法:将直线方程与圆的方程联立,消元,获得对于x(或y )的一元二次方程,经过判断0; 0; 0 来确立直线与圆的地点关系;方法二是几何法:主假如利用圆心到直线的距离公式求出圆心到直线的距离 d ,而后再将 d 与圆的半径r 进行判断,若 d r 则相离;若 d r 则相切;若 d r 则订交;此题考察考生的综合剖析能力和运算能力.12. 【 2014 上海 , 文 18】已知P1(a1,b1)与P2( a2,b2)是直线 y=kx+1 ( k 为常数)上两个不一样a 1xb 1 y1 )的点,则对于 x 和 y 的方程组的解的状况是(a 2 xb 2 y1( A )不论 k , P 1, P 2 怎样,老是无解( B) 不论 k , P 1 , P 2 怎样,总有独一解 ( C )存在 k , P 1, P 2 ,使之恰有两解 ( D )存在 k , P 1, P 2 ,使之有无量多解【答案】 B【分析】由题意,直线 y kx1必定可是原点 O , P,Q 是直线 y kx 1 上不一样的两点,则 OP 与 OQ 不平行,所以 a 1b 2a 2b 1 0 ,所以二元一次方程组a 1xb 1 y 1a 2 xb 2 y 必定有唯1一解.选 B.【考点】向量的平行与二元一次方程组的解.【名师点睛】能够经过系数之比来判断二元一次方程组的解的状况,以以下对于 x,y 的二元一次方程组:ax by c当 a/d ≠b/e 时,该方程组有一组解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考数学真题分类汇编 专题08 直线与圆 文1.【2015高考北京,文2】圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-=【答案】D【解析】由题意可得圆的半径为r =()()22112x y -+-=,故选D. 【考点定位】圆的标准方程.【名师点晴】本题主要考查的是圆的标准方程,属于容易题.解题时一定要抓住重要字眼“过原点”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程,即圆心(),a b ,半径为r 的圆的标准方程是()()222x a y b r -+-=.2.【2015高考四川,文10】设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力.【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x =ty +m ,可以避免忘掉对斜率不存在情况的讨论.在对r 的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t =0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r 取值范围即可.属于难题.3.【2015高考湖南,文13】若直线3450x y -+=与圆()2220x y rr +=>相交于A,B 两点,且120o AOB ∠=(O 为坐标原点),则r =_____.【答案】【解析】如图直线3450x y -+=与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且120o AOB ∠=,则圆心(0,0)到直线3450x y -+=的距离为12r ,12r r =∴,=2 .故答案为2.【考点定位】直线与圆的位置关系【名师点睛】涉及圆的弦长的常用方法为几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则222().2l r d =-本题条件是圆心角,可利用直角三角形转化为弦心距与半径之间关系,再根据点到直线距离公式列等量关系.4.【2015高考安徽,文8】直线3x+4y=b与圆222210x y x y+--+=相切,则b=()(A)-2或12 (B)2或-12 (C)-2或-12 (D)2或12【答案】D【解析】∵直线byx=+43与圆心为(1,1),半径为1的圆相切,∴224343+-+b=1⇒2=b或12,故选D.【考点定位】本题主要考查利用圆的一般方程求圆的圆心和半径,直线与圆的位置关系,以及点到直线的距离公式的应用.【名师点睛】在解决直线与圆的位置关系问题时,有两种方法;方法一是代数法:将直线方程与圆的方程联立,消元,得到关于x(或y)的一元二次方程,通过判断0;0;0<∆=∆>∆来确定直线与圆的位置关系;方法二是几何法:主要是利用圆心到直线的距离公式求出圆心到直线的距离d,然后再将d与圆的半径r进行判断,若rd>则相离;若rd=则相切;若rd<则相交;本题考查考生的综合分析能力和运算能力.5.【2015高考重庆,文12】若点(1,2)P在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为________.【答案】250x y+-=【解析】由点(1,2)P在以坐标原点为圆心的圆上知此圆的方程为:225x y+=,所以该圆在点P处的切线方程为125x y⨯+⨯=即250x y+-=,故填:250x y+-=.【考点定位】圆的切线.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.6.【2015高考湖北,文16】如图,已知圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点A,B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为_________;(Ⅱ)圆C在点B处的切线在x轴上的截距为_________.【答案】(Ⅰ)22(1)(2x y-+=;(Ⅱ)1-【解析】设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T 知,点C 的横坐标为1,即01x =,半径0r y =.又因为2AB =,所以222011y +=,即0y r ==,所以圆C 的标准方程为22(1)(2x y -+=,令0x =得:1)B +.设圆C 在点B处的切线方程为1)kx y -+=,则圆心C 到其距离为:d ,解之得1k =.即圆C 在点B处的切线方程为x 1)y =+,于是令0y =可得x 1=-,即圆C 在点B 处的切线在x轴上的截距为1--,故应填22(1)(2x y -+=和1-【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题.【名师点睛】将圆的标准方程、圆的切线方程与弦长问题联系起来,注重实际问题的特殊性,合理的挖掘问题的实质,充分体现了数学学科特点和知识间的内在联系,渗透着方程的数学思想,能较好的考查学生的综合知识运用能力.其解题突破口是观察出点C 的横坐标.7.【2015高考广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34k =±. 【解析】试题分析:(1)将圆1C 的方程化为标准方程可得圆1C 的圆心坐标;(2)先设线段AB 的中点M 的坐标和直线l 的方程,再由圆的性质可得点M 满足的方程,进而利用动直线l 与圆1C 相交可得0x 的取值范围,即可得线段AB 的中点M 的轨迹C 的方程;(3)先说明直线L 的方程和曲线C 的方程表示的图形,再利用图形可得当直线L:()4y k x =-与曲线C 只有一个交点时,k 的取值范围,进而可得存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点. 试题解析:(1)圆1C :22650x y x +-+=化为()2234x y -+=,所以圆1C 的圆心坐标为()3,0(2)设线段AB 的中点00(,)x y M ,由圆的性质可得1C M 垂直于直线l .设直线l 的方程为mx y =(易知直线l 的斜率存在),所以1C 1k m M ⋅=-,00mx y =,所以130000-=⋅-x y x y ,所以0320020=+-y x x ,即49232020=+⎪⎭⎫ ⎝⎛-y x . 因为动直线l 与圆1C 相交,所以2132<+m m ,所以542<m . 所以202022054x x m y <=,所以20200543x x x <-,解得350>x 或00<x ,又因为300≤<x ,所以3350≤<x . 所以),(00y x M 满足49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 即M 的轨迹C 的方程为492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x . (3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线. 结合图形,492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x 表示的是一段关于x 轴对称,起点为⎪⎪⎭⎫ ⎝⎛-352,35按逆时针方向运动到⎪⎪⎭⎫ ⎝⎛352,35的圆弧.根据对称性,只需讨论在x 轴对称下方的圆弧.设P ⎪⎪⎭⎫ ⎝⎛-352,35,则752354352=-=PT k ,而当直线L 与轨迹C 相切时,2314232=+-k k k ,解得43±=k .在这里暂取43=k ,因为43752<,所以k k PT <.结合图形,可得对于x 轴对称下方的圆弧,当0k ≤≤34k =时,直线L 与x 轴对称下方的圆弧有且只有一个交点,根据对称性可知:当0k ≤<或34k =-时,直线L 与x 轴对称上方的圆弧有且只有一个交点.综上所述,当752752≤≤-k 或34k =±时,直线L:()4y k x =-与曲线C 只有一个交点. 考点:1、圆的标准方程;2、直线与圆的位置关系.【名师点晴】本题主要考查的是圆的标准方程、直线与圆的位置关系,属于难题.解题时一定要注意关键条件“直线l 与圆1C 相交于不同的两点A ,B ”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程和直线与圆的位置关系,即圆22D F 0x y x y +++E +=的圆心D ,22E ⎛⎫-- ⎪⎝⎭,直线与圆相交⇔d r <(d 是圆心到直线的距离),直线与圆相切⇔d r =(d 是圆心到直线的距离).L8.【2015高考新课标1,文20】(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围; (II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I)(II )2 (II )设1122(,),(,)M x y N x y .将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=, 所以1212224(1)7,.11k x x x x k k++==++ 21212121224(1)1181k k OM ON x x y y k x x k x x k+?+=++++=++, 由题设可得24(1)8=121k k k +++,解得=1k ,所以l 的方程为1y x =+. 故圆心在直线l 上,所以||2MN =.考点:直线与圆的位置关系;设而不求思想;运算求解能力【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.。

相关文档
最新文档