牛顿运动定律知识点总结

合集下载

(完整版)牛顿运动定律知识点总结

(完整版)牛顿运动定律知识点总结

牛 顿 运 动 定 律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。

(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。

(不能说“力是t v a ∆∆=产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。

);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。

惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。

质量是物体惯性大小的量度。

(4)牛顿第一定律描述的是物体在不受任何外力时的状态。

而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。

2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。

公式F=ma.(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y ,若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。

牛顿运动定律知识点总结

牛顿运动定律知识点总结

千里之行,始于足下。

牛顿运动定律知识点总结牛顿运动定律是经典力学中最重要的定律,主要探讨物体在外力作用下的运动规律。

牛顿运动定律包括三个方面,即第一定律、第二定律和第三定律。

第一定律,也称为惯性定律,表明当物体受到合力为零的作用时,物体将保持静止状态或匀速直线运动状态。

这意味着物体不会自发改变其运动状态,除非受到外力作用。

第二定律,也称为运动定律,给出了物体运动状态与作用力之间的关系。

牛顿第二定律的数学表达式为F=ma,其中F表示物体所受的力,m表示物体的质量,a表示物体的加速度。

根据这个定律,我们可以推导出物体受力大小与加速度大小成正比,物体质量与加速度大小成反比的关系。

例如,相同大小的力作用在质量较大的物体上会产生较小的加速度,而作用在质量较小的物体上会产生较大的加速度。

第三定律,也称为作用反作用定律,指出任何一个物体施加在另一个物体上的力,都会有所谓的反作用力作用在施加者身上,且大小相等方向相反。

换句话说,物体之间的作用力和反作用力总是成对出现的,且大小相等方向相反。

例如,当我们坐在椅子上时,我们的身体向下对椅子施加一个重力,椅子同样会对我们的身体施加一个向上的反作用力。

牛顿运动定律的应用非常广泛。

它可以解释物体在空气中的自由落体运动,解释了一系列运动现象,如物体的抛体运动、圆周运动等等。

同时,牛顿运动定律也是力学建模和分析的基础,可以帮助我们预测和解释各种物体的运动行为。

第1页/共2页锲而不舍,金石可镂。

总的来说,牛顿运动定律是描述物体运动规律的基本定律,它揭示了力和运动之间的关系,为我们理解物体运动提供了重要的指导。

通过运用牛顿运动定律,我们可以解释和预测各种运动现象,深入理解物体的运动规律。

高一物理牛顿运动定律知识点

高一物理牛顿运动定律知识点

高一物理牛顿运动定律知识点1第一节伽利略理想实验与牛顿第一定律伽利略的理想实验(见P76、77,以及单摆实验)牛顿第一定律1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

物体的运动并不需要力来维持。

2.物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。

3.惯性是物体的固有属性,与物体受力、运动状态无关,质量是物体惯性大小的唯一量度。

4.物体不受力时,惯性表现为物体保持匀速直线运动或静止状态;受外力时,惯性表现为运动状态改变的难易程度不同。

第二、三节影响加速度的因素/探究物体运动与受力的关系加速度与物体所受合力、物体质量的关系(实验设计见B书P93)高一物理牛顿运动定律知识点2第四节牛顿第二定律牛顿第二定律1.牛顿第二定律:物体的加速度跟所受合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

2.a=k F/m(k=1)→F=ma3.k的数值等于使单位质量的物体产生单位加速度时力的大小。

国际单位制中k=1。

4.当物体从某种特征到另一种特征时,发生质的飞跃的转折状态叫做临界状态。

5.极限分析法(预测和处理临界问题):通过恰当地选取某个变化的物理量将其推向极端,从而把临界现象暴露出来。

6.牛顿第二定律特性:1)矢量性:加速度与合外力任意时刻方向相同2)瞬时性:加速度与合外力同时产生/变化/消失,力是产生加速度的原因。

3)相对性:a是相对于惯性系的,牛顿第二定律只在惯性系中成立。

4)独立性:力的独立作用原理:不同方向的合力产生不同方向的加速度,彼此不受对方影响。

5)同体性:研究对象的统一性。

高一物理牛顿运动定律知识点3第五节牛顿第二定律的应用解题思路:物体的受力情况?牛顿第二定律?a?运动学公式?物体的运动情况第六节超重与失重超重和失重1.物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象(视重>物重),物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象(物重高一物理牛顿运动定律知识点4牛顿第三定律1.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等、方向相反。

物理动力知识点总结归纳

物理动力知识点总结归纳

物理动力知识点总结归纳一、牛顿运动定律1.牛顿第一定律牛顿第一定律也称为惯性定律,指出在没有外力作用下,物体将保持静止或匀速直线运动的状态。

换句话说,物体的速度不会改变,除非有外力作用。

公式表示为F=0,其中F表示力,0表示没有外力作用。

2.牛顿第二定律牛顿第二定律描述了物体受力运动的规律,即物体的加速度与作用力成正比,与物体的质量成反比。

表示为F=ma,其中F表示力,m表示物体的质量,a表示物体的加速度。

这个定律为物体的运动提供了数学描述,我们可以通过实验测定物体的质量和受力情况,来计算物体的加速度。

3.牛顿第三定律牛顿第三定律也称为作用与反作用定律,指出相互作用的两个物体之间,作用力与反作用力大小相等,方向相反。

这个定律说明了物体之间的相互作用,使得我们可以更好地理解物体的力学运动。

二、动能和动量1.动能动能是描述物体运动能量的概念,它与物体的质量和速度有关,可以表示为K=1/2mv^2,其中K表示动能,m表示物体的质量,v表示物体的速度。

动能是与物体运动状态有关的重要物理量,我们可以通过计算动能来了解物体的能量变化情况。

当物体的速度增加时,其动能也会增加;当物体的质量增加时,其动能也会增加。

2.动量动量是描述物体运动量的概念,它是物体的质量和速度的乘积,可以表示为p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。

动量是守恒的物理量,即在封闭系统内,物体之间的动量可以相互转移,但总的动量保持不变。

这个性质在物体的碰撞过程中有重要的应用。

三、万有引力和牛顿定律1.万有引力万有引力是描述物体之间相互作用的力的概念,它是质量之间的吸引力,与质量和距离的平方成反比,可以表示为F=Gm1m2/r^2,其中F表示引力,G表示万有引力常数,m1和m2表示两个物体的质量,r表示两个物体之间的距离。

万有引力是地球与其他天体之间相互吸引的力,也是描述行星运动和天体运动的重要力学原理。

2.牛顿定律牛顿定律是描述物体运动的力学定律,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。

理论力学快速知识点总结

理论力学快速知识点总结

理论力学快速知识点总结一、牛顿运动定律牛顿三定律是经典力学的基石,它包括三个定律:1. 牛顿第一定律:当物体处于静止或匀速直线运动时,它会保持这种状态,除非受到外力的作用。

2. 牛顿第二定律:物体的加速度与作用力成正比,且与物体的质量成反比。

它的数学表达式为F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。

3. 牛顿第三定律:任何两个物体之间的相互作用力都是相等的,方向相反。

二、运动的描述在力学中,需要描述物体的运动状态。

常用的描述方法包括:1. 位移和速度:位移是指物体从一个位置到另一个位置的变化,速度是位移随时间的变化率。

速度的数学定义为v=Δx/Δt,其中Δx表示位移的变化量,Δt表示时间的变化量。

2. 加速度:加速度是速度随时间的变化率。

加速度的数学定义为a=Δv/Δt,其中Δv表示速度的变化量,Δt表示时间的变化量。

3. 动量:动量是描述物体运动状态的物理量,它与物体的质量和速度有关。

动量的数学定义为p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。

三、牛顿运动定律的应用牛顿运动定律是力学中最基本的规律,它可以应用于各种不同的情况,包括:1. 自由落体运动:自由落体是指物体只受重力作用,不受其他力的影响。

根据牛顿第二定律,自由落体的加速度为g≈9.8m/s^2。

2. 斜抛运动:斜抛运动是指物体同时具有水平和竖直方向的运动。

根据牛顿第二定律,斜抛运动可以分解为水平和竖直方向的分量运动。

3. 圆周运动:圆周运动是指物体沿着圆形轨道运动。

根据牛顿第二定律,圆周运动的向心力由向心加速度和物体质量决定。

四、能量和动量守恒定律能量和动量是物体运动的重要物理量,它们遵循守恒定律。

1. 能量守恒定律:能量守恒定律表明,在一个封闭系统中,能量的总量是不变的。

这意味着能量可以在不同形式之间转化,但总量保持不变。

2. 动量守恒定律:动量守恒定律表明,在一个封闭系统中,动量的总量是不变的。

高中物理牛顿运动定律知识点汇总

高中物理牛顿运动定律知识点汇总

高中物理牛顿运动定律知识点汇总牛顿运动定律是高中物理的核心内容,是毋庸置疑的难点和重点知识结构核心知识牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。

1.明确物体具有惯性一切物体总保持匀速直线运动状态或静止状态”,揭示了一切物体都具有惯性,即物体具有保持原来匀速直线运动状态或静止状态的性质,叫做惯性。

量度物体惯性大小的物理量是质量。

2.明确力的含义1“除非作用在它上面的力迫使它改变这种状态”,说明力的作用是改变物体的运动状态。

当物体受到的合外力为零时,物体就保持原来的状态(静止或匀速),若受到合外力,其状态一定发生变化。

牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比。

公式:F=ma1.瞬时性牛顿第二定律表明了物体的加速率与物体所受合外力的瞬时对应关系,即加速率随着力的产生而产生、消逝而消逝、变革而变革。

2.矢量性F=ma是一个矢量方程,任一瞬时,a的方向均与合外力的方向保持一致。

3.同体性F=ma中F、m、a必须对应同一个物体或同一个体系。

牛顿第三定律两物体之间的感化力与反感化力总是大小相等,方向相反,感化在同一条直线上。

区分一对作用力反作用力和一对平衡力共同点:大小相等、方向相反、作用在同一条直线上。

不同点:1.感化力反感化力感化在两个不同物体上,而平衡力感化在同一个物体上;2.感化力反感化力一定是同种性质的力,而平衡力大概是不同性质的力;3.感化力反感化力一定是同时产生同时消逝的,而平衡力中的一个消逝后,另一个大概仍然存在。

2超重和失重1.超重物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象称为超重。

物体对支持物的压力大小等于物体受到的支持力,则以物体为研究对象,物体受到的支持力大于物体受到的重力,合外力向上,物体具有向上的加速度,如图甲所示。

N-G=ma2.失重物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象称为失重。

牛顿运动定律知识点总结

牛顿运动定律知识点总结

牛顿运动定律知识点总结牛顿运动定律是物理学中最基本的运动规律之一,由英国科学家艾萨克·牛顿在17世纪提出。

这三条定律揭示了物体运动的规律和相互作用的原理,被广泛应用于力学和工程领域。

本文将对牛顿运动定律的三个知识点进行总结和解析,帮助读者更好地理解这一重要的物理概念。

第一定律:惯性定律牛顿的第一定律也称为惯性定律,它指出:“一个物体如果没有受到外力作用,或受到的外力平衡,那么它将保持静止状态或匀速直线运动状态。

”这个定律的要点在于“保持静止状态或匀速直线运动状态”。

换句话说,物体不会自己改变它所处的运动状态,除非有外力作用于它。

这是因为物体具有“惯性”,即物体的运动状态在没有外力作用时会保持不变。

所以,当物体没有外力作用时,它将保持静止或匀速直线运动。

一个具体的例子是:当我们在一辆车上突然刹车时,人体会继续向前滑动。

这是因为车突然减速,而我们的身体仍按照惯性继续保持匀速运动状态。

当车辆减速至与人体速度相等时,人体停止滑动。

这个例子很好地诠释了惯性定律。

第二定律:动量定律牛顿的第二定律是力学中最重要的定律之一,也是力学计算的基础。

它表述为:“物体所受合力等于该物体质量与加速度的乘积。

”数学公式可以表示为:F = m * a。

这个定律告诉我们,当一个物体受到合力作用时,它将产生加速度。

而物体的加速度与所受合力成正比,与物体的质量成反比。

也就是说,相同的合力作用于质量较小的物体上,将产生较大的加速度;相同的合力作用于质量较大的物体上,将产生较小的加速度。

举个例子来说明第二定律:假设有两个物体,质量分别为1kg和2kg,两者都受到相同的力10N作用。

根据第二定律,质量为1kg的物体将产生10m/s²的加速度,而质量为2kg的物体将产生5m/s²的加速度。

可以看到,虽然两个物体都受到了相同的力,但质量较小的物体产生了更大的加速度。

第三定律:作用与反作用定律牛顿的第三定律称为作用与反作用定律,它指出:“对于任何两个物体之间的相互作用,作用力与反作用力两者大小相等,方向相反,且在同一直线上。

牛顿运动定律知识点的总结

牛顿运动定律知识点的总结

牛顿运动定律知识点的总结
牛顿运动定律是物理学中一个非常基础的概念,本文将对牛顿运动定律进行详细的介绍和总结。

一、牛顿第一定律
牛顿第一定律又叫做“惯性定律”,它是牛顿运动定律中最
基础和最重要的一条。

牛顿第一定律的定义为:物体在其自由状态下,如果没有外力作用于它,那么它将保持静止或匀速直线运动的状态不变。

换言之,物体如今所处的状态,如果没有外力的干扰,就会一直保持下去。

这里所说的“状态”包括位置、速度等等。

二、牛顿第二定律
牛顿第二定律提供了物体如何运动的答案,它是牛顿运动定律中最为常见的一条。

牛顿第二定律的定义为:物体的加速度与作用力成正比,与物体的质量成反比,即F=ma。

其中F表示作用力,m表示物体的质量,a表示物体的加
速度。

这个公式意味着,当一个物体受到一个较大的作用力时,其加速度就会较大;当一个物体的质量很大时,即使作用力很大,它的加速度也很小。

三、牛顿第三定律
牛顿第三定律描述了作用力和反作用力的关系,是牛顿运动定律中最为简洁的一条。

牛顿第三定律的定义为:对于每一个作用力,都有一个相等而相反的作用力作用于其它物体。

这条定律就是人们常说的“作用与反作用”,由此可知,在我们日常生活中,无论是岩石是否移动,还是小球是否会弹回来,都可以依靠牛顿第三定律得到解释。

牛顿运动定律在我们的生活中扮演了非常重要的角色,不仅解释了物体的运动规律,还为我们日常生活中的问题提供了很好的解决方案。

希望本文对大家对牛顿运动定律的理解有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三牛顿三定律1. 牛顿第一定律(即惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

(1)理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。

②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。

③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。

④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。

(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。

①惯性是物体的固有属性,与物体的受力情况及运动状态无关。

②质量是物体惯性大小的量度。

③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量m Fr GM2/严格相等。

④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质。

力是物体对物体的作用,惯性和力是两个不同的概念。

2. 牛顿第二定律(1)定律内容成正比,跟物体的质量m 物体的加速度a跟物体所受的合外力F合成反比。

(2)公式:F ma=合理解要点:①因果性:F是产生加速度a的原因,它们同时产生,同时变合化,同时存在,同时消失;②方向性:a与F都是矢量,方向严格相同;合是该时刻作③瞬时性和对应性:a为某时刻某物体的加速度,F合用在该物体上的合外力。

3. 牛顿第三定律两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为F F=-'。

(1)作用力和反作用力与二力平衡的区别4. 牛顿定律在连接体中的应用在连接体问题中,如果不要求知道各个运动物体间的相互作用力,并且各个物体具有相同加速度,可以把它们看成一个整体。

分析受到的外力和运动情况,应用牛顿第二定律求出整体的加速度。

(整体法)如果需要知道物体之间的相互作用力,就需要把物体隔离出来,将内力转化为外力,分析物体受力情况,应用牛顿第二定律列方程。

(隔离法)一般两种方法配合交替应用,可有效解决连接体问题。

5. 超重与失重视重:物体对竖直悬绳(测力计)的拉力或对水平支持物(台秤)的压力。

(测力计或台秤示数)物体处于平衡状态时,N=G,视重等于重力,不超重,也不失重,a=0当N>G,超重,竖直向上的加速度,a↑当N<G,失重,竖直向下的加速度,a↓G注:①无论物体处于何状态,重力永远存在且不变,变化的是视重。

②超、失重状态只与加速度方向有关,与速度方向无关。

(超重可能:a ↑,v ↑,向上加速;a ↑,v ↓,向下减速) ③当物体向下a =g 时,N =0,称完全失重。

④竖直面内圆周运动,人造航天器发射、回收,太空运行中均有超、失重现象。

【解题方法指导】例1. 一质量为m =40kg 的小孩子站在电梯内的体重计上。

电梯从t =0时刻由静止开始上升,在0到6s 内体重计示数F 的变化如图所示。

试问:在这段时间内电梯上升的高度是多少?取重力加速度g =10m/s 2。

解析:由图可知,在t =0到t =t 1=2s 的时间内,体重计的示数大于mg ,故电梯应做向上的加速运动。

设这段时间内体重计作用于小孩的力为f 1,电梯及小孩的加速度为a 1,由牛顿第二定律,得f 1-mg =ma 1, ①在这段时间内电梯上升的高度 h 1=12a 1t 2。

②在t 1到t =t 2=5s 的时间内,体重计的示数等于mg ,故电梯应做匀速上升运动,速度为t1时刻电梯的速度,即v1=a1t1,③在这段时间内电梯上升的高度h2=v2(t2-t1)。

④在t2到t=t3=6s的时间内,体重计的示数小于mg,故电梯应做向上的减速运动。

设这段时间内体重计作用于小孩的力为f1,电梯及小孩的加速度为a2,由牛顿第二定律,得mg-f2=ma2,⑤在这段时间内电梯上升的高度h3=v1(t3-t2)-12a 2(t3-t2)2。

⑥电梯上升的总高度h=h1+h2+h3。

⑦由以上各式,利用牛顿第三定律和题文及题图中的数据,解得 h=9m。

⑧说明:本题属于超失重现象,知道物体受力情况解决物体的运动情况。

例2. 如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B。

它们的质量分别为m A、m B,弹簧的劲度系数为k , C 为一固定挡板。

系统处于静止状态。

现开始用一恒力F沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C时物块A 的加速度a 和从开始到此时物块A 的位移d?重力加速度为g。

解析:令x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知m A gsin θ=kx 1 ①令x 2表示B 刚要离开C 时弹簧的伸长量,a 表示此时A 的加速度,由胡克定律和牛顿定律可知 kx 2=m B gsin θ ② F -m A gsin θ-kx 2=m A a ③由②③式可得a =F -(m A +m B )gsin θm A ④由题意d =x 1+x 2 ⑤由①②⑤式可得d =(m A +m B )gsin θk⑥说明:临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现。

如:相互挤压的物体脱离的临界条件是压力减为零;存在摩擦的物体产生相对滑动的临界条件是静摩擦力取最大静摩擦力,弹簧上的弹力由斥力变为拉力的临界条件为弹力为零等。

临界问题常伴有特征字眼出现,如“恰好”、“刚刚”等,找准临界条件与极值条件,是解决临界问题与极值问题的关键。

例3. 如图所示,木块A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,挂盘的质量m c=0.6kg,现挂于天花板O处,处于静止,当用火烧断O处的细线的瞬间,木块A的加速度αA=____________,木块B对盘C的压力N BC=______________,木块B的加速度αB=____________。

解析:O处绳子突然烧断的瞬间,弹簧来不及形变,弹簧对A物体向上的支持力仍为N=m A g,故a A=0。

以B,C整体为研究对象,有m B g+m C g+N′=(m B+m C)a,N’=m A g,解得a=12m/s2(注意:比g大)。

再以B为研究以象,如图所示,有再以B为研究以象,如图所示,有N’+m B g-N CB=m B a∴N CB=1.2N故N BC=1.2N说明:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种基本模型的建立。

(1)钢性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要形变恢复时间,一般题目中所给细线和接触面在不加特殊说明时,均可按此模型处理。

(2)弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,如果其两端不自由(固定或连接有物体),其弹力的大小往往可以看成不变。

而当弹簧(或橡皮绳)具有自由端(没有任何连接物)时,其弹力可以立即消失。

【考点突破】【考点指要】本讲高考考点如下:1. 牛顿第一定律,惯性2. 牛顿第二定律,质量3. 牛顿第三定律4. 牛顿力学的适用范围5. 牛顿定律的应用6. 圆周运动中的向心力7. 超重和失重本讲是高中物理的核心内容之一,因而是历年高考命题热点,题型以选择题为主,也有填空题和计算题,有时与电学等知识综合命题,有一定难度,考查重点是牛顿第二定律与物体的受力分析。

考生应真正理解“力是改变物体运动状态的原因”这一基本观点,灵活运用正交分解,整体法和隔离法以及牛顿第二定律与运动学知识的综合。

【典型例题分析】例4. 质量为10 kg的物体在F=200N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°。

力 F作用2秒钟后撤去,物体在斜面上继续上滑了1.25 秒钟后,速度减为零。

求:物体与斜面间的动摩擦因数μ和物体的总位移s。

(已知sin37o=0.6,cos37°=0.8,g=10m/s2)解析:物体受力分析如图所示,设加速时的加速度为 a1,末速度为 v,减速时的加速度大小为a2,将mg和F分解后,由牛顿运动定律得N=Fsinθ+mgcosθFcosθ-f-mgsinθ=ma1根据摩擦定律有 f=μN加速过程由运动学规律可知 v=a1t1撤去F后,物体减速运动的加速度大小为 a2,则a2=gsinθ由匀变速运动规律有 v=a2t2由运动学规律知 s= a1t12/2 + a2t22/2代入数据得μ=0.4 s=6.5m说明:物体在受到三个或三个以上的不同方向的力作用时,一般都要用到正交分解法,在建立直角坐标系不管选取哪个方向为x轴的正向时,所得的最后结果都应是一样的,在选取坐标轴时,为使解题方便,应尽量减少矢量的分解。

若已知加速度方向一般以加速度方向为正方向。

分解加速度而不分解力,此种方法一般是在以某种力方向为x轴正向时,其它力都落在两坐标轴上而不需再分解。

例5. 如下图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一个小滑块,小滑块质量为m=1kg,其尺寸远小于L。

小滑块与木板之间的动摩擦因数为μ=0.4(g=10m/s2)(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?(2)其它条件不变,若恒力F=22.8N,且始终作用在M上,最终使得m能从M上面滑落,问:m在M上面滑动的时间是多大?解析:(1)小滑块与木板间的滑动摩擦力f N mg==μμ小滑块在滑动摩擦力f作用下向右匀加速运动的加速度a f m g m s 124===//μ木板在拉力和滑动摩擦力f作用下向右匀加速运动的加速度a2=(F-f)/M使m能从M上面滑落下来的条件是a2>a1。

即(F-f)/M>f/m解得F M m g N>+=μ()20(2)设m在M上面滑动的时间为t,当恒力F=22.8N,木板的加速度a2=(F-f)/M=4.7m/s2小滑块在时间t内运动位移s a t 11212=木块在时间 t内运动位移s a t 22212=因s2-s1=L解得t=2s说明:若系统内各物体的加速度相同,解题时先用整体法求加速度,后用隔离法求物体间相互作用力,注意:隔离后对受力最少的物体进行分析较简捷。

然而本题两物体有相对运动,加速度不同,只能用隔离法分别研究,根据题意找到滑下时两物体的位移关系。

例6. 用质量不计的弹簧把质量3m的木板A与质量m的木板B连接组成如图所示的装置。

B板置于水平地面上。

相关文档
最新文档