复数的概念1

合集下载

第一章复变函数

第一章复变函数
z z 0 r0
为闭区域
(三)复变函数例 1. 多项式
a 0 a1 z a 2 z a n z
2
n
( n 为整数 )
2. 有理分式
a 0 a1 z a 2 z b 0 b1 z b 2 z
2
anz bm z
n m
2
( m 和 n 为整数 )
(e
z
iz
e
z
),
cos z ch z 1 2
1 2
(e
z
iz
e
z
iz
)
(e e
),
(e e
)
ln z ln(| z | e z
s
i Arg z
) ln | z | i Arg z
e
s ln z
( s 为复数 )
sh同sinh,双曲正弦 (hyperbolic sine) ch同cosh, 双曲余弦 (hyperbolic cosine)
全体复数与平面上的点一一对应
y
cos =|z|

z=x+iy (x,y) (,)
/2-
复数平面
sin cos(/2-) x

o
z1=x1+i y1 ,z2=x2+i y2,如z1=z2,则x1=x2, y1 = y2
2) 极坐标表示 利用坐标变换:
y arctan 2 2 x 0 2
例5. 指数函数
2 i sin e
i
sin
e 2i
- i
5
3. 辐角主值: 辐角 = Arg

高考数学一轮复习专题训练—复数

高考数学一轮复习专题训练—复数

复数考纲要求1.理解复数的基本概念;2.理解复数相等的充要条件;3.了解复数的代数表示法及其几何意义;4.会进行复数代数形式的四则运算;5.了解复数代数形式的加、减运算的几何意义.知识梳理1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R)的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位). (2)分类:(3)复数相等:a +b i ⇔a =c 且b =d ((4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R).2.复数的几何意义(1)复数z =a +b i 一一对应复平面内的点Z (a ,b )(a ,b ∈R). (2)复数z =a +b i(a ,b ∈R)一一对应平面向量OZ →. 3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R. z 1±z 2=(a +b i)±(c +d i)=(a ±c )+(b ±d )i. z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(bc +ad )i.z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图所示给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.1.i 的乘方具有周期性i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *. 2.(1±i)2=±2i ,1+i 1-i =i ;1-i1+i =-i.3.复数的模与共轭复数的关系 z ·z =|z |2=|z |2. 4.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R)中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )答案 (1)× (2)× (3)√ (4)√解析 (1)虚部为b ;(2)虚数不可以比较大小.2.已知i 为虚数单位,a 为实数,复数z 满足z +3i =a +a i ,若复数z 是纯虚数,则( ) A .a =3 B .a =0 C .a ≠0 D .a <0答案 B解析 由z +3i =a +a i ,得z =a +(a -3)i.又因为复数z 是纯虚数,所以⎩⎪⎨⎪⎧a =0,a -3≠0,解得a =0.3.已知(1+2i)z =4+3i ,则z =________. 答案 2+i解析 因为z =4+3i1+2i=4+3i 1-2i 1+2i 1-2i=10-5i5=2-i ,所以z =2+i.4.(2020·北京卷)在复平面内,复数z 对应的点的坐标是(1,2),则i·z =( ) A .1+2i B .-2+i C .1-2i D .-2-i答案 B解析 z =1+2i ,∴i·z =i(1+2i)=-2+i.故选B.5.(2019·全国Ⅲ卷改编)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B .22C . 2D .2答案 C解析 法一 由(1+i)z =2i ,得z =2i1+i =1+i ,所以|z |= 2.法二 因为2i =(1+i)2,所以由(1+i)z =2i =(1+i)2,得z =1+i ,所以|z |= 2. 6.(2021·安庆一中月考)已知复数z =2i1-i3,则z 在复平面内对应的点所在的象限为第________象限. 答案 二 解析 ∵z =2i1-i3=-1-i 21-i3=-11-i=-12-i 2, ∴z =-12+i2对应的点⎝⎛⎭⎫-12,12位于第二象限.考点一 复数的相关概念1.(2020·浙江卷)已知a ∈R ,若a -1+(a -2)i(i 为虚数单位)是实数,则a =( ) A .1 B .-1C .2D .-2答案 C解析 由题可知复数的虚部为a -2,若该复数为实数,则a -2=0,即a =2.故选C. 2.(2019·全国Ⅱ卷)设z =i(2+i),则z =( ) A .1+2i B .-1+2iC .1-2iD .-1-2i答案 D解析 ∵z =i(2+i)=-1+2i ,∴z =-1-2i.故选D. 3.(2020·全国Ⅰ卷)若z =1+2i +i 3,则|z |=( ) A .0 B .1C . 2D .2答案 C解析 ∵z =1+2i +i 3=1+2i -i =1+i ,∴|z |=12+12= 2.故选C.4.(2021·西安调研)下面关于复数z =-1+i(其中i 为虚数单位)的结论正确的是( ) A.1z 对应的点在第一象限 B .|z |<|z +1| C .z 的虚部为i D .z +z <0 答案 D解析∵z=-1+i,∴1z=1-1+i=-1-i-1+i-1-i=-12-i2.则1z对应的点在第三象限,故A错误;|z|=2,|z+1|=1,故B错误;z的虚部为1,故C错误;z+z=-2<0,故D正确.感悟升华 1.复数z=a+b i(a,b∈R),其中a,b分别是它的实部和虚部.若z为实数,则虚部b=0,与实部a无关;若z为虚数,则虚部b≠0,与实部a无关;若z为纯虚数,当且仅当a=0且b≠0.2.复数z=a+b i(a,b∈R)的模记作|z|或|a+b i|,即|z|=|a+b i|=a2+b2.3.复数z=a+b i(a,b∈R)的共轭复数为z=a-b i,则z·z=|z|2=|z|2,即|z|=|z|=z·z,若z∈R,则z=z.利用上述结论,可快速、简洁地解决有关复数问题.考点二复数的几何意义【例1】(1)(2019·全国Ⅰ卷)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则() A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.x2+(y+1)2=1(2)(2020·临沂质检)已知a1-i=-1+b i,其中a,b是实数,则复数a-b i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案(1)C(2)B解析(1)由已知条件,可设z=x+y i(x,y∈R).∵|z-i|=1,∴|x+y i-i|=1,∴x2+(y-1)2=1.故选C.(2)由a1-i=-1+b i,得a =(-1+b i)(1-i)=(b -1)+(b +1)i ,∴⎩⎪⎨⎪⎧b +1=0,a =b -1,即a =-2,b =-1, ∴复数a -b i =-2+i 在复平面内对应点(-2,1),位于第二象限.感悟升华 1.复数z =a +b i(a ,b ∈R)一一对应Z (a ,b )一一对应OZ →=(a ,b ).2.由于复数、点、向量之间建立了一一对应的关系,因此解题时可运用数形结合的方法,可把复数、向量与解析几何联系在一起,使问题的解决更加直观.【训练1】 (1)若复数z =(2+a i)(a -i)在复平面内对应的点在第三象限,其中a ∈R ,i 为虚数单位,则实数a 的取值范围为( ) A .(-2,2) B .(-2,0) C .(0,2)D .[0,2)(2)(2021·郑州模拟)已知复数z 1=2-i2+i 在复平面内对应的点为A ,复数z 2在复平面内对应的点为B ,若向量AB →与虚轴垂直,则z 2的虚部为________. 答案 (1)B (2)-45解析 (1)z =(2+a i)(a -i)=3a +(a 2-2)i在复平面内对应的点在第三象限,∴⎩⎪⎨⎪⎧3a <0,a 2-2<0,解得-2<a <0.(2)z 1=2-i 2+i =2-i 22+i 2-i =35-45i ,所以A ⎝⎛⎭⎫35,-45, 设复数z 2对应的点B (x 0,y 0),则AB →=⎝⎛⎭⎫x 0-35,y 0+45, 又向量AB →与虚轴垂直,∴y 0+45=0,故z 2的虚部y 0=-45.考点三 复数的运算【例2】 (1)(2020·全国Ⅰ卷)若z =1+i ,则|z 2-2z |=( ) A .0B .1C . 2D .2(2)在数学中,记表达式ad -bc 为由⎪⎪⎪⎪⎪⎪ab cd 所确定的二阶行列式.若在复数域内,z 1=1+i ,z 2=2+i 1-i ,z 3=z 2,则当⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=12-i 时,z 4的虚部为________. 答案 (1)D (2)-2解析 (1)法一 z 2-2z =(1+i)2-2(1+i)=-2,|z 2-2z |=|-2|=2. 法二 |z 2-2z |=|(1+i)2-2(1+i)|=|(1+i)(-1+i)| =|1+i||-1+i|=2. 故选D. (2)依题意,⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=z 1z 4-z 2z 3,因为z 3=z 2,且z 2=2+i1-i =2+i1+i2=1+3i 2,所以z 2·z 3=|z 2|2=52,因此有(1+i)z 4-52=12-i ,即(1+i)z 4=3-i ,故z 4=3-i 1+i=3-i1-i2=1-2i.所以z 4的虚部是-2.感悟升华 1.复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式. 2.记住以下结论,可提高运算速度: (1)(1±i)2=±2i ;(2)1+i 1-i =i ;(3)1-i 1+i=-i ;(4)-b +a i =i(a +b i);(5)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N).【训练2】 (1)(2020·新高考山东卷)2-i1+2i=( )A .1B .-1C .iD .-i(2)(2020·全国Ⅱ卷)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________. 答案 (1)D (2)2 3 解析 (1)2-i 1+2i =2-i1-2i 1+2i1-2i=-5i5=-i.故选D.(2)法一 设z 1=a +b i(a ,b ∈R),则z 2=3-a +(1-b )i ,则⎩⎨⎧ |z 1|2=a 2+b 2=4,|z 2|2=3-a 2+1-b 2=4,即⎩⎨⎧a 2+b 2=4,3a +b =2.∴|z 1-z 2|2=(2a -3)2+(2b -1)2 =4(a 2+b 2)-4(3a +b )+4=12. 因此|z 1-z 2|=2 3.法二 设复数z 1,z 2对应的向量为a ,b , 则复数z 1+z 2,z 1-z 2对应向量为a +b ,a -b , 依题意|a |=|b |=2,|a +b |=2, 又因为|a +b |2+|a -b |2=2|a |2+2|b |2, 所以|a -b |2=12,故|z 1-z 2|=|a -b |=2 3.法三 设z 1+z 2=z =3+i ,则z 在复平面上对应的点为P (3,1),所以|z 1+z 2|=|z |=2,由平行四边形法则知OAPB 是边长为2,一条对角线也为2的菱形,则另一条对角线的长为|z 1-z 2|=2×32×2=2 3.A 级 基础巩固一、选择题1.设z =-3+2i ,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 z =-3-2i ,故z 对应的点(-3,-2)位于第三象限. 2.(2020·全国Ⅲ卷)复数11-3i 的虚部是( ) A .-310B .-110C .110D .310答案 D解析 z =11-3i =1+3i 1-3i 1+3i =110+310i ,虚部为310.故选D.3.(2020·全国Ⅱ卷)(1-i)4=( ) A .-4 B .4C .-4iD .4i答案 A解析 (1-i)4=(1-2i +i 2)2=(-2i)2=4i 2=-4.4. (2021·全国大联考)如图,复数z 1,z 2在复平面上分别对应点A ,B ,则z 1·z 2=( )A .0B .2+iC .-2-iD .-1+2i答案 C解析 由复数几何意义,知z 1=-1+2i ,z 2=i , ∴z 1·z 2=i(-1+2i)=-2-i.5.设复数z 满足|z -3|=2,z 在复平面内对应的点为M (a ,b ),则M 不可能为( ) A .(2,3) B .(3,2) C .(5,0) D .(4,1) 答案 D解析 设z =a +b i(a ,b ∈R),则z -3=(a -3)+b i , ∴(a -3)2+b 2=4,验证点M (4,1),不满足.6.(2021·河南部分重点高中联考)若复数a +|3-4i|2+i (a ∈R)是纯虚数,则a =( )A .-3B .-2C .2D .3答案 B解析 a +|3-4i|2+i =a +52-i2+i 2-i =a +2-i 为纯虚数.则a +2=0,解得a =-2.7.设2+ii +1-2i =a +b i( a ,b ∈R ,i 为虚数单位),则b -a i =( )A .-52-32iB .52-32iC.52+32i D .-52+32i答案 A解析 因为2+i i +1-2i =2+i1-i i +11-i -2i =32-52i =a +b i ,所以a =32,b =-52,因此b -a i=-52-32i.故选A.8.如图所示,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则复数z 1·z 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 由图知OA →=(-2,-1),OB →=(0,1),所以z 1=-2-i ,z 2=i ,z 1·z 2=1-2i ,所以复数z 1·z 2所对应的点为(1,-2),该点在第四象限.二、填空题9.(2020·江苏卷)已知i 是虚数单位,则复数z =(1+i)(2-i)的实部是________. 答案 3解析 z =(1+i)(2-i)=2-i +2i -i 2=3+i ,所以复数z 的实部为3.10.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为________.答案 -2+i解析 因为A (-1,2)关于直线y =-x 的对称点B (-2,1),所以向量OB →对应的复数为-2+i.11.已知复数z =1+2i 1+i +2i z ,则|z |等于________. 答案 22解析 由z =1+2i 1+i+2i z 得z =1+2i 1+i 1-2i =1+2i 3-i=1+2i 3+i 3-i 3+i =1+7i 10, 故|z |=11012+72=22. 12.已知i 为虚数单位,若复数z =1-a i 1+i(a ∈R)的实部为-3,则|z |=________,复数z 的共轭复数z =________.答案 5 -3+4i解析 因为z =1-a i 1+i =1-a i 1-i 1+i 1-i =1-a -a +1i 2的实部为-3,所以1-a 2=-3,解得a =7. 所以z =-3-4i , 故|z |=-32+-42=5,且共轭复数z =-3+4i.B 级 能力提升13.(2020·南宁模拟)已知z =3-i 1-i (其中i 为虚数单位),则z 的共轭复数z 的虚部是( ) A .-1B .-2C .1D .2 答案 A解析 ∵z =3-i 1-i =3-i 1+i 1-i 1+i=4+2i 2=2+i , ∴z =2-i ,∴z 的虚部为-1.14.(2021·哈尔滨调研)已知z 的共轭复数是z ,且|z |=z +1-2i(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 设z =x +y i(x ,y ∈R),因为|z |=z +1-2i ,所以x 2+y 2=x -y i +1-2i =(x +1)-(y+2)i ,所以⎩⎨⎧ x 2+y 2=x +1,y +2=0,解得⎩⎪⎨⎪⎧x =32,y =-2. 所以复数z 在复平面内对应的点为⎝⎛⎭⎫32,-2,此点位于第四象限. 15.⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 答案 -1+i解析 原式=⎣⎡⎦⎤1+i 226+2+3i3+2i 32+22=i 6+6+2i +3i -65=-1+i. 16.已知复数z =x +y i(x ,y ∈R),且|z -2|=3,则y x的最大值为________. 答案 3解析 因为|z -2|=x -22+y 2=3,所以(x -2)2+y 2=3. 由图可知⎝⎛⎭⎫y x max =31= 3.。

2024届新高考一轮复习人教A版 第5章 第5讲 复数 课件(53张)

2024届新高考一轮复习人教A版 第5章 第5讲 复数 课件(53张)

的点位于( A )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(4)(2022·浙 江 卷 ) 已 知 a , b ∈ R , a + 3i = (b + i)i(i 为 虚 数 单 位 ) , 则
( B) A.a=1,b=-3
B.a=-1,b=3
C.a=-1,b=-3
D.a=1,b=3
(5)(2022·全国甲卷)若 z=1+i,则|iz+3 z |=( D )
= -42+-32=5,故选 B.
解法二:依题意可得 i2·z=(3-4i)i,所以 z=-4-3i,则|z|=
-42+-32=5,故选 B.
6.(2022·全国新高考Ⅱ卷)(2+2i)(1-2i)=( D )
A.-2+4i
B.-2-4i
C.6+2i
D.6-2i
[解析] (2+2i)(1-2i)=2-4i+2i+4=6-2i,故选D.
- 7.(2019·全国卷Ⅱ,2,5 分)设 z=-3+2i,则在复平面内 z 对应的点
位于( C )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[解析] 由题意,得-z =-3-2i,其在复平面内对应的点为(-3,-
2),位于第三象限,故选 C.
考点突破 · 互动探究
考点一
复数的基本概念——ห้องสมุดไป่ตู้主练透
题组二 走进教材
2.(必修2P73T2改编)若复数(a2-3a+2)+(a-1)i是纯虚数,则实数a 的值为( B )
A.1
B.2
C.1或2
D.-1
[解析] 依题意,有aa2--13≠a+0,2=0, 解得 a=2.故选 B.

1-1复数的基本概念

1-1复数的基本概念

§1.1 复数的基本概念授课要点:复数的定义,复数的代数表示,三角式、指数式及它们与复数几何表示(二维向量)之间的关系1、 复数的定义:设有一个有序数对(),a b ,遵从如下的运算法则加法:()()()11221212,,,a b a b a a b b +=++乘法:()(),,(,)a b c d ac bd ad bc =-+则称这一有序数对(),a b 为复数,记为α,即 α=(),a b其中a 为α实部,b 为α的虚部,记为a =Re α,b =Im α纯实数a =(),0a ,纯虚数记为b =()0,b ,所以有α=(),0a +()0,b =a(1,0)+b (0,1)其中(0,1)即为虚数单位,常记为i.2、 复数的相等与大小两个复数相等的充要条件是:实部、虚部分别相等.复数不能比较大小!这一点可用反证法证明:假设认为i >0,则在不等式两边同乘以一个大于0的数i ,不等式符号应当不变,即20i >即 -1>0,这显然是错误的!3、 几个特殊的复数:(0,0):(0,0)(,)(,)(0,0)(,)(0,0)a b a b a b +=⎧⎨=⎩(1,0):(1,0)(,)(,)a b a b =(0,1):(0,1)(0,1)=(-1,0)=-1(0,1)是-1的平方根,是虚数单位,记为i =(0,1)4、 共轭复数:(,)a b α=,*(,)a b α=-互为共轭复数性质:**()αα=(共轭的共轭等于自己)*2ααα+=为实数(两个互为共轭的复数相加,结果必为实数) *22a b αα⋅=+,为非负实数(α的模方)5、 复数的减法、除法减法:()()()()a ib c id a c i b d +-+=-+- 除法:2222()()()()a ib a ib c id ac bd bc ad i c id c id c id c d c d++-+-==+++-++ ↑“分母实数化”6、 复数的几何表示:(1) 任何一个复数都可以和复平面上的一点对应,将这一点和原点连起来(原点为起点),形成一个二维矢量,这是一个二维自由向量,即将op 平移后,仍代表同一矢量(如右图所示)(2) 加法的几何表示(平行四边形法则与三角形法则)γαβ=+(3) 减法的几何表示:γαβ=- 复数不等式1212z z z z +≤+,1212z z z z -≤-,这 可以用三角形法则证明7、 复数的极坐标表示极坐标下,复数(cos sin )r i αθθ=+r 称为α的模,θ为辐角,记为:,r α=,Arg θα=辐角不唯一,辐角加上2π的任意整数倍代表同一个复数,将(0,2π)之间的辐角值称为辐角的主值arg αarg 2Arg k ααπ=+⋅.(k=0,±1,±2,……)提示:各种教材上的主值区间规定可能不一样,(0,0)的辐角无意义复共轭:(cos sin )a bi r i αθθ=+=+*(cos sin )a bi r i αθθ=-=-乘法:111(cos sin )r i αθθ=+222(cos sin )r i βθθ=+则 121122(cos sin )(cos sin )r r i i αβθθθθ=++1212121212(cos cos sin sin )(sin cos cos sin )r r i θθθθθθθθ=-++121212[cos()sin()]r r i θθθθ=+++规则是:模相乘,辐角相加 除法:112122[cos()sin()]r i r αθθθθβ=-+-规则是:模相除,辐角相减相比较而言,在极坐标表示下,复数的乘除运算比较容易8、 复数的指数表示欧拉公式:cos sin i e i θθθ=+ (cos sin )i r i re θαθθ=+=称为复数α的指数表示复数表示下,乘法,除法变得更容易1212()1212i i i r e r e r r e θθθθαβ+⋅=⋅= 1212()1122i i i re r er e r θθθθαβ-== 乘方,开方运算: i re θα=n n in r e θα=(2),0,1,21i k n re k n θπ+⋅==-小结:这一小结是对高中阶段所学复数知识的一个简短的总结回顾,没有难点。

高考数学一轮总复习 第五章 5.5 复 数

高考数学一轮总复习 第五章  5.5 复 数

∴ -x+y=3,
x=1,
解得
故 x+y=5.
2x-y=-2,
y=4,
3 课时作业
PART THREE
基础保分练
1.已知复数z1=6-8i,z2=-i,则
z1 z2
等于
A.-8-6i
B.-8+6i
√C.8+6i
D.8-6i
解析 ∵z1=6-8i,z2=-i,
∴zz12=6--8i i=6--i82ii=8+6i.
②对角线C→A所表示的复数; 解 ∵C→A=O→A-O→C,∴C→A所表示的复数为(3+2i)-(-2+4i ③B点对应的复数. 解 O→B=O→A+A→B=O→A+O→C, ∴O→B所表示的复数为(3+2i)+(-2+4i)=1+6i,
即B点对应的复数为1+6i.
思维升华
复平面内的点、向量及向量对应的复数是一一对应的,要求 的复数时,只要找出所求向量的始点和终点,或者用向量相 论即可.
A.20
B.12
√C.2 5
D.2
解析 设z=+bi,a,b∈R,
则由z2=12+16i,得a2-b2+2abi=12+16i,
a2-b2=12,
a=4, a=-4,

解得

2ab=16,
b=2
b=-2,
即|z|= a2+b2= 16+4=2 5.故选 C.
8.已知集合M={1,m,3+(m2-5m-6)i},N={-1,3},若M 数m的值为_3_或__6___.
基础自测
JICHUZICE
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)方程x2+x+1=0没有解.( × ) (2)复数z=a+bi(a,b∈R)中,虚部为bi.( × ) (3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ ) (5)复数的模实质上就是复平面内复数对应的点到原点的距离

复数知识点归纳(一)2024

复数知识点归纳(一)2024

复数知识点归纳(一)引言概述:复数是数学中的一个重要概念,它有着广泛的应用。

本文将要介绍复数的一些重要知识点,包括复数的定义、复数的表示形式、复数的运算规则、复数的性质以及复数在实际应用中的应用场景。

正文:1. 复数的定义:- 复数是由一个实部和一个虚部组成的数,可以表示为a+bi的形式。

- 实部和虚部分别由实数a和b来表示,其中a为实部,b为虚部,i为虚数单位。

2. 复数的表示形式:- 矩形形式:复数可以用直角坐标系中的点来表示,实部表示横坐标,虚部表示纵坐标,形成一个复平面。

- 极坐标形式:复数可以用极坐标表示,即用模和幅角来表示。

3. 复数的运算规则:- 加法和减法:复数相加减时,实部和虚部分别进行运算。

- 乘法和除法:复数相乘除时,可以使用矩阵形式进行运算,实部和虚部分别进行运算。

- 幂运算:复数的幂运算可以通过将复数转化为极坐标形式来简化运算。

4. 复数的性质:- 共轭复数:一个复数的共轭复数是将该复数的虚部取负数得到的复数。

- 模和幅角:一个复数的模是其在复平面上到原点的距离,幅角是与x轴正向的夹角。

- 相等和不等式:两个复数相等的条件是实部和虚部分别相等,两个复数的大小可以通过比较它们的模的大小来确定。

5. 复数的应用场景:- 电路分析:复数可以表示交流电压和交流电流,用于描述电路中电压和电流的相位关系。

- 信号处理:复数可以用于描述信号的频谱分析,在数字信号处理中有着重要应用。

- 工程计算:在工程中经常需要处理复杂的计算问题,复数可以简化计算过程。

总结:复数是一个由实部和虚部组成的数,可以用矩形形式和极坐标形式进行表示。

复数的运算包括加减法、乘除法和幂运算,具有一些重要的性质如共轭复数、模和幅角。

复数在实际应用中有广泛的应用场景,包括电路分析、信号处理和工程计算等。

深入理解和掌握复数知识,将对数学和工程领域的学习与应用产生积极的影响。

《复变函数》第1章

《复变函数》第1章

实部:x = Re(z) 虚部:y = Im(z)
纯虚数:z = iy ( y ≠ 0 )
2020/7/21
《复变函数》(第四版)
第2页
共轭复数: x iy x iy
z=0 x=y=0
z1= x1 + iy1 , z2= x2 + iy2 , z1 = z2 x1 = x2 , y1 = y2
连接平面上任一点与球面北极的直线段与球面有一个交点, 又在平面上引入一个假想点∞与球面北极对应, 构成扩充复平面 与球面点的一一对应, 即复数与球面上的点的一一对应, 球面称 为复球面.
2020/7/21
《复变函数》(第四版)
第16页
规定: | ∞| = +∞
α≠∞, α + ∞ = ∞ + α = ∞
解: 1) 几何上看 | z + i | = | z -(-i ) | = 2 : 与点-i
的距离为2的点轨迹, 即中心为(-i ),半径为2的圆.
代数推导: 设 z = x + iy
则 | x + (y + 1)i | = 2
(见书P10 图1.5)
x2 + (y + 1)2 = 4
解: 2) | z - 2i | = | z +2 | —— 到点 2i 和-2 距离
复变函数
(第四版)
电子教案
中山大学公共卫生学院 刘素芳 邓卓燊 编写
第一章 复数与复变函数
复变函数——自变量为复数的函数. 复变函数研究的中心对象: 解析函数. 复变函数论又称为解析函数论.
§1 复数及其代数运算
1.复数的概念
i — 虚数单位
i 2 =-1

1.复数的概念复数的坐标表示

1.复数的概念复数的坐标表示
x
yபைடு நூலகம்
o
x轴------实轴 y轴------虚轴
例1.辨析: 1.下列命题中的假命题是(D) (A)在复平面内,对应于实数的点都在实 轴上; (B)在复平面内,对应于纯虚数的点都在 虚轴上; (C)在复平面内,实轴上的点所对应的复 数都是实数; (D)在复平面内,虚轴上的点所对应的复 数都是纯虚数。
产和科学的发展,数的概念也不断的被扩大充实。
从小学到现在,大家都依次学过哪些数集呢? 自然数集 整数集 有理数集 实数集
我们可以用下面一组方程来形象地说明
数系的发展变化过程:
(1)在自然数集中求方程 x+1=0的解? (2)在整数集中求方程 2x+1=0的解? (3)在有理数集中求方程 x2-2=0的解? (4)在实数集中求方程 x2+1=0的解?
证明:若复数所对应的点位于第四象限, m 2 m 6 0 m 3或m 2 则 2 即 m m 2 0 2 m 1
不等式解集为空集
所以复数所对应的点不可能位于第四象限.
小结
复数的几何意义(二)
复数z=a+bi
一一对应 一一对应
直角坐标系中的点Z(a,b)
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所 对应的点位于第二象限,求实数m允许的取值范围。
3 m 2 m 2 m 6 0 得 解:由 2 m 2 或 m 1 m m 2 0
m (3,2) (1,2)
表示复数的点所 转化 复数的实部与虚部所满 在象限的问题 足的不等式组的问题 (几何问题) (代数问题) 一种重要的数学思想:数形结合思想
回 忆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分术”有云:“实如法而一。不满法者,以法命之。”这句
话的今译是:被除数除以除数。如果不能除尽,便定义了一 个分数。
古埃及人约于公元前17世纪已使用分数。
返回
无理数
为表示各种几何量(例如长度、面积、体积)与物理 量(例如速率、力的大小),人类很早已发现有必要 引进 无理数。约在公元前530,毕达哥拉斯学派已知道边长为1的 正方形的对角线的长度(即 2)不能是有理数。 15世纪达芬奇(Leonardo da Vinci, 1452- 1519) 把它 们称为是“无理的数”(irrational number),开普勒(J. Kepler, 1571- 1630)称它们是“不可名状”的数。 法国数学家柯西(A.Cauchy,1789- 1875)给出了回答:无 理数是有理数序列的极限。 由于有理数可表示成有限小数或无限循环小数,人们想
RQ Z
N
N
Z
Q
R
C
很明显, 引进虚数单位后, 有 i 2 = -1, (-
i)2=i 2=-1, 所以方程 x2=-1 的解是 x=±I 虚数单位的幂的性质: i 4n =1, i 4n+1 =i, i 4n+2 =-1, i 4n+3 =i ( n∈N ) 以上性质叫 i 的周期性.
4.1 复数的概念
负数」,就是整数的加减法。减法的需要也促进 了负整数的
引入。减法运算可看作求解方程a+x=b,如果a,b是自然数, 则所给方程未必有自然数解。为了使它恒有解,就有必要把自
然数系扩大为整数系。
返回
分 数
原始的分数概念来源于对量的分割。如《说文· 八部》对 “分”的解释:“分,别也。从八从刀,刀以分别物也。” 但是,《九章算术》中的分数是从除法运算引入的。其“合
实部和虚部分别相等,那么我们就说这 两个复数相等这就是说,如果a,b,c, d∈R,那么a+bi=c+di 有 a=c,b=d 复数相等的定义是求复数值,在复数集 中解方程的重要依据 一般地,两个复 数只能说相等或不相等,而不能比较大 小.如3+5i与4+3i不能比较大小. 现有一个命题:“任何两个复数都不能 比较大小”对吗?不对 如果两个复数 都是实数,就可以比较大小 只有当两 个复数不全是实数时才不能比较大小
新授课
实部
复数的表示:
虚部
通常用字母 z 表示,即 z a bi(a, b R) 当 b 0 时,z 是实数a. 复数
当 b 0 时,z 叫做虚数. 当a=0且 b 0 时,z =bi 叫做纯虚数.
复数与实数、虚数、纯虚数及0的关系:

两个复数相等的定义:如果两个复数的
复数集C和复平面内所有的点所成的集合是一
一对应关系,即 一一对应 复数 z a bi 复平面内的点Z (a, b)
复数复平面内的点这是因为,每一个复数有
复平面内惟一的一个点和它对应;反过来, 复平面内的每一个点,有惟一的一个复数和 它对应. 这就是复数的一种几何意义.也就是复数的另 一种表示方法,即几何表示方法. z=a+bi(a、b∈R)是复数的代数表示法
( 1869 )、戴德金( 1872 )与康托尔( 1872 )作出了杰出 的贡献。
返回
复数
从16世纪开始,解高于一次的方程的需要导致复数概念的 形式。用配方法解一元二次方程就会遇到负数开 平方的问题。 卡尔达诺在《大法》(1545)中阐述一元三次方程解法时,发 现难以避免复数。关于复数及其代 数运算的几何表示,是18 世纪末到19世纪30年代由韦塞尔、阿尔根和高斯等人建立的。 哈密顿认真地研究了从实数扩张到复数的过程。他于1843
整数
零不仅表示「无」,更是表示空位的符号。中国古代用 算筹计算数并进行运算时,空位不放算筹,虽无空 位记号, 但仍能为位值记数与四则运算创造良好的条件。印度-阿拉伯 命数法中的零(zero)来自印度的(sunya )字,其原意也是 「空」或「空白」。 中国最早引进了负数。《九章算术.方程》中论述的「正
4.1 复数的概念
新授课 例1 实数m取什么值时,复数 z m 1 (m 1)i 是 (1)实数? (2)虚数? (3)纯虚数? 解: (1)当 m 1 0 ,即 m 1时,复数z 是实数. (2)当 m 1 0 ,即 m 1 时,复数z 是虚数. (3)当 m 1 0 ,且 m 1 0 ,即 m 1 时,复数z 是
复平面、实轴、虚轴:
复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对 应关系这是因为对于任何一个复数z=a+bi (a、 b∈R),由复数相等的定义可知,可以由一个有 序实数对(a,b)惟一确定,又因为有序实数对(a, b)与平面直角坐标系中的点是一一对应的, 由此可知,复数集与平面直角坐标系中的点集 之间可以建立一一对应的关系. y
3.已知集合M={1,2,(m2-3m-1)+(m2-
5m-6)i},集合P={-1,3}.M∩P={3}, 则实数m的值为( ) A.-1 B.-1或4 C.6 D.6或-1 4.满足方程x2-2x-3+(9y2-6y+1)i=0的实数 对(x,y)表示的点的个数是______. 5.复数z=a+|b|i,z’=c+|d|i(a、b、c、 d∈R),则z=z’的充要条件是______.
6.设复数z=log2(m2-3m-3)+ilog2(3-m)(m∈R),
如果z是纯虚数,求m的值. 7.若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根, 试求实数m的值.
m ( m 2) 8.已知m∈R,复数z= +( m 2+2 m m 1
1 2
-3)i,当m为何值时, (1)z∈R; (2)z是虚数;(3)z是纯虚数;(4)z= +4i.
4.1 复数的概念
自然数 数 系 的 扩 充 整数 有理数 无理数 实数 复数
4.1 复数的概念
新授课 引入一个新数 i ,i 叫做虚数单位,并规定: (1)它的平方等于-1,即
i 2 1
(2)实数可以与它进行四则运算,进行四则运算时,原有 的加、乘运算律仍然成立. 形如 a bi(a, b R) 的数,叫做复数. 全体复数所形成的集合叫做复数集, 一般用字母C表示 .
年提出了「四元数」的概念,其后不久,凯莱又 用四元数的
有序对定义了八元数。它们都被称为「超复数」,如果舍弃更 多的运算性质,超复数还可扩张到十六元数、三十二元数等等。 返回
; /xuwenming/ 徐文明推荐股票 ;
番指点之后,也和根汉打成了壹片,没壹会尔の功夫根汉便和他们壹帮年轻人去喝酒去了....而正当根汉他们壹帮年轻人,去院子里喝酒玩耍の时候,此时陆震の房中却多了两个白发苍苍の老者.这两人连陆家の子孙后代们都极少见过,甚至连陆震の好一些尔女也都没有见过他们,他们壹直就 住在陆震の房间里面."小震呀,这个年轻人来历不壹般呀..."其中壹个白发老者感叹着对陆震说.陆震沉声道:"师叔,您看出什么来了吗?难道他是那壹界の人?""极有可能..."这个白发老者是他の师叔,原来他之所以能步入先天之境,是因为拜了师父学了更高深の武道.(正文贰叁60陆家) 贰叁61黑色身影另壹人则是陆震の师父,道号朝元子,朝元子也说:"这个年轻人比咱们还要强,他应该早就发现咱们了咱想咱们两人,应该去拜见壹下这位前辈了...""前辈..."陆震心中壹楞,立即问道:"师父,师叔,难道根汉真是那壹界の人?"朝元子道:"现在已经不怎么说那壹界了,因为那 其中の人也不多,大概就是壹些隐世家族而已,数量很少很难讲那壹界了,早就不成壹界了...""那根汉难道是某个隐世家族の弟子?"陆震问道.朝元子の师弟,化元子点头道:"极有这种可能,不过之前没听说过,那壹些势力有姓叶の家族,有可能是很古老の家族...""难道他们都开始入世了吗, 之前没听说过,有入世の呀..."陆震道.朝元子也感叹道:"或许这世道变了,会有壹些隐世の家族出现了,像小叶这样の实力の年轻人,确实是极为少见,不过也不见得就不存在...""那咱们怎么办?"陆震问道.朝元子沉声道:"如果可以の话,就拉拢他吧,咱看他对陆家感觉还不错,或许会帮助 你の...""拉拢の话,咱怕会引来他の[壹^本^读^][.[yb][du].]反感,如果他真の发现了师父和师叔你们两人の话,那他の实力恐怕还远在你们之上,咱也没什么好拉拢他の呀..."陆震有些郁闷.他原以为根汉大概就是他师父和师叔这样の级别の人物,但是没想到连他师父和师叔,也给根汉这 么高の评价.或许根汉就是那些隐世古老超级家族の弟子,或者是嫡系传人,那些人物入世之后,可都是要掀起惊涛骇浪の.只不过因为他们人数太少,而且壹心修道,壹般来说是不会轻易下山の,百年也难得遇到壹位."咱想他既然肯跟着你来陆家,想必对陆家是有壹定好感の,而且之前还与你结 识,肯定也不会在乎这些の..."朝元子分析道,"不过你说の对,拉拢也没什么用,咱们这里也没什么让他感兴趣の东西,如果说有の话,那也只有漂亮女人了...""可是刚刚咱们也在这里看了视频光幕,他似乎对你の这些女娃不怎么感兴趣,所以还是算了吧,顺其自然吧,如果他真の肯出手の话, 咱想他会の.如果他真不想帮咱们,也没有任何办法,咱们凡是还是要靠自己の,原本就是如此决定の.也不能因为他出现了,咱们就改变了原本の计划,计划还是照常执行,若是他们真の找上门来了,咱们就只有和他们血拼了."朝元子感叹道.化元子也说:"不错,咱们不能因为他而改变了计划, 若是真の要灭亡咱们,咱们也只有接受了.""不过在此之前,你得先做好准备,将族中の年轻の孩子转移走,分散送到别处去,无论如何也不能让咱们这壹脉断了血脉..."朝元子道.陆震郑重の说:"师父,师叔,你们放心吧,咱都会处理好の,最近五代の都让他们离开,咱分别派他们去别国处理事 务...""恩,他们之间の联系方式,你也要全部切断..."朝元子补充道:"如果咱们真有不测,绝不能让仇家,因为找到了其中壹人,而把其它の全给端了,此事你务必亲自去办...""是..."..."叶大哥,咱再敬你壹杯,之前都是咱不好,是咱小瞧你了,咱干了,对不起..."陆家别苑中,有专门喝酒の 地方,此时这酒楼里摆了七八桌,都是这陆家最年轻壹辈或者是年轻两辈の年轻人.他们聚在这里,请根汉喝酒,陆小芸就坐在根汉の身边,此时已经喝得醉熏熏了.她大半个身子都倚在根汉の身上,脸蛋红扑扑の,还在给根汉敬酒.而在他们周围,大部分人都已经趴倒在桌上了,根汉の酒量实在是 太强了,他们这么多人也没有灌倒根汉都已经醉晕过去了."呃,你醉了..."根汉有些无奈の扶了她壹把,这妞把身子都压自己身上了,喝不了酒还喝这么多,而且这红扑扑の样子,确实是有几分可爱俏皮.不过根汉对这陆小芸确实是没什么感觉,不是不够漂亮,也不是身材不够好,就是感觉差那么 壹点味道.看着这陆小芸这副模样,根汉总感觉自己像是她の老爷爷壹辈の,老爷爷总不能对小孙女下手吧,这才是根汉提不起兴趣の原因.不过这陆小芸却是说着酒话:"叶大哥,咱没醉,咱现在清醒の很呢,咱还记得你是怎么将华威虎放倒の呢...""还有,还有你扶着咱,教咱の寸腿术,咱都记 得呢...""当时,当时你の手放在咱の脚上,咱感觉好像都要麻掉了,你这人好坏,故意捏咱の腿...""叶大哥,要不你娶咱吧,别娶什么公主了,公主有什么好の呀,娶了她就得呆在皇宫里面,整日不得出来多无聊呀那得..."令根汉无语の是,这妞直接就表白开了,身子也往自己怀里挤,壹对小山峰 虽然规模不够大,但是却挺有弹力の.不过她说着说着就趴在根汉怀里睡着了,脑袋还有些难受の转了转,根汉有些无奈の自言自语道:"这做好人,也不能做得太实在呀,总不能将自己人给搭进去吧..."他将这陆小芸扶好,让她趴在酒桌沿,取出了壹条毯子盖在了她の身上.远处有一些陆家の丫 头,根汉让她们都过来,将这些醉倒の人都扶去休息,自己则是独自壹人在灵水湖边闲逛了起来."嗯?"就在这时,根汉感觉到了壹股比较怪异の气息,正在接近这陆家别苑.他随即身形壹闪,出现在了陆家灵水湖の上空,俯瞰着周围,透过深深の夜色,看到了陆家别苑外の壹个黑色身影."这是什么 人..."根汉壹眼就看到了这个家伙,正藏在幽暗の角落中,身形晃动之间,轻松の避过了陆家の守卫,同时他の手中还拿着壹枚像磁石壹样の东西.只要是遇到了什么高科技の监视设备,将那个东西壹拿出来,便可以轻易の过关,没壹会尔の功夫就潜进了陆家别苑.(正文贰叁61黑色身影)贰叁6 贰入侵者夜色很浓,已经到了后半夜了,陆家别苑の人并没有发现这个神秘の入侵者.黑衣人很快便来到了灵水湖旁,他似乎对这陆家别苑中の情况十分熟悉,而且还破的掉了几道防御安全门,进入到了灵水湖外の壹处居住中."这家伙身手还不错,实力可能达到了化劲巅峰..."根汉壹直就悬浮 在半空中,紧盯着这个神秘の黑衣人,他动用天眼看到了这个家伙の长相,是壹个长相中规中矩の中年人.右耳朵上面有壹条长疤,十分の明显,似乎是被什么刀子或者是利器划出来の.黑衣人在陆家别苑十分轻松,如壹道幽影穿梭在其中,很快就翻进了其中の壹座宅子.这座宅子里面住の人,也 就只有壹人,根汉用天眼看到了,是壹个丰腴の妇人,年纪大概在四五十岁左右.相对于这些大家族来说,几乎都服用过长寿液,这个年纪对她们来说,算不得什么保养の很好.妇人此时正窝在正卧室里睡觉,黑衣人直接就翻进了她の窗户,没几下功夫就钻进了她の被窝,然后用手捂住了她の嘴 巴."谁!"妇人大惊,同时感觉壹只手伸到了自己の睡衣里面,抓住了其中壹只[壹_本_读]雪.兔."咱..."黑衣人沉声壹笑,妇人这才长出了壹口气,羞怒道:"你个混蛋,又这么晚过来做什么...""做你呀..."黑衣人嘿嘿壹笑,直接将这妇人の睡衣给扯掉了,三下五除二,便进入了这妇人体内,两人 立即开始了壹阵原始运动."原来是她偷の野汉子..."悬浮在半空中の根汉,此时也来到了这间宅子,这里是壹间只有两层高の平房,但是布置十�
相关文档
最新文档