微波技术与天线-传输线和波导(2)

合集下载

《微波技术与天线》傅文斌 习题答案第2章

《微波技术与天线》傅文斌 习题答案第2章

第2章 微波传输线2.1什么是长线?如何区分长线和短线?举例说明。

答 长线是指几何长度大于或接近于相波长的传输线。

工程上常将1.0>l 的传输线视为长线,将1.0<l 的传输线视为短线。

例如,以几何长度为1m 的平行双线为例,当传输50Hz 的交流电时是短线,当传输300MHz 的微波时是长线。

2.2传输线的分布参数有哪些?分布参数分别与哪些因素有关?当无耗传输线的长度或工作频率改变时分布参数是否变化?答 长线的分布参数一般有四个:分布电阻R 1、分布电感L 1、分布电容C 1、分布电导G 1。

分布电容C 1(F/m )决定于导线截面尺寸,线间距及介质的介电常数。

分布电感L 1(H/m )决定于导线截面尺寸,线间距及介质的磁导率。

分布电阻R 1(Ω/m )决定于导线材料及导线的截面尺寸。

分布电导G 1(S/m ) 决定于导线周围介质材料的损耗。

当无耗传输线(R 1= 0,G 1= 0)的长度或工作频率改变时,分布参数不变。

2.3传输线电路如图所示。

问:图(a )中ab 间的阻抗0=ab Z 对吗?图(b )中问ab 间的阻抗∞=ab Z 对吗?为什么?答 都不对。

因为由于分布参数效应,传输线上的电压、电流随空间位置变化,使图(a )中ab 间的电压不一定为零,故ab 间的阻抗ab Z 不一定为零;使图(b )中a 点、b 点处的电流不一定为零,故ab 间的阻抗ab Z 不一定为无穷大。

2.4平行双线的直径为2mm ,间距为10cm ,周围介质为空气,求它的分布电感和分布电容。

解 由表2-1-1,L 1=1.84×10-6(H/m ),C 1=6.03×10-12(F/m )2.5写出长线方程的的解的几种基本形式。

长线方程的解的物理意义是什么? 答(1)复数形式()()()z L L z L L I Z U I Z U z U ββj 0j 0e 21e 21--++= ()()()z L L z L L I Z U Z I Z U Z z I ββj 00j 00e 21e 21---+=(2)三角函数形式()z Z I z U z U L L ββsin j cos 0+=()z I z Z U z I L Lββcos sin j+= (3)瞬时形式()()A z t A t z u ϕβω++=cos , ()B z t B ϕβω+-+cos ()()A z t Z A t z i ϕβω++=cos ,0()B z t Z B ϕβω+--cos 0其中,()L L I Z U A 021+=,()L L I Z U B 021-= 物理意义:传输线上的电压、电流以波动的形式存在,合成波等于入射波与反射波的叠加。

微波技术与天线-传输线特性参数(二)

微波技术与天线-传输线特性参数(二)

2Z0
A
Z
p
0
4
E 1 2 Z0
ZZ0D
Z0 ZD
2Z0 Z0 Z0 2Z0
2Z0 Z0 2Z0 Z0
2Z0 Z0
BE
1
1
E E
1 1
1
3 1
2
3
|
值域 1≤≤
Z in ( z) | (z知 左 一 天 统) |道 图 个线驻非| 我 的 无和波常l 们 哪 线传| 系重现 一 传输j数要在 部 输线v是的讲分系(馈解?统微特线的必)波征,内然传参我容包们输数属括1把系,于:
这 一两般部可分以简用称测为天量馈线线、系网统络,
与的关系
|U | |U
(
l
(
z) || z)
|m(axz)|?|U?i?|?(11| |min |?U??i?| (11|
l l
|) |)
等反天 馈 分行v射o馈线析测系lt系的a仪量圆g统负e、。中载st驻O的Zaln波天d线i表ng可等w以仪a看v1表e成r进是atiuo
驻波比是描述天馈连接好 坏的一反个射非系常数重复平要面的指标!
传输线的反射系数
I(z)
Z U (z) A1e z A2e z Ui (z) Ur (z) g
I(z)
1 Z0
( A 1e
z
A2e
z )
Ii(z)
Ir (z)
Eg z
特性阻抗
Z0
Ui (z) Ii (z)
Ur (z) Ir (z)
U(z) Z0
Zin(z) z
(Ω)
ZL
0
输入阻抗
Zin(
ZB
1

微波技术与天线课后题答案

微波技术与天线课后题答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===>此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<<此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z L e β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013o j L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗316Z '===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

《微波技术与天线》第五章 微波元件 (2)

《微波技术与天线》第五章  微波元件 (2)

Z in
jX
jZ
0
tan(
2
l)
jZ 0(
2
l)
jZ 0 ( vp
l)
结论:当满足l<<λ时,终端短路线的输入阻抗与频率
呈正比关系,可近似等效为一个并联的集中电感。
当l=λ/8 4/14/2020 ~λ/10时,可认为l<<λ。
32
微波电抗性元件
微带元件的实现方法
并联电容的实现(方法II )
长度为l的终端开路传输线的输入阻抗为:
微波元件按功能分类
衰减器 匹配元件 波型变换元件 相移元件 功分元件 滤波元件
4/14/2020
3
引言
基本电路元件
电阻
电感
电容
微波电阻性元件
能吸收微波能量的装置相当于电阻的作用。
微波电抗性元件
能局部集中磁场能量的装置相当于电感的作用。
能局部集中电场能量的装置相当于电容的作用。
能实现电磁能量周期性变换的装置相当于振荡回路
消除负载失配对信号源的影响。 调节微波源输出的功率电平。
匹配元件
无反射的吸收传输到终端的全部功率,以建立传输
系统中的行波状态。
4/14/2020
6
微波电抗性元件
集总参数电抗
集总参数电感
在某一个区域中只含有磁能。
集总参数电容
在某一个区域中只含有电能。
微波频段
微波信号的交变电磁场,电场和磁场是交链在一起,
可调销钉(可调螺钉)
h<<λ/4时,电感的影响较小,电容起主要作用,可等效成并 联电容。
h>>λ/4时,电容的影响较小,电感起主要作用,可等效成并 联电感。

微波技术与天线

微波技术与天线

河南理工大学微波技术与天线课程报告学院:计算机学院专业班级:通信09学号:姓名:成绩:绪论《微波技术与天线》是通信技术专业的主要专业基础课之一,是现代通信工程技术人员必备的知识。

微波技术、天线技术与电波传播是无线通信系统的三个重要环节。

他们共同的基础是电磁场理论,但三者研究的对象和目的有所不同。

微波技术主要研究引导电磁波在微波传输系统中如何进行有效的传输,它希望电磁波按一定要求沿传输系统无辐射地传输。

微波是电磁波中介于超短波了红外线之间的波段,它属于无线电波中波长最短的波段,其频率范围从300MHz 至3000GHz。

微波具有似光性、穿透性、宽频带特性、热效应特性、散射特性、抗干扰特性。

除了上述特性外,它还有以下特点:1、视距传播特性2、分布参数的不确定性3、电磁兼容与电磁环境污染。

天线是将微波导行波变成向空间定向辐射的电磁波,或将空间的电磁波变为微波设备中的导行波。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等。

电波传播探究电波在空间的传播方式和特点。

课程内容总结本课程共分为10章,包括微波技术、天线与电波传播和微波应用系统三个部分。

第1~5章为微波技术部分,主要讨论了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础和微波元器件,其中在微波集成传输线部分主要讨论了带状线、微带线、耦合微带线及介质波导的传输特性,并对光纤的传输原理及特性做了介绍;在“微波元器件”一章中,从工程应用的角度出发,重点介绍了具有代表性的几组微波无源元器件,主要包括连接匹配原件、功率分配元器件、微波谐振元件和微波铁氧体器件。

第6~9章为天线与电波传播部分,主要叙述了天线辐射与接收的基本理论、电波传播概论、线天线及面天线,其中在线天线部分侧重介绍了在工程中常用的鞭天线、电视天线、移动通信基站天线、行波天线、宽频带天线、微带天线等,还对智能天线技术做了简要介绍。

最新微波技术与天线答案

最新微波技术与天线答案

微波技术与天线答案1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< 此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z Le β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β=开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-14 解: 表1-5 1-15 解: 表1-61-16 解: 表1-71-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L LY j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗316Z '===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

微波技术与天线,课后答案

微波技术与天线,课后答案
在bc段以行驻波传输,其中ZL < Z01,以c端为电压波节点、电流波腹点; b端为电压波腹点、电流波节点。
|U |max = UC = 450 V
|I|min = UC /Zbc = 0.5 A
|U |min = |I|minZ01 = 300 V
|I|max = |U |max/Z01 = 0.75 A
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
2-15 有一特性阻抗为75Ω、长为9λ/8的无耗传输线,测得电压结点 的 输入阻抗为25Ω,终端为电压腹点,求:(1)终端反射系数; (2)负载阻抗; (3)始端的输入阻抗; (4)距终端3λ/8处的反射系数。
图 5: ZL = 0的情况 2-26 ( ) 传输线电路如下图所示。图中,Z0 = 75Ω,R1 = 150Ω,R2 = 37.5Ω,行波 电压幅值|U +| = 150V 。 (1)试求信号源端的电流|ID|; (2)画出各传输线上的电压、电流幅值分布并标出极大、极小值; (3)分别计算负载R1、R2吸收的功率。 解: (1) CA段的输入阻抗为:ZCA = R1 = 150Ω; CB段的输入阻抗为:ZCB = Z02/R2 = 150Ω; C点阻抗为:ZC = ZCA//ZCB = 75Ω;
ZCE
=
Z02 2Z0
=
Z0/2
(10)
ZCF
=
Z0

微波技术与天线A卷答案

微波技术与天线A卷答案

河南理工大学万方科技学院 2008-2009 学年第 1 学期《微波技术与天线》试卷(A 卷)考试方式:开卷 本试卷考试分数占学生总评成绩的 70 %复查总分 总复查人(本题20 分,每空2分)一、填空题(1)微波是电磁波谱中介于超短波与红外线之间的波段,其频率范围为300MHZ-----3000MHZ 。

(2)微波传输线大致可以分为三种类型: 双导体传输线、金属波导管和介质传输线 。

(3)阻抗圆图的正实半轴为 电压波腹点 的轨迹,负实半轴为 电压波节点 的轨迹。

(4)对于无耗传输线,负载阻抗不同则波的反射也不同,从而导致传输线的工作状态不同,通常其工作状态可以分为 行波状态、纯驻波状态和行驻波状态 。

(5)在无线通信系统中,天线的主要功能是实现 导波能量 和 无线电波 的转换。

(6)由于天线和馈线系统的联系十分紧密,有时把天线和馈线系统看成是一个部件,统称为 天馈系统 。

(7)对于各种天线而言,在离天线相同距离不同方向上,天线辐射场的相对值与空间方向的关系称为 天线的方向性 。

(8)天线的基本功能是能量转换和定向辐射,天线的 电参数 就是能定量表征其能量转换和定向辐射能力的量。

(本题20分,每小题5分)二、简答题1.描述光纤传输特性的主要参数有哪些,它们分别会影响什么?描述光纤传输特性的主要参数有光波波长、光纤芯与包层的相对折射率差、折射率分布因子以及数值孔径等。

① 光波波长λg同描述电磁波传播一样, 光纤传播因子为e j(ωt -βz),其中ω是传导模的工作角频率,β为光纤的相移常数。

对于传导模, 应满足21n k n k β<<,式中2/k πλ=,对应的光波波长为2/g λπβ=。

② 相对折射率差Δ光纤芯与包层相对折射率差Δ定义为121n n n -∆=,它反映了包层与光纤芯折射率的接近程度。

当Δ<<1时,称此光纤为弱传导光纤,此时β≈n2k ,光纤近似工作在线极化状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j t z E y E0 sin a x e j t z E0 sin x e H x a 1 j t z E0 cos x e Hz j a a
矩形波导的场分布
D0
带入边界条件求解
Ex |y0,x(0,a ) 0
n 0,1, 2
C 0
Ex |yb,x(0,a ) 0
C sin k yb 0
n ky b
Ey |x0, y(0,b) 0
Ey |xa, y(0,b) 0
B0
Asin k x a 0
f cmn
v0

kc

1
m 2 n 2 ( ) ( ) a b
16
矩形波导的单模传输
截止波长分布
TE10 模的截止波长为2a
TE20 模的截止波长为a TE01 模的截止波长为2b
TE11 模的截止波长为
2ab a b
2 2
2b
北京邮电大学——《微波技术基础》
17
矩形波导的单模传输
北京邮电大学——《微波技术基础》
23
矩形波导的场结构
TE10模的场分布图
TE10 模场强与y无关,场分量沿y轴均匀分布。各场分 量沿x轴的变化规律为
E y sin x a H x sin x a H z cos x a
场分布特点:
磁力线永远闭合,电力 线与导体边界垂直
14
北京邮电大学——《微波技术基础》
矩形波导的场分布
TM模式的基模
m n j ( t z ) Ez Bmn sin( x) sin( y )e a b
f c (TM11 ) 1 2 ( ) ( )2 a b
2
因a>b,且m、n均不能等于零,所以基模为TM11模
20

2a
c
北京邮电大学——《微波技术基础》
矩形波导的单模传输
TE10模的单模传输条件
c (TE20 ) 0 c ( TE10 ) c (TE01 ) 0
单模传输条件
a 0 2a 0 2b
2b 0 2a a 2b
21
a 0 2a a 2b

当工作波长给定时,若要实现TE10单模传输,则 波导尺寸必须满足?
北京邮电大学——《微波技术基础》
矩形波导的场结构
TE波的波指数
m n k k k a b
2 2 c 2 x 2 y
2
10
北京邮电大学——《微波技术基础》
矩形波导的场分布
TE模场分布求解
截止波长
cmn
2 kc
2 m 2 n 2 ( ) ( ) a b
北京邮电大学——《微波技术基础》
11
矩形波导的场分布
TE模式的基模
基模——截止频率最低的模式称为基模。 TE模截止频率 v0 kc 1 m 2 n 2 f cmn ( ) ( ) c 2 2 a b
7
北京邮电大学——《微波技术基础》
H z ( x, y, z) hz ( x, y)e hz ( x, y) ( Acos矩形波导的场分布 D sin k y y) kx x B sin k x x)(C cos k y y
j (t z )
TE模场分布求解
由纵向磁场得到横向电场 j H z j H z Ex , Ey 2 2 kc y kc x
m,n称为波指数,对于TE模它们不能同时为零 (对于TM模它们均不能为零!)
m——表示x方向变化的半周期(半个驻波)的数目。 (即小→大→小) n——表示y方向变化的半周期(半个驻波)的数目 。
北京邮电大学——《微波技术基础》
22
矩形波导的场结构
TE10模的场分布图
所谓场分布图就是在固定时刻,用电力线和磁力 线表示某种波型场强空间变化规律的图形。 TE10模的场分量为


c (TM )
11
v0 f c ( TM11 )

2 ( ) ( ) a b
2


2
北京邮电大学——《微波技术基础》
15
矩形波导的场分布
“简并”现象
对波指数相同的TE波及TM波,有相同的截止波长, 因此有相同的传输条件。但TE、TM波具有不同的场结 构,这种具有不同场结构而有相同传输参量的现象, 称为“简并”。
矩形波导TE10模场分量的分布规律
(a) 场分量沿x轴的变化规律; (b) 场分量沿z轴的变化规律;
(c) 矩形波导横截面上的场分布; (d) 矩形波导纵剖面上的场分布. 北京邮电大学——《微波技术基础》
25
矩形波导的场结构
TE10模的场分布图
某一时刻TE10模完整的场分布如图所示,随时间的推 移,场分布图以相速 v p 沿传输方向移动。
微 波 与 天 线
Microwave and Antenna
主讲人:石丹
北京邮电大学 2010
矩形波导
北京邮电大学——《微波技术基础》
2
本节学习要点
掌握矩形波导中场分量求解方法
掌握矩形波导TE/TM模的截止波数、截止波长
掌握矩形波导中实现单模传输的条件
了解矩形波导场分布特点
北京邮电大学——《微波技术基础》
则有
2
d 2 X ( x) k x2 X ( x) 0 dx 2 d 2Y ( y ) 2 k y Y ( y) 0 dy 2
通解
k k k
2 x 2 y
2 c
hz ( x, y) ( Acos kx x B sin kx x)(C cos ky y D sin ky y )
单模传输条件
为什么要保 证单模传输?
通常矩形波导工作在TE10 单模传输情况,这是因为 TE10模容易实现单模传输 当工作频率一定时传输 TE10模的波导尺寸最小
若波导尺寸一定,则实现 单模传输的频带最宽
北京邮电大学——《微波技术基础》
18
矩形波导的单模传输
单模传输条件
TE11,TM11
传播常数
场沿z轴为行波,沿x和y为驻波
2 2 c 2
m 2 n 2 k k k ( ) ( ) a b
v0 kc 2 1 2
Ex ? E ? y H x ? H y ?
截止频率
f cmn
c
m 2 n 2 ( ) ( ) a b
j ex k 2 k y ( A cos k x x B sin k x x )( C sin k y y D cos k y y ) c e y j k x ( A sin k x x B cos k x x )(C cos k y y D sin k y y ) kc2
矩形波导TE10模的场分布图
北京邮电大学——《微波技术基础》
X ( x)
Y ( y)
5
矩形波导的场分布
TE模场分布求解
分析边界条件——金属四壁上切向电场为零!
E x |y 0, x(0,a ) 0
,
a>b
E x |y b, x(0,a ) 0 E y |x 0, y(0,b ) 0 E y |x a , y(0,b ) 0
分离变量法
hz ( x, y) X ( x)Y ( y)
1 d X ( x) 1 d Y ( y) 2 kc 0 2 2 X ( x) dx Y ( y ) dy
北京邮电大学——《微波技术基础》
4
2
2
矩形波导的场分布
TE模场分布求解
可以设
2
要使等式恒成立,前两项必须分别为常数
1 d X ( x) k x2 X ( x) dx 2 1 d Y ( y) 2 k y 2 Y ( y ) dy
电力线和磁力线相互正 交
24
北京邮电大学——《微波技术基础》
矩形波导的场结构
TE10模的场分布图
E y E0 sin x e j t z , H x E0 sin x e j t z a a 1 j t z Hz j E0 cos x e a a
3
矩形波导的场分布
TE模场分布求解
建立坐标系——以宽边 为x轴、短边为y轴
纵向磁场满足的波动方程 H z ( x, y, z) hz ( x, y)e j (t z )
,
a>b
2hz 2hz 2 kc2hz 0 2 y x k 2 k 2 2 c
北京邮电大学——《微波技术基础》
6
回忆——由纵向场求横向场
纵向场法——求横向场
无源区域麦克斯韦方程 (时谐场) H E t H E t
纵向场表示的横向场
kc2 k 2 2 k w
A0
m 0,1, 2
m kx a
9
北京邮电大学——《微波技术基础》
矩形波导的场分布
TE模场分布求解
m、n称为波指数
波型称为正规波
得到纵向磁场的最终解
m、n不能同时为零,为零时磁力线无法闭合
m n j ( t z ) H z Amn cos( x ) cos( y )e a b
简并发生在TE波与 TM波之间。
k 2 kc2 k 2 (
m 2 n 2 ) ( ) a b
相关文档
最新文档