八年级数学上册第13章全等三角形教案3新版华东师大版

合集下载

华师大版数学八年级上册第13章《全等三角形》教学设计

华师大版数学八年级上册第13章《全等三角形》教学设计

华师大版数学八年级上册第13章《全等三角形》教学设计一. 教材分析华师大版数学八年级上册第13章《全等三角形》是学生在学习了平面几何基本概念、三角形、四边形等知识后,进一步研究全等三角形的性质和判定方法。

全等三角形是几何中的重要概念,是解决几何问题的基础。

本章内容主要包括全等三角形的定义、性质、判定方法以及全等三角形的应用。

通过本章的学习,使学生掌握全等三角形的性质和判定方法,培养学生解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了平面几何基本概念、三角形、四边形等知识,具备一定的逻辑思维能力和空间想象能力。

但全等三角形的学习对于学生来说是一个新的挑战,因为全等三角形的性质和判定方法较为抽象,需要学生能够理解和运用。

此外,学生对于实际问题的解决能力也有待提高。

三. 教学目标1.理解全等三角形的定义和性质,掌握全等三角形的判定方法。

2.能够运用全等三角形的性质和判定方法解决实际问题。

3.培养学生的逻辑思维能力、空间想象能力和解决实际问题的能力。

四. 教学重难点1.全等三角形的定义和性质。

2.全等三角形的判定方法。

3.全等三角形在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探索全等三角形的性质和判定方法。

2.运用多媒体辅助教学,直观展示全等三角形的性质和判定方法。

3.采用小组合作学习,培养学生团队合作精神。

4.注重实践操作,让学生在动手实践中掌握全等三角形的性质和判定方法。

六. 教学准备1.多媒体教学设备。

2.全等三角形的教学课件。

3.全等三角形的练习题。

4.三角板、直尺、圆规等绘图工具。

七. 教学过程1.导入(5分钟)利用多媒体展示全等三角形的图片,引导学生思考:什么是全等三角形?全等三角形有哪些性质?2.呈现(10分钟)讲解全等三角形的定义和性质,通过示例演示全等三角形的判定方法。

3.操练(10分钟)学生分组讨论,运用全等三角形的性质和判定方法解决实际问题。

八年级数学上册第十三章全等三角形13.2三角形全等的判定-角边角教案新版华东师大版

八年级数学上册第十三章全等三角形13.2三角形全等的判定-角边角教案新版华东师大版

13.2 三角形全等的判定-角边角教学目标1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角”“角角边”条件.4.能运用全等三角形的条件,解决简单的推理证明问题.教学重点已知两角一边的三角形全等探究.教学难点灵活运用三角形全等条件证明.教学过程Ⅰ.提出问题,创设情境1.复习:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?两种:①定义;②S.A.S.2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课问题1:三角形中已知两角一边有几种可能?1.两角和它们的夹边.2.两角和其中一角的对边.问题2:三角形的两个内角分别是60°和40°,它们的夹边为4.5cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和其夹边对应相等的两个三角形全等(可以简写成“角边角”或“A.S.A.”).问题3:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?D C AB FE证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°∠A =∠D ,∠B =∠E∴∠A +∠B =∠D +∠E∴∠C =∠F在△ABC 和△DEF 中∴△ABC ≌△DEF (A.S.A.).两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”). 小试牛刀:例:如图,∠ABC =∠DCB ,∠ABD =∠DCA ,试说明:AB =DC .解:因为∠ABC =∠DCB ,∠ABD =∠DCA ,所以∠ABC -∠ABD =∠DCB -∠DCA ,即∠DBC =∠ACB ,∵∠ABC =∠DCB ,BC =CB (公共边),∠ACB =∠DBC ,∴△ABC ≌△DCB (A.S.A )∴AB =DC (全等三角形的对应边相等).试一试:如图,D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证:AD =AE .【解析】AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.证明:在△ADC 和△AEB 中所以△ADC ≌△AEB (A.S.A.)所以AD =AE .Ⅲ.随堂练习(一)课本练习1.2.(二)补充练习图中的两个三角形全等吗?请说明理由.50︒50︒45︒45︒DC A B (1)29︒29︒DC A B (2)E【答案】图(1)中由“A .S.A.”可证得△ACD ≌△ACB .图(2)由“A .A.S.”可证得△ACE ≌△BDC . Ⅳ.课时小结至此,我们有五种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边角边(S.A.S.)角边角(A.S.A.)角角边(A.A.S.)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.Ⅴ.作业1.课本习题。

八年级数学上册第13章全等三角形教案1新版华东师大版word版本

八年级数学上册第13章全等三角形教案1新版华东师大版word版本

全等三角形教课目标帮助学生总结一般三角形全等的判断条件,使他知识与技术们自觉运用各种全等判断法进行说理;经过一般三角形全等判断条件的归纳,帮助学生认识事物间存在着的因果关系和限制的关系 .经过一般三角形全等判断条件的归纳,帮助学生过程与方法. 习题分认识事物间存在着的因果关系和限制的关系析与解答先由学生完成,教师解答疑点。

经过一般三角形全等判断条件的归纳,帮助学生感情态度与价值认识事物间存在着的因果关系和限制的关系.观教课要点让学生鉴别三角的哪些元素能用来确立三角形的形状与大小,因此可用来判断三角形全等.教课难点灵巧应用各种判断法鉴别全等三角形教课内容与过程教法学法设计一、基础知识复习1.全等三角形1、全等三角形的看法及其性质1)全等三角形的定义:能够完整重合的两个三角形叫做全等角形。

面向全体学生提出相关的问题。

明确要研究,探究的问题是什么,怎三样去研究和谈论。

.2) . 全等三角形性质:例.如图 ,≌,BC的延长线交DA 于 F,交DE 于 G,留给学生必定的思虑和回顾知识的时间。

为学生创建表,, 求、现才干的平台。

的度数 .二 . 导入课题,研究知识:本节课我们来复习全等三角形的相关知识三. 归纳知识,培育能力:2.全等三角形的判断方法1)、两边和夹角对应相等的两个三角形全等(SAS )2)、两角和夹边对应相等的两个三角形全等( ASA )3)、两角和夹边对应相等的两个三角形全等( AAS )4)、三边对应相等的两个三角形全等( SSS )5 )、一条直角边和斜边对应相等的两个直角三角形全等( H L )四. 运用知识,解析解题:例:如图,在中,∠ACB=90?,D 是 AC上一点, AE⊥BD,交 BD的延长线于点E,又AE= BD,求证: BD是∠ ABC的均分线。

五 . 课堂练习:请见教材六 . 课后小结:《全等三角形》复习基础知识复习由学生们以成语接龙的方式完成。

教师做最后增补。

教课时应尊敬学生已有的经验,鼓舞学生探究,合时浸透类比的方法和转变的数学思想。

华东师大版八年级上册数学13章 《全等三角形》教案3

华东师大版八年级上册数学13章 《全等三角形》教案3

课题命题【学习目标】1.了解命题的概念以及命题的构成,能把命题改为“如果……,那么……”的形式;2.知道真命题和假命题,会用举例法或画图法等判断一个命题的真假性;3.在学习的过程中体会数学的逻辑思维能力和有条理的推理能力.【学习重点】命题的概念,区分命题的条件和结论.【学习难点】区分命题的条件和结论,会把一些简单命题改写成“如果……,那么……”的形式.行为提示:创景设疑,帮助学生知道本节课学什么.知识链接:1.平行线的性质定理和判定定理;2.对顶角的性质和定义;3.直角的概念和判定.行为提示:认真阅读课本,独立完成“自学互研”中的题目.在探究练习的指导下,自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.学法指导:紧扣“判断一件事情的句子”,有判断语句的是命题,无判断语句的不是命题.学法指导:每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项.知识链接:1.有一些命题的叙述,其条件和结论并不十分明显,我们可以先把它改写成“如果……,那么……”的形式,再找出它的条件和结论;2.命题的条件部分有时可用“已知……”或“若……”等形式叙述,结论部分可用“求证……”或“则……”的形式叙述.情景导入生成问题相信我能行:判断正误:(1)如果两个角是对顶角,那么这两个角相等;(2)两直线平行,同位角相等;(3)同旁内角相等,两直线平行;(4)相等的角是对顶角;(5)直角都相等.自学互研生成能力知识模块一命题的定义阅读教材P53~P55,完成下面的内容:定义:表示判断的语句叫做命题.反之,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.例如:(1)你喜欢数学吗?(2)作线段AB=CD.范例:判断下列语句是不是命题.(1)两点之间,线段最短;(是)(2)请画出两条互相平行的直线;(不是)(3)过直线外一点作已知直线的垂线;(不是)(4)如果两个角的和是90°,那么这两个角互余.(是)变例:下列句子是命题吗?(1)如果两条直线都和第三条直线垂直,那么这两条直线互相平行;(是)(2)若x=-1,则x2+1=0;(是)(3)牛会拉车;(是)(4)可能没有最大的实数.(不是)知识模块二命题的构成观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)如果两个角的和是180°,那么这两个角是邻补角;(4)等式两边都加同一个数,结果仍是等式.归纳:每个命题都是由条件和结论两部分组成,条件是已知事项,结论是由已知事项推出的事项.命题常写成“如果……,那么……”的形式,这时,“如果”后接的部分是条件,“那么”后接的是结论.范例:下列语句是命题吗?若是,请写成“如果……,那么……”的形式.(1)两条直线被第三条直线所截,同旁内角互补;是命题.如果两条直线被第三条直线所截,那么同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;是命题.如果等式两边都加同一个数,那么结果仍是等式;(3)互为相反数的两个数相加得0;是命题.如果两个数互为相反数,那么这两个数相加得0;(4)同旁内角互补;是命题.如果两个角是同旁内角,那么这两个角互补;(5)对顶角相等.是命题.如果两个角互为对顶角,那么这两个角相等.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.知识模块三命题的分类真命题:如果条件成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果条件成立,不能保证结论一定成立,这样的命题叫做假命题.范例:下列命题是真命题还是假命题?(1)两条直线被第三条直线所截,同旁内角互补;(假命题)(2)等式两边都加同一个数,结果仍是等式;(真命题)(3)互为相反数的两个数相加得0;(真命题)(4)同旁内角互补;(假命题)(5)对顶角相等.(真命题)交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一命题的定义知识模块二命题的构成知识模块三命题的分类检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________课题全等三角形【学习目标】1.了解全等三角形的概念,掌握全等三角形的性质;2.能正确表示全等三角形,能找出全等三角形的对应元素;3.通过全等三角形的学习,认识生活和数学的关系,激发学生学习数学的兴趣.【学习重点】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算.【学习难点】正确寻找全等三角形的对应元素及用全等三角形的性质解决问题.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.学法指导:找对应边、对应角的方法:1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;3.有公共边的,公共边是对应边;4.有公共角的,公共角是对应角;5.有对顶角的,对顶角一定是对应角;6.两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.学法指导:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其他全等图形的重要工具.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.情景导入生成问题观察下列图案,找出这些图案中形状、大小相同的图形.自学互研生成能力知识模块一全等三角形的定义及表示方法阅读教材P59,完成下面的内容:1.能够完全重合的两个三角形叫全等三角形.2.两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.“全等”用“≌”表示,读作全等于.3.在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如右图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点__D__,点B和点__E__,点C和点__F__是对应顶点;AB和__DE__,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.范例:如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.解:对应边:AN与AM,BN与CM;对应角:∠BAN与∠CAM,∠ANB与∠AMC.知识模块二全等三角形的性质归纳:全等三角形的对应边相等;全等三角形的对应角相等.范例:已知:如图所示,在Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵在Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=55°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△ABD≌△EBC.∴∠ADB=∠ECB=55°.仿例:如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,求∠BAC的度数.解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC-∠CAD=∠DAE-∠CAD,即∠CAE=∠BAD=40°,∴∠BAC=∠BAE-∠CAE=120°-40°=80°,即∠BAC=80°.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一全等三角形的定义及表示方法知识模块二全等三角形的性质检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________课题全等三角形的判定条件【学习目标】1.让学生掌握寻找两个全等三角形的对应边、对应角的规律;2.探索全等三角形的判定条件,体会如何探索研究问题,培养合作精神,体验分类思想.【学习重点】掌握寻找两个全等三角形的对应边、对应角的规律.【学习难点】寻找全等三角形的判定条件.行为提示:创设情境,引导学生探究新知.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.学法指导:只给一个条件(一组对应边相等或一组对应角相等);(1)只给一个角:(2)只给一条边:学法指导:给出两个对应角相等的条件:(1)两内角:(2)两边:(3)一边一内角:情景导入生成问题1.情境引入问题:“五一”联欢会,为活跃气氛,班委会想让班级每个同学自制一面小彩旗.只有一面样旗,怎样才能使全班的彩旗形状、大小完全相同呢?也就是说需测量三角形样旗的哪些量呢?2.温故知新(1)什么叫全等三角形?能够完全重合的两个三角形叫全等三角形.(2)全等三角形有什么性质?对应边相等,对应角相等.自学互研生成能力知识模块全等三角形的判定条件阅读教材P59~P61,完成下面的内容:问题:如何判定两个三角形全等?如果两个三角形的三条边、三个角分别对应相等,那么这两个三角形全等.思考:(1)要判定两个三角形全等,能否再减少一些条件?(2)对两个三角形来说,六个元素中至少要有几个元素分别对应相等,两个三角形才会全等呢?探究一:如果只知道两个三角形有一组元素对应相等(边或角),这两个三角形会全等吗?1.试一试:(1)画一个有一角为60°的三角形,与同桌所画的三角形对比一下,观察它们是否全等?(2)再画一个有一条边为5cm的三角形,结果怎样呢?2.填表:课本P60表格;3.发现:两个三角形只有一组对应相等的元素(边或角),那么这两个三角形不一定全等.探究二:两个三角形有两组元素对应相等的情况呢?1.试一试:分别画出相应三角形与同桌所画的三角形对比一下,观察它们是否全等?行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.(1)三角形的内角分别为30°和70°;(2)三角形的两边分别是5cm和3cm;(3)三角形的一个内角为30°,一边长为3cm.2.填表:课本P61表格;3.发现:两个三角形只有两组对应相等的元素(边或角),那么这两个三角形不一定全等.探究三:两个三角形有三组元素对应相等,有几种可能的情况?解:有4种情形:三个角对应相等;三条边对应相等;两边和一角对应相等;两角和一边对应相等.范例:如图,△ABC ≌△ADE ,且∠CAD =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.解:∵△ABC ≌△ADE ,∴∠DAE =∠BAC =12(∠EAB -∠CAD)=12(120°- 10°)=55°.∴∠DFB =∠FAB +∠B =∠FAC +∠CAB +∠B =10°+55°+25°=90°, ∠DGB =∠DFB -∠D =90°-25°=65°.变例:已知△ABC ≌△ADE ,其中∠CAE =40°,∠C =50°,则DE 与AC 有何位置关系?请说明理由. 解:AC ⊥DE.理由:∵△ABC ≌△ADE ,∴∠E =∠C =50°, ∵∠CAE +∠1+∠E =180°, ∠CAE =40°, ∴∠1=90°,∴AC ⊥DE.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块 全等三角形的判定条件检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________课题 线段垂直平分线【学习目标】1.通过尺规作图,理解线段垂直平分线的概念,探究线段垂直平分线的性质和判定; 2.线段垂直平分线的性质和判定的运用;3.培养学生运用简练、准确的语言表达作图方法与书写解答或证明过程的能力. 【学习重点】探究线段垂直平分线的性质.【学习难点】线段垂直平分线的性质和判定的联系与区别.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.知识链接:这里出现了线段的和与线段的差,可以引入未知数,利用二元一次方程组解答较为简单.情景导入生成问题如图,△ABC与△DEF关于直线MN对称.则点B关于直线MN的对称点是点E.我们连结BE,与直线MN相交于点H,量一量∠MHB的大小以及线段BH、EH的长度.你发现线段BE与直线MN有什么关系?直线MN垂直于线段BE,且平分线段BE,我们说直线MN垂直平分线段BE,或者说直线MN是线段BE的垂直平分线.下面我们就一起来研究线段的垂直平分线.自学互研生成能力知识模块一探究线段垂直平分线的性质定理和判定定理阅读教材P94~P95,完成下面的内容:由情景导入得出:垂直且平分一条线段的直线叫做这条线段的垂直平分线.探究:如右图①:直线l 是线段AB 的垂直平分线,点D 是直线l 上任意一点,那么DA =DB 吗?分析:因为直线l 是线段AB 的垂直平分线,所以AC =BC ,∠ACD =∠BCD ,又CD =CD ,所以△ACD ≌△BCD ,所以DA =DB.反之,如右图②:如果DA =DB ,那么点D 在线段AB 的垂直平分线上吗?分析:方法(1):取AB 的中点C ,连结CD ,因为AC =BC ,CD =CD ,AD =BD ,所以△ACD ≌△BCD ,所以∠ACD =∠BCD ,又∠ACD +∠BCD =180°,所以∠ACD =∠BCD =90°.所以AB ⊥CD ,点D 在线段AB 的垂直平分线上.方法(2):过点D 作DC ⊥AB 于点C ,所以∠ACD =∠BCD =90°.又因为CD =CD ,AD =BD ,所以△ACD ≌△BCD(H .L .),所以AC =BC ,所以点C 是AB 中点,点D 在线段AB 的垂直平分线上。

新华东师大版八年级数学上册《13章 全等三角形 13.2 三角形全等的判定 角边角》优质课教案_1

新华东师大版八年级数学上册《13章 全等三角形  13.2 三角形全等的判定  角边角》优质课教案_1

13.2.5 边边边【教学目标】:知识与技能:掌握三角形全等的“边边边”的条件;过程与方法:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.通过对问题的共同探讨,培养学生的协作精神.情感态度与价值观:让学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、•交流等环节,从而获得正确的学习方法和享受良好的情感体验.让学生体验数学来源于生活,又服务于生活的辩证思想.教学重点:三角形全等的条件.教学难点:寻求三角形全等的条件.教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的基本知识后的一节课、只要实际操作不出错、学生一定能学好,根据之前的学情、学好这一节课有把握。

课前准备 全等三角形纸片、三角板、【教学过程】:一、创设情境,引入新课[师], 回忆前面研究过的全等三角形. 已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.[生]图中相等的边是:AB=A ′B 、BC=B ′C ′、AC=A ′C .相等的角是:∠A=∠A ′、∠B=∠B ′、∠C=∠C ′.二 、探究:做一做:已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?学生活动:1.讨论作法.2.比较、验证结果.3.探究、发现、总结规律.C 'B 'A 'C B A教师活动:教师可参与到学生的制作与讨论中,及时发现问题,因势利导.活动结果展示:1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A /B /C /,使AB=A /B /、AC=A /C /、BC=B /C /.将△A /B /C /剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”.[师]用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.请看例题.三、例题[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .[师生共析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等.证明:因为D 是BC 的中点所以BD=DC在△ABD 和△A CD 中 (AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩公共边)所以△ABD ≌△ACD (SSS ).生活实践介绍:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.四、课时小结本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.五、布置作业必做题:课本P73页练习的第1,选做题:第2题六、板书设计:【教学反思】。

2019八年级数学上册 第13章 全等三角形 13.3 等腰三角形教案 (新版)华东师大版

2019八年级数学上册 第13章 全等三角形 13.3 等腰三角形教案 (新版)华东师大版
等腰三角形的判定和性质
四.运用知识,分析解题:
问题1已知等腰三角形的顶角等于低角的4倍,求这个等腰三角形各内角的度数.
问题2.已知等腰三角形的一边长为4㎝,另一边长为9㎝,求它的周长.
问题3如果一个三角形的两个内角分别为70°和40 °,那么这个三角形是什么三角形?为什么?
问题4如 图,已知B D=CE,
∠BDC=∠CEB.
求证:∠ABC=∠ACB.
问题5如图,在△ABC中,AB=AC,
DE∥BC,DE交AB于点D,交AC于点E.
求证:AD=AE.
五.课堂练习:请见教材和练习册
六.课后小结:等腰三角形的知识
七.课后作业:复印给学生.
在复习基础知识的基础上运用知识解决问题.
将知识和实际问题相结合.
教学反思
等腰三角形
教学目标
知识与技能
进一步理解等腰三角形的判定方法和性质,并能够运用灵活 的解决相关问题
过程与方法
了解情况,发现问题,研 究讨论,运用知识,解决问题,提高能 力
情感态度与价值观
培养学生良好的学习品质.
教学重点
等腰三角形的判定和性质
教学难点
正确 的利用知识解决问题.
教学 内容与过程
教法学法设计
.
6.判定等腰三角形的方法有.
二.导入课题,研究知识:
为了更好的理解和掌握等腰三角形的判定方法和性质,灵活的运用知识解答相关的问题本节课 我们来复习这一知识.
面向全体学生提出相关的问题。明确要研究,探索的问题是什么,怎样去研究和讨论。.
留给学生一定的思考和回顾知识的时间。
为学生创设表现才华的平台。
三.归纳知识,培养能力:
一.复习提问,回顾知识,请看 下面的问题:

华师大版八年级上册第13章全等三角形复习课教学设计

华师大版八年级上册第13章全等三角形复习课教学设计
-邀请学生分享自己在学习全等三角形过程中的收获和感悟。
-对学生的表现进行点评,强调学习全等三角形的重要性。
2.教学目的:
-帮助学生巩固所学知识,形成知识体系。
-培养学生的归纳总结能力,提高学生的几何素养。
-激发学生学习数学的兴趣,增强学生的自信心。
五、作业布置
为了巩固学生对全等三角形知识的掌握,提高学生的应用能力和解题技巧,特布置以下作业:
1.强调作业完成的时间和质量,培养学生按时完成作业的良好习惯。
2.鼓励学生独立思考,遇到问题可以与同学讨论,培养合作学习能力。
3.注重作业反馈,教师应及时批改作业,给予评价和建议,帮助学生提高。
2.教学目的:
-激发学生的学习兴趣,引导学生关注全等三角形在实际生活中的应用。
-唤起学生对全等三角形相关知识点的回忆,为新课的学习做好铺垫。
(二)讲授新知
1.教学活动设计:
-对全等三角形的定义进行复习,强调全等三角形的含义和性质。
-详细讲解全等三角形的判定方法,如SSS、SAS、ASA、AAS等,结合具体实例进行分析。
-鼓励学生在课后进行自主学习和拓展阅读,提高学生的自主学习能力,拓宽知识视野。
四、教学内与过程
(一)导入新课
1.教学活动设计:
-通过展示一些生活中常见的全等三角形图案,如风筝、自行车三角架等,引起学生对全等三角形的好奇心和兴趣。
-提问:“同学们,你们知道这些图案有什么共同特点吗?它们在几何学中有什么特别之处?”
-通过小组讨论、合作解题,培养学生的团队协作能力和交流表达能力,同时也能够在讨论中发现问题、解决问题。
4.创设问题情境,激发学生的探究欲望。
-教学中应设计具有挑战性的问题,引导学生主动探究,培养学生的创新思维和解决问题的能力。

新华东师大版八年级数学上册《13章 全等三角形 13.2 三角形全等的判定 边角边》优质课教案_5

新华东师大版八年级数学上册《13章 全等三角形  13.2 三角形全等的判定  边角边》优质课教案_5

三角形全等的判定(SAS)教学设计教学内容:本节课主要内容是探索三角形全等的条件(SAS),并利用SAS来证明两三角形全等.及确定两三角形中两角或两边相等。

教学目标:1.知识与技能:探索并掌握“边角边”判定两个三角形全等的方法.2.过程与方法:经历探究三角形全等的判定方法的过程,学会解决简单问题的推理能力.3.情感、态度与价值观:经历画图,剪纸等方法探索两三角形全等的过程,培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键教学重点:探索三角形全等的条件及判定方法的归纳教学难点:灵活运用三角形全等解决实际问题.教学关键:在实践、观察中正确选择判定三角形全等的方法.教学方法:采用“操作──实验”的教学方法,让学生有一个直观的感受,并且小组合作探究,讲练结合。

突破方法:通过主动动手探究,分析,归纳获得数学结论,注重基础性,过程性。

通过一些问题的解决,感受数学知识的广泛运用。

教学设想:以前节课的全等三角形和全等三角形的判定方法(SSS)为知识准备,提出问题。

在SAS识别方法的探索中,引导学生动手操作,提出一些启发性的问题,使学生自主探索并总结,规范学生书写,并且能够灵活运用所学知识解决实际问题。

教学上安排一课时,多媒体辅助教学。

教具准备:多媒体、直尺.教学过程:一、回顾:判定两个三角形全等至少需要三个条件。

有四种情况:三角对应相等,三边对应相等,两边一角对应相等,两角一边对应相等。

三角对应相等不能判定两个三角形全等,三边对应相等可以判定两个三角形全等.本节课我们探讨两条边和一个角分别对应相等的情况。

二、新知展现:1.提出问题:如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?--这是本节课我们要探讨的课题.如果已知一个三角形的两边及一角,那么有几种可能的情况呢?每一种情况得到的三角形都全等吗?应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不夹在两边的中间,形成两边一对角.2.解决问题:探究1:(1)已知两条线段和一个角,已这两条线段为边,以这个角为这两条边的夹角,画一个三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形
教学目标
知识与技能
帮助学生总结一般三角形全等的判定条件,使他们自觉运用各种全等判定法进行说理;通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系.
过程与方法
通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系.习题分析与解答先由学生完成,教师解答疑点。

情感态度与价值观 通过一般三角形全等判定条件的归纳,帮助学生认识事物
间存在着的因果关系和制约的关系.
教学重点
让学生识别三角的哪些元素能用来确定三角形的形状与大小,因而可用来判定三角形全等.
教学难点 灵活应用各种判定法识别全等三角形
教学内容与过程
教法学法设计 一、基础知识复习 1.全等三角形
1、全等三角形的概念及其性质
1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 。

2).全等三角形性质:
例.如图, ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于
G,
105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数. 二.导入课题,研究知识:
本节课我们来复习全等三角形的有关知识
面向全体学生提出相关的问题。

明确要研究,探索的问题是什么,怎样去研究和讨论。

.
留给学生一定的思考和回顾知识的时间。

为学生创设表现才华的平台。

三.归纳知识,培养能力: 2.全等三角形的判定方法
1)、两边和夹角对应相等的两个三角形全等( SAS ) 2)、两角和夹边对应相等的两个三角形全等 ( ASA ) 3)、两角和夹边对应相等的两个三角形全等 ( AAS ) 4)、三边对应相等的两个三角形全等 ( SSS ) 5)、一条直角边和斜边对应相等的两个直角三角形全等
( H L )
四.运用知识,分析解题: 例:如图,在ABC 中,∠ACB=90˚,D 是AC 上一点,AE ⊥BD ,交BD 的延长线于点E ,又AE=
2
1
BD ,求证:BD 是∠ABC 的平分线。

五.课堂练习:请见教材
六.课后小结:《全等三角形》复习 七.课后作业:. 复印给学生.
基础知识复习由学生们以成语接龙的方式完成。

教师做最后补充。

教学时应尊重学生已有的经验,鼓励学生探索,适时渗透类比的方法和转化的数学思想。

树立辩证唯物主义思想。

培养学生刻苦学习的精神。

方法由学生回忆,例题分析由学生完成后,书写解题过程
教学反思
D
E
C
B
A。

相关文档
最新文档