万有引力常考题型剖析

合集下载

高中物理必修2 第六章万有引力易错题型详解.doc

高中物理必修2 第六章万有引力易错题型详解.doc

【万有引力】1 天文学史、万有引力定律、割补法及特殊结论1、(坤哥练习例3)如图所示,在半径R=20cm、质量M=168kg的均匀铜球中,挖去一球形空穴,空穴的半径为R的一半,并且跟铜球相切,在铜球外有一质量m=1kg、体积可忽略不计的小球,这个小球位于连接铜球球心跟空穴中心的直线上,并且在空穴一边,两球心相距是d=2m,试求它们之间的相互吸引力。

考点:万有引力定律及其应用分析:用没挖之前球对质点的引力,减去被挖部分对质点的引力,就是剩余部分对质点的引力.解答:完整的铜球跟小球m之间的相互吸引力为,这个力F是铜球M的所有质点和小球m的所有质点之间引力的合力,它应该等于被挖掉球形空穴后的剩余部分与半径为的铜球对小球m的吸引力的和,即F= F1+ F2.式中F1是挖掉球形空穴后的剩余部分对m的吸引力,F2是半径为的小铜球对m的吸引力.因为所以挖掉球穴后的剩余部分对小球的吸引力为:2、题目(坤哥练习B2):2题目:如图所示,一个质量为的匀质实心球,半径为,如果从球上挖去一个直径为的球, 放在相距为的地方.求下列两种情况下,两球之间的引力分别是多大,1.从球的正中心挖去;2.从与球面相切处挖去.并指出在什么条件下,两种计算结果相同.考点:万有引力定律分析:3、题目(坤哥练习B3):(1)设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比( )A. 地球与月球间万有引力将变大B. 地球与月球间万有引力将变小C. 月球绕地球运动的周期将变长D. 月球绕地球运动周期将变短考点:[万有引力定律及其应用, 人造卫星的加速度、周期和轨道的关系]分析:根据万有引力定律,表示出地球与月球间万有引力,根据地球和月球质量的变化求出地球与月球间万有引力的变化.研究月球绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式表示出周期,再根据已知量找出周期的变化.解答:设月球质量为m,地球质量为M,月球与地球之间的距离为r,根据万有引力定律得:地球与月球间的万有引力由于不断把月球上的矿藏搬运到地球上,所以m减小,M增大。

06 万有引力与航天高考真题分项详解(解析版)

06 万有引力与航天高考真题分项详解(解析版)

十年高考分类汇编专题06万有引力与航天(2011-2020)目录题型一、考查万有引力定律、万有引力提供物体重力的综合类问题 ............................................ 1 题型二、考查万有引力提供卫星做圆周运动向心力的相关规律 .................................................... 6 题型三、考查飞船的变轨类问题 ...................................................................................................... 18 题型四、考查万有引力与能量结合的综合类问题 .......................................................................... 20 题型五、考查双星与三星系统的规律 .............................................................................................. 21 题型六、关于开普勒三定律的相关考查 .......................................................................................... 22 题型七、天体运动综合类大题 . (25)题型一、考查万有引力定律、万有引力提供物体重力的综合类问题1.(2020全国1).火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A. 0.2B. 0.4C. 2.0D. 2.5【考点】万有引力在非绕行问题中的应用 【答案】B【解析】设物体质量为m ,在火星表面所受引力的大小为F 1,则在火星表面有:1121M mF GR 在地球表面所受引力的大小为F 2,则在地球表面有:2222M mF GR 由题意知有:12110M M ;1212R R故联立以上公式可得:21122221140.4101F M R F M R ==⨯=。

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力与航天常有题型及答题技巧及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1.如下图,宇航员站在某质量散布平均的星球表面一斜坡上P 点沿水平方向以初速度v0抛出一个小球,测得小球经时间 t 落到斜坡上另一点 Q,斜面的倾角为α,已知该星球半径为 R,万有引力常量为 G,求:(1)该星球表面的重力加快度;(2)该星球的质量。

2v0 tan2v0 R2tan【答案】(1)g(2 )t Gt【分析】【剖析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,依据平抛运动的规律求出星球表面的重力加快度;依据万有引力等于重力争出星球的质量;【详解】(1)依据平抛运动知识可得y 1gt22gttanv0t2v0x2v0 tan解得 gtGMm(2)依据万有引力等于重力,则有R2mggR22v0 R2tan解得MG Gt2.一宇航员站在某质量散布平均的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加快度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)v2v0 R t2πRGt t【分析】(1) 依据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加快度: g 2v0.tGMm(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg得:M gR 22v0 R2G Gt由于V 4 R 33则有:M3v0V2πRGtR2(3)重力供给向心力,故该星球的第一宇宙速度v2mg mR2v0R v gRt【点睛】此题主要抓住在星球表面重力与万有引力相等和万有引力供给圆周运动向心力,掌握竖直上抛运动规律是正确解题的重点.3.经过逾 6 个月的飞翔,质量为 40kg 的洞察号火星探测器终于在北京时间2018 年 11 月27 日 03: 56 在火星安全着陆。

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36R T g π=(2)0133t gRω-V =【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅= 地球表面的物体受到重力等于万有引力2Mmmg G R = 联立解得36R T gπ= ; (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π, 所以1000222133t gT RV ===πππωωωω---;3.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】 【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.牛顿说:“我们必须普遍地承认,一切物体,不论是什么,都被赋予了相互引力的原理”.任何两个物体间存在的相互作用的引力,都可以用万有引力定律122=m m F Gr 万计算,而且任何两个物体之间都存在引力势能,若规定物体处于无穷远处时的势能为零,则二者之间引力势能的大小为12=-p m m E Gr,其中m 1、m 2为两个物体的质量, r 为两个质点间的距离(对于质量分布均匀的球体,指的是两个球心之间的距离),G 为引力常量.设有一个质量分布均匀的星球,质量为M ,半径为R . (1)该星球的第一宇宙速度是多少?(2)为了描述电场的强弱,引入了电场强度的概念,请写出电场强度的定义式.类比电场强度的定义,请在引力场中建立“引力场强度”的概念,并计算该星球表面处的引力场强度是多大?(3)该星球的第二宇宙速度是多少?(4)如图所示是一个均匀带电实心球的剖面图,其总电荷量为+Q (该带电实心球可看作电荷集中在球心处的点电荷),半径为R ,P 为球外一点,与球心间的距离为r ,静电力常量为k .现将一个点电荷-q (该点电荷对实心球周围电场的影响可以忽略)从球面附近移动到p 点,请参考引力势能的概念,求电场力所做的功.【答案】(1)1GMv R=2)2=M E G R '引;(3)22GMv R=4)11()W kQq r R=-【解析】 【分析】 【详解】(1)设靠近该星球表面做匀速圆周运动的卫星的速度大小为1v ,万有引力提供卫星做圆周运动的向心力212v mMG m R R= 解得:1GMv R=; (2)电场强度的定义式F E q=设质量为m 的质点距离星球中心的距离为r ,质点受到该星球的万有引力2=MmF Gr引 质点所在处的引力场强度=F E m引引 得2=M E Gr引 该星球表面处的引力场强度'2=ME GR引 (3)设该星球表面一物体以初速度2v 向外抛出,恰好能飞到无穷远,根据能量守恒定律22102mMmv G R-=解得:2v =; (4)点电荷-q 在带电实心球表面处的电势能1P qQE k R=- 点电荷-q 在P 点的电势能2P qQE kr=- 点电荷-q 从球面附近移动到P 点,电场力所做的功21()P P W E E =-- 解得:11()W kQq r R=-.3.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R1,周期为T1,已知万有引力常量为G。

(物理)高考必刷题物理万有引力定律的应用题含解析

(物理)高考必刷题物理万有引力定律的应用题含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。

万有引力题型总结

万有引力题型总结
万有引力是一种基本的物理力量,负责维持着宇宙中所有物体的运动和分布。

在学习物理学的过程中,我们经常需要掌握和运用万有引力的知识。

以下是一些常见的万有引力题型总结。

1. 引力的计算:当两个物体之间存在引力时,我们需要计算它们之间的引力大小。

这个计算公式为F=G*m1*m2/r^2,其中F表示引力大小,G为万有引力常量,m1和m2分别为两个物体的质量,r为它们之间的距离。

2. 引力的方向:引力的方向是指物体之间的引力作用方向。

根据万有引力定律,引力的方向总是沿着两个物体之间的连线方向,且指向另一个物体。

3. 引力的合成:当一个物体同时受到多个物体的引力时,它们之间的引力会合成成一个合力。

我们可以使用合力公式F合=√
(F1^2+F2^2+F3^2+...)来计算它们的合力大小和方向。

4. 行星运动的计算:对于行星绕太阳的运动,我们需要使用开普勒定律。

其中第一定律指出,行星绕太阳的轨道是一个椭圆,太阳在椭圆的一个焦点上;第二定律指出,行星在轨道上的速度是不断变化的,与它距离太阳的距离成反比;第三定律指出,行星公转周期的平方与它距离太阳的距离的立方成正比。

5. 万有引力与万有引力场:万有引力是一种直接作用于物体之间的力量,而万有引力场则是一种场量,描述了某一点处的引力大小和方向。

我们可以使用引力场公式g=G*m/r^2来计算某一点处的引力
场大小和方向。

以上就是一些常见的万有引力题型总结。

掌握这些知识和技巧,可以更好地理解和应用万有引力的原理。

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月. 【答案】(1)22324gR T r π= (2)22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)6T =2)21t gπ=【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅= 地球表面的物体受到重力等于万有引力2MmmgG R = 联立解得6T =;(2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π, 所以10002222133t gT R===ππππωωωω---;6.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。

万有引力知识与例题总结分解

万有引力定律与航天万有引力定律及其应用 知识简析 一. 万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的大小与 成正比,与它们之间 成反比.2.公式:F = ,其中G = N·m 2/kg 2,叫引力常量. 3.适用条件:公式适用于 间的相互作用.当两物体间的距离远大于物体本身的大小时,物体可视为质点;均匀的球体可视为质点,r 是 间的距离;一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到 间的距离. 例、对于万有引力定律的数学表达式F =2R mGM ,下列说法正确的是( ) A.公式中G 为引力常数,是人为规定的 B.r 趋近于零时,万有引力趋于无穷大 C.m 1、m 2之间的万有引力总是大小相等,与m 1、m 2的质量是否相等无关 D.m 1、m 2之间的万有引力总是大小相等方向相反,是一对平衡力 二、万有引力和重力重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G221rm m , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r+)2·g 0 (g 0为地表重力加速度) 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有 F =F 向+m 2g ,所以m 2g=F 一F 向=G 221rm m -m 2R ω自2因地球目转角速度很小G 221r m m » m 2R ω自2,所以m 2g= G 221rm m假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G 221rm m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13Gm R ,比现在地球自转角速度要大得多. 三.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm G R 得g=2MG R ,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =⨯四.天体质量和密度的计算(1)测出卫星绕中心天体做匀速圆周运动的半径r 和周期T ,由G Mm r 2=m (2πT)2r ,可得第1课天体质量为:M =4π2r 3GT2.该中心天体密度为:ρ=M V =M 43πR 3=3πr 3GT 2R 3(R 为中心天体的半径).当卫星沿中心天体表面运行时,r =R ,则ρ=3πGT2.(2)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G,天体密度ρ=M V =M 43πR 3=3g4πGR.规律方法 1、万有引力定律的基本应用【例1】如图所示,在一个半径为R 、质量为M 的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d 的质点m 的引力是多大?【例2】某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以加速度a =½g 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为90 N 时,求此时卫星距地球表面有多远?(地球半径R =6.4×103km,g 取10m/s 2)【例3】登月火箭关闭发动机在离月球表面112 km 的空中沿圆形轨道运动,周期是120.5 min,月球的半径是1740 km,根据这组数据计算月球的质量和平均密度.【例4】一个宇航员在半径为R 的星球上以初速度v 0竖直上抛一物体,经ts 后物体落回宇航员手中.为了使沿星球表面抛出的物体不再落回星球表面,抛出时的速度至少为多少?【例5】中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到它的自转周期为T =130s .问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解?(计算时星体可视为均匀球体,万有引力常量G =6.67×10-11m 3/kg ·s 2)6、已知下面的哪组数据,可以算出地球的质量M(引力常量G 为已知) ( ) A 月球绕地球运动的周期T 及月球到地球中心的距离R B 地球绕太阳运行周期T 及地球到太阳中心的距离R C 人造卫星在地面附近的运行速度V 和运行周期T D 地球绕太阳运行速度V 及地球到太阳中心的距离R3、据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200 km,运用周期127分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力常考题型剖析
一、v、ω、T、a n与运行半径r关系问题
例1一个近地卫星的线速度、角速度、周期和向心加速度分别为v0、ω0、T0和g0,通过对卫星点火加速,卫星到达了离地球表面为R的轨道上,求卫星这时的线速度v、角速度ω、周期T和向心加速度的大小。

解析:当卫星绕地球做近轨道做圆周运动时,其轨道半径为R,加速后卫星的新轨道的半径为2R。

由∝,得,由∝,得
由∝,得,由∝,得。

点拨:用万有引力处理天体问题的基本方法是:把天体的运动看成圆周运动,其做圆周运动的向心力由万有引力提供。

应用时可以根据实际情况选用适当的公式进行计算。

二、求天体的质量与密度问题
例2(广东)已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g。

某同学根据以上条件,提出一种估算地球质量M的方法:
同步卫星绕地球作圆周运动,由得
(1)请判断上面的结果是否正确,并说明理由。

如不正确,请给出正确的解法和结果。

(2)请根据已知条件再提出两种估算地球质量的方法并解得结果。

解析:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略。

正确的解法和结果是:由得
(2)方法一:对月球绕地球作圆周运动,由得
方法二:在地面重力近似等于万有引力,由得
点拨:(1)天体的运动认为是匀速圆周运动。

(2)这里提供了一种测天体质量的方法:找一个绕行体,只要知道绕行体的线速度、角速度、周期中的一个量及其轨道半径,即可求中心天体的质量。

(3)求解天体的密度:求出天体质量后,再求出天体的体积,。

当卫星环绕天体表面做圆周运动时,,。

三、飞船的变轨的问题
例3(江苏)某人造卫星运动的轨道可近似看作是以地心为中心的圆。

由于阻力作用,人造卫星到地心的距离从r1慢慢变到r2,用E Kl、E K2分别表示卫星在这两个轨道上的动能,则
(A)r1<r2,E K1<E K2(B)r1>r2,E K1<E K2(C)r1<r2,E K1>E K2(D)r1>r2,E K1>E K2
误区警示:本题中由于阻力作用会误因为<,错选D。

深刻理解速度是由高度决定的,加深“越高越慢”的印象,才能走出误区。

解析:由于阻力使卫星高度降低,故r1>r2,由知变轨后卫星速度变大,动能变大E K1<E K2,也可理解为卫星在做向心运动时引力做功大于克服阻力做功,故动能增加大,故B正确。

点拨:人造卫星及天体的运动都近似为匀速圆周运动。

当天体做变轨运动时关键看轨道
半径的变化,然后根据公式判断线速度、角速度和周期的变化。

四、同步卫星问题
例4同步卫星是指相对于地面不动的人造卫星()
A.它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同的值
B.它可以在地面上任一点的正下方,但离地心的距离是一定的
C.它只能在赤道的正上方,但离地心的距离可按需要选择不同的值
D.它只能在赤道的正上方,切离地心的距离是一定的
解析:非同步的人造卫星其轨道平面可与地轴间有任意夹角,但同步卫星的轨道平面一定与地轴垂直,当卫星绕地轴转动的角速度与地球自转的角速度相同时,卫星即相对地面不动,而与地轴垂直的平面又有无限多个,由于卫星受地球的引力指向地心,在地球引力的作用下同步卫星就不可能停留在与赤道平面平行的其他平面上,因此,同步卫星的轨道平面一定与赤道共面,卫星位于赤道的正上方。

设地球自转的角速度为ω,同步卫星离地心的距离
为r,由牛顿第二定律有,则。

可见,同步卫星离地心的距离是一定的,且线速度也是一定的。

答案:D
点拨:地球的同步卫星(质量可以不同)都只能在赤道平面内距地面高度为3.6104km 的同一轨道上以3.1 km/s的速度运行。

即同步卫星有四个一定:位置一定,周期一定,高度一定,速度一定。

五、双星问题
例1两个靠得很近的恒星称为双星,这两颗星必定以一定角速度绕二者连线上的某一
点转动才不至于由于万有引力的作用而吸引在一起,已知两颗星的质量分别为,相距为L,试求:(1)两颗星转动中心的位置;(2)这两颗星转动的周期。

解析:此题中两星球间距为L,设两星球做圆周运动的轨道半径分别是、,它们转动周期T相同,如图1。

对:①对:②
由①②得,又因为
有③
由③代如①可得:
点拨:对于双星问题,关键抓住四个相等,即向心力、角速度、周期相等,轨道半径之和等于两星间距,然后运用万有引力求解。

相关文档
最新文档