(河北专)中考数学第一编教材知识梳理篇第二章方程(组)与不等式(组)第一节一次方程与方程组及应用试题
河北省中考数学总复习 第一编 教材知识梳理篇 第2章

第二节 一元二次方程及应用河北五年中考命题规律年份题号 考查点 考查内容 分值 总分201719 一元二次方程的解法 综合题,在新定义的背景下用直接开平方法解一元二次方程 37 26(2) 一元二次方程及根的判别式利用题中已知条件列出方程,并用判别式判断根的情况 4201614 一元二次方程根的判别式 利用已知条件判断含字母系数的一元二次方程的根的情况2 2201512 一元二次方程根的判别式考一元二次方程无实数根求参数的取值范围 2 2201421 解一元二次方程 (1)从推导一元二次方程的求根公式的步骤中找错误,并写出正确的求根公式; (2)用配方法解一元二次方程10 102013年未考查命题规律纵观河北近五年中考,2014、2015、2016、2017年考查了一元二次方程,分值2~10分,涉及的题型有选择、填空、解答,题目难度一般,其中一元二次方程的配方法在选择和解答题中各考查了1次,一元二次方程的应用在选择、填空中各考过1次,一元二次方程根的判别式考查了3次,属基础题.河北五年中考真题及模拟一元二次方程的解法1.(2014河北中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a ,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步x +b 2a =b 2-4ac 4a(b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(2017沧州中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(2016石家庄二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是( B )A .-4或-1B .4或-1C .4或-2D .-4或2 一元二次方程根的判别式及根与系数的关系4.(2015河北中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是( B ) A .a<1 B .a>1 C .a ≤1 D .a ≥15.(2016河北中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( B ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .有一根为06.(2016唐山十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(2017唐山二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6;(2)方程x 2-5x +6=0的两根为2或3;①2*3=2×3-9=-3;②3*2=32-2×3=3. 一元二次方程的应用8.(2016邯郸25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(2016石家庄十八县重点中学一模)为落实“两免一补”政策,某市2014年投入教育经费2 500万元,预计2016年要投入教育经费3 600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为__3__000__万元.10.(2017河北中考)某厂按用户的月需求量x(件)完成一种产品的生产,其中x >0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月) 120 100(1)求y 与x(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m.解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0,∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0,∵Δ=(-13)2-4×1×47<0, ∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50)=24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W <W′,W ′-W =48(m -6),由m +1≤12知m 取最大值11时,W ′-W 取得最大值240; ∴m =1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax 2+bx +c =0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开 平方法这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如(x +m)2=n(n≥0)的方程. 配方法配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.公式法求根公式为__x =-b ±b 2-4ac 2a(b 2-4ac≥0)__,适用于所有的一元二次方程.因式分 解法因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法:(1)当b =0,c ≠0时,x 2=-c a,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由__b 2-4ac__来判定,我们将__b 2-4ac__称为根的判别式.4.判别式与根的关系:(1)b 2-4ac>0⇔方程有__两个不相等__的实数根;(2)b 2-4ac<0⇔方程没有实数根;(3)b 2-4ac =0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b 2-4ac≥0;(2)当a ,c 异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论. 6.一元二次方程应用问题常见的等量关系:(1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用, 利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(2016保定十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22;(2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3;(3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,得x(x -2)=0.即x 1=2,x 2=0.1.方程(x -3)(x +1)=0的解是( C ) A .x =3 B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(2016唐山路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( A ) A .(x +2)2=9 B .(x -2)2=9 C .(x +2)2=1 D .(x -2)2=1 3.用公式法解方程:(1)(广东中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(兰州中考)x 2-1=2(x +1). 解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系【例2】(2017包头中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(2016唐山丰润二模)方程x 2-x +3=0根的情况是( D ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根5.(2016保定博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(2017咸宁中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断一元二次方程的应用【例3】(2017达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x 的代数式表示第3年的可变成本为________万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x 1=0.1,x 2=-2.1(不合题意,舍去). 答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染( A ) A .17人 B .16人 C .15人 D .10人【解析】设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x +1)人,每人传染x 个人,则传染x(x +1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x 个人+第二轮传染的x(x +1)人,列方程:1+x +x(1+x)=256,解得x 1=15,x 2=-17.因为x 表示人数,所以x =-17不合题意,应舍去;取x =15,故选C .【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x 元,则每件盈利(50-x)元,数量增多2x 件,再由单件利润×数量=2 100即可.【答案】解:设每件商品降价x 元,则商场日销售量增加2x 件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x 2-35x +300=0. 解得x 1=15,x 2=20. ∵要尽快减少库存,∴x =15不合题意,舍去,只取x =20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(2017南通中考)如图,为美化校园环境,某校计划在一块长为60 m ,宽为40 m 的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m .(1)用含a 的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a); (2)由题意,得60×40-(60-2a)(40-2a)=38×60×40,解得a 1=5,a 2=45(舍去). 答:此时甬道的宽为5 m .7.(2017巴中中考)某地2014年外贸收入为2.5亿元,2016年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为( A )A .2.5(1+x)2=4B .(2.5+x%)2=4C .2.5(1+x)(1+2x)=4D .2.5(1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为( C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(2017原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,每棵所出售的这批树苗售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x 棵树苗. 120×60=7 200(元). ∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x -60)]=8 800, x 1=220,x 2=80,当x =220时,120-0.5×(220-60)=40<100, ∴x =220舍去.∴x=80.答:该校共购买了80棵树苗.。
冀教版中考数学 第二章 方程与不等式

第二章 方程与不等式§2.1 一次方程(组)【基础知识回顾】一、 等式的概念及性质:1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 即:若a=b,那么a c= ,若a=b (c≠o )那么a c= 【备注:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的组3、 叫做解方程4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【备注:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【备注:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成 五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【备注:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程x=a y=b 的形式= × ②工作效率= 】【重点考点例析】考点一:二元一次方程组的解法考点二:一(二)元一次方程的应用例2 (齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?对应训练2.(黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有()考点三:一元一次方程组的应用例4 (宜宾)2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?例5 (•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?对应训练4.(苏州)苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?5.(长沙)为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线,2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?【聚焦中考】1. (2018,南安模拟)若⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =4的一组解,则a ,b 的值分别是(A) A. 8,2 B. 8,-2 C. 2,2 D. 2,-22.(淄博)把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为( )A .70cmB .65cmC .35cmD .35cm 或65cm3.(济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( ) A .60元 B .80元 C .120元 D .180元4.(潍坊)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A . 222.5%0.5%10000x y x y -=⎧⎨⨯+⨯=⎩B . 22100002.5%0.5%x y x y -=⎧⎪⎨+=⎪⎩ C .100002.5%0.5%10000x y x y +=⎧⎨⨯-⨯=⎩ D .10000100002.5%0.5%x y x y +=⎧⎪⎨-=⎪⎩ 5.(济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有 盏灯.6.(淄博)解方程组23322x y x y -=⎧⎨+=-⎩①②. 7.(聊城)夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?8.(临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?【备考真题过关】一、选择题1.(株洲)一元一次方程2x=4的解是( )A .x=1B .x=2C .x=3D .x=42.(凉山州)已知方程组2535x y x y +=⎧⎨+=⎩,则x+y 的值为( ) A .-1B .0C .2D .3A .23x y =-⎧⎨=⎩B .23x y =⎧⎨=-⎩C .23x y =-⎧⎨=-⎩D .23x y =⎧⎨=⎩ 5.(2018杭州)6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
2022届中考数学 第二单元 方程(组)与不等式(组)第5讲 一次方程(组)知识清单梳理 冀教版

第二单元方程(组)与不等式(组)第5讲一次方程(组)一、知识清单梳理知识点一:方程及其相关概念关键点拨及对应举例1.等式的基本性质(1)性质1:等式两边加或减同一个数或同一个整式,所得结果仍是等式.即若a=b,则a±c=b±c .(2)性质2:等式两边同乘(或除)同一个数(除数不能为0),所得结果仍是等式.即若a=b,则ac=bc,a bc c=(c≠0).(3)性质3:(对称性)若a=b,则b=a.(4)性质4:(传递性)若a=b,b=c,则a=c.失分点警示:在等式的两边同除以一个数时,这个数必须不为0.例:判断正误.(1)若a=b,则a/c=b/c. (×)(2)若a/c=b/c,则a=b. (√)2.关于方程的基本概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,且等式两边都是整式的方程.(2)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程.(3)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程.(4)二元一次方程组的解:二元一次方程组的两个方程的公共解.在运用一元一次方程的定义解题时,注意一次项系数不等于0.例:若(a-2)|a1|0x a-+=是关于x的一元一次方程,则a的值为0.知识点二:解一元一次方程和二元一次方程组3.解一元一次方程的步骤(1)去分母:方程两边同乘分母的最小公倍数,不要漏乘常数项;(2)去括号:括号外若为负号,去括号后括号内各项均要变号;(3)移项:移项要变号;(4)合并同类项:把方程化成ax=-b(a≠0);(5)系数化为1:方程两边同除以系数a,得到方程的解x=-b/a.失分点警示:方程去分母时,应该将分子用括号括起来,然后再去括号,防止出现变号错误.4.二元一次方程组的解法思路:消元,将二元一次方程转化为一元一次方程.已知方程组,求相关代数式的值时,需注意观察,有时不需解出方程组,利用整体思想解决解方程组. 例:已知2923x yx y-=⎧⎨-=⎩则x-y的值为x-y=4. 方法:(1)代入消元法:从一个方程中求出某一个未知数的表达式,再把“它”代入另一个方程,进行求解;(2) 加减消元法:把两个方程的两边分别相加或相减消去一个未知数的方法.知识点三:一次方程(组)的实际应用5.列方程(组)解应用题的一般步骤(1)审题:审清题意,分清题中的已知量、未知量;(2)设未知数;(3)列方程(组):找出等量关系,列方程(组);(4)解方程(组);(5)检验:检验所解答案是否正确或是否满足符合题意;(6)作答:规范作答,注意单位名称.(1)设未知数时,一般求什么设什么,但有时为了方便,也可间接设未知数.如题目中涉及到比值,可以设每一份为x.(2)列方程(组)时,注意抓住题目中的关键词语,如共是、等于、大(多)多少、小(少)多少、几倍、几分之几等.6.常见题型及关系式(1)利润问题:售价=标价×折扣,销售额=售价×销量,利润=售价-进价,利润率=利润/进价×100%. (2)利息问题:利息=本金×利率×期数,本息和=本金+利息.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间. ①相遇问题:全路程=甲走的路程+乙走的路程;②追及问题:a.同地不同时出发:前者走的路程=追者走的路程;b.同时不同地出发:前者走的路程+两地间距离=追者走的路程.。
(河北专)中考数学第一编教材知识梳理篇第二章方程(组)与不等式(组)第四节一元一次不等式(组)及应用

第四节一元一次不等式(组)及应用各考查了1次,难度也不大.命题预测预计2017年河北中考中一元一次不等式(组)的解法仍为重点考查对象且有轮流考查规律,当然,也有可能考实际应用.故需分类强化训练.,河北8年中考真题及模拟)解一元一次不等式(组)(6次)1.(2014河北6题2分)如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( C),A) ,B),C) ,D)2.(2010河北5题2分)把不等式-2x<4的解集表示在数轴上,正确的是( A),A) ,B),C) ,D)3.(2012河北4题2分)下列各数中,为不等式组⎩⎪⎨⎪⎧2x-3>0,x-4<0解的是( C)A.-1 B.0 C.2 D.44.[2013河北21(2)题5分]定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.若3⊕x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.解:由3⊕x小于13有3(3-x)+1<13,解得x>-1.图略.5.(2015河北23题10分)水平放置的容器内原有210 mm高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4 mm,每放入一个小球水面就上升3 mm,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y mm .(1)只放入大球,且个数为x 大,求y 与x 大的函数关系式;(不必写出x 大的范围) (2)仅放入6个大球后,开始放入小球,且小球个数为x 小. ①求y 与x 小的函数关系式;(不必写出x 小的范围) ②限定水面高不超过260 mm ,最多能放入几个小球?解:(1)y =4x 大+210;(2)①当x 大=6时,y =4×6+210=234,∴y =3x 小+234;②依题意,得3x 小+234≤260,解得x 小≤823,∵x 小为自然数,∴x 小最大为8,即最多能放入8个小球.6.(2016石家庄长安区质检)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( A )A .⎩⎪⎨⎪⎧x>-1,x ≤2B .⎩⎪⎨⎪⎧x≥-1,x<2C .⎩⎪⎨⎪⎧x ≥-1,x ≤2D .⎩⎪⎨⎪⎧x<-1,x ≥2 7.(2016邯郸一模)下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( B ),A ) ,B ) ,C ),D )8.(2016邯郸初二十三中模拟)已知x =3是关于x 的不等式3x -ax +22>2x3的解,求a 的取值范围.解:∵x=3是关于x 的不等式3x -ax +22>2x 3的解,∴9-3a +22>2.解得a<4.故a 的取值范围是a<4.9.(2016原创)我们定义一种新运算:a ⊗b =2a -b +ab.(等号右边为通常意义的运算) (1)计算2⊗(-3)的值;(2)解不等式:12⊗x>2,并在数轴上表示其解集.解:(1)∵a ⊗b =2a -b +ab ,∴2⊗(-3)=2×2-(-3)+2×(-3)=4+3-6=1;(2)由题意得2×12-x +12x>2,解得x<-2.在数轴上表示为:中考考点清单)不等式的概念及性质1.不等式:一般地,用不等号连接的式子叫做__不等式__.2.不等式的解:能使不等式成立的未知数的__值__叫做不等式的解;一个含有未知数的不等式的解的全体,叫做不等式的__解集__.3.不等式的基本性质:性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向__不变__;性质2:不等式两边同乘(或除)以一个正数,不等号的方向__不变__;性质3:不等式两边同乘(或除)以一个负数,不等号的方向__改变__.【温馨提示】不等式的基本性质是不等式变形的重要依据,性质3不等号的方向会发生改变这是不等式独有的性质.一元一次不等式的解法及数轴表示4.一元一次不等式:只含有__一个__未知数,且未知数的次数是__1次__的不等式,叫做一元一次不等式,其一般形式是__ax+b>0__或ax+b<0(a≠0).5.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)__合并同类项__;(5)系数化为1.6.一元一次不等式的解集在数轴上的表示解集在数轴上的表示__x<a____x>a____x≤a____x≥a__【温馨提示】(1)已知一元一次不等式(组)的解集,确定其中字母的取值范围的方法是:①逆用不等式(组)的解集确定;②分类讨论确定;③从反面求解确定;④借助于数轴确定.(2)解决实际应用题:应紧紧抓住“至多”“至少”“不大于”“不小于”“不超过”“等于”“大于”“小于”等关键词.注意分析题中的不等关系,列出不等式(组),然后根据不等式(组)的解法,结合题意求解.一元一次不等式组的解法及数轴表示7.一元一次不等式组:含有相同未知数的若干个__一元一次__不等式所组成的不等式组叫做一元一次不等式组.8.一元一次不等式组的解集:一元一次不等式组中各个不等式的__解集__的公共部分.9.解一元一次不等式组的步骤:(1)先求出各个不等式的__解集__;(2)再利用数轴找它们的__公共部分__;(3)写出不等式组的解集.10不等式图示解集口诀组(其中a<b){x≥a,x≥b__x≥b__ 同大取大{x≤a,x≤b__x≤a__ 同小取小{x≥a,x≤b__a≤x≤b__ 大小,小大中间找{x≤a,x≥b__空集__ 小小,大大找不到__解集____特殊__列不等式(组)解应用题12.列不等式(组)解应用题的步骤:(1)找出实际问题中的__不等__关系,设定未知数,列出不等式(组);(2)解不等式(组);(3)从不等式(组)的解集中求出符合题意的答案.,中考重难点突破)一元一次不等式(组)的解法【例1】(1)(2015台州中考)不等式2x -4≥0的解集是________;(2)(2015乐山中考)求不等式组⎩⎪⎨⎪⎧3x -7<2,①2x +3≥1②的解集,并把它们的解集在数轴上表示出来.【解析】解一元一次不等式组时,一般是先分别求出每个不等式的解集,再借助数轴找出它们的公共部分,这样就可以确定出不等式组的解集.【学生解答】(1)x≥2;(2)解不等式①得:x<3. 解不等式②得:x≥-1.∴不等式组的解集为:-1≤x<3. 解集在数轴上表示为:【点拨】先分别解出两个不等式,再利用数轴确定解集的公共部分.1.(2016滨州中考)a 、b 都是实数,且a<b ,则下列不等式的变形正确的是( C )A .a +x>b +xB .-a +1<-b +1C .3a<3bD .a 2>b22.(2016株洲中考)不等式⎩⎪⎨⎪⎧2x -1≥1,x -2<0的解集在数轴上表示为( C ),A ) ,B ),C ),D ) 3.(2016湘西中考)不等式组⎩⎪⎨⎪⎧2x -1≤3,x +3>4的解集是( B )A .x>1B .1<x ≤2C .x ≤2D .无解4.(2016安徽中考)不等式x -2≥1的解集是__x ≥3__.根据不等式组的整数解确定字母的取值范围【例2】(2016承德二中模拟)若关于x 的不等式组⎩⎪⎨⎪⎧x -m<0,7-2x≤1的整数解共有4个,则m 的取值范围是( )A .6<m<7B .6≤m<7C .6≤m ≤7D .6<m ≤7【解析】不等式7-2x≤1的解为x≥3,不等式x -m<0的解为x<m ,因为不等式组有4个整数解,结合数轴可看出整数解必定是3、4、5、6,故6<m≤7.【学生解答】D【点拨】此题用数形结合比较直观,要注意验证m 能否在两端取等号.5.(2016保定八中二模)不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集为x<2,则m 取值范围为__m ≥2__.6.(2016沧州九中模拟)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -a>0,1-2x>x -2无解,则a 的取值范围为__a ≥1__.一元一次不等式的应用【例3】(2016衡水模拟)阳光公司销售一种进价为21元的电子产品,按标价的九折销售,获利不低于20%,则这种电子产品的标价最低为多少元?【解析】题目当中的获利不低于20%,即本电子产品的利润率不低于20%,利润率=售价-进价进价×100%,由此可以得到相应的不等关系.【学生解答】设这种电子产品的标价为x 元,则 90%x -2121×100%≥20%. 解得x≥28.答:这种电子产品的最低标价为28元.【方法归纳】不等式的应用题,有时在解出不等式之后,还要根据实际情境写出符合要求的答案.7.(2016黔西南模拟)为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:某居民五月份用电190千瓦时,缴纳电费90元.(1)求x 和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围. 解:(1)根据题意,得160x +(190-160)(x +0.15)=90, 解得x =0.45,则超出部分的电费单价为x +0.15=0.6元/千瓦时; (2)设该户居民六月份的用电量为a 千瓦时, 则75≤160×0.45+0.6(a -160)≤84, 解得165≤a≤180.则该户居民六月份的用电量范围为165千瓦时到180千瓦时.,中考备考方略)1.(2016南充中考)若m>n ,下列不等式不一定成立的是( D )A .m +2>n +2B .2m>2nC .m 2>n2D .m 2>n 2 2.(2016江西中考)将不等式3x -2<1的解集表示在数轴上,正确的是( D ),A ),B ),C ) ,D )3.(2016丽水中考)如图,数轴上所表示关于x 的不等式组的解集是( A )一户居民一个月 用电量的范围 电费价格(单位:元/千瓦时)不超过160千瓦时的部分 x超过160千瓦时的部分 x +0.15A .x ≥2B .x>2C .x>1D .1<x ≤24.(2016怀化中考)不等式3(x -1)≤5-x 的非负整数解有( C ) A .1个 B .2个 C .3个 D .4个5.(2016滨州中考)对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( B )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解集是-52<x ≤26.(2016南充中考)不等式x +12>2x +23-1的正整数解的个数是( D )A .1个B .2个C .3个D .4个7.(2016湖北中考)不等式组⎩⎪⎨⎪⎧2x -1≤1,-12x<1的整数解的个数为( C )A .0个B .2个C .3个D .无数个8.(2016聊城中考)不等式组⎩⎪⎨⎪⎧x +5<5x +1,x -m>1的解集是x>1,则m 的取值范围是( D )A .m ≥1B .m ≤1C .m ≥0D .m ≤09.(2016金华中考)不等式3x +1<-2的解集是__x<-1__.10.(2016绍兴中考)不等式3x +134>x3+2的解是__x>-3__.11.(2016安顺中考)不等式组⎩⎪⎨⎪⎧3x +10>0,163x -10<4x 的最小整数解是__-3__.12.(2016沧州八中模拟)不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x>2x的整数解为__-1,0,1__.13.(2016毕节中考)不等式组⎩⎪⎨⎪⎧1-2x 3-4-3x 6≥x -22,2x -7≤3(x -1)的解集为__-4≤x≤1__.14.(2016苏州中考)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.解:去分母,得:4x -2>3x -1, 移项,得:4x -3x>2-1, 合并同类项,得:x>1,将不等式解集表示在数轴上如图:15.(2016十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1), ①12x≤2-32x ②解不等式①,得:x>-52,解不等式②,得:x≤1,∴-52<x ≤1,故满足条件的整数有-2、-1、0、1.16.(2016北京中考)解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x+10,x -5<x -83,并写出它的所有非负整数解.解:解集为-2≤x<72,∵x 为非负整数,∴x =0,1,2,3.17.(2016沧州九中模拟)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设购买球拍x 个,依题意得:1.5×20+22x≤200,解得x≤7811,又x 为整数,∴x =7.答:孔明应该买7个球拍.18.(2016泰安中考)若不等式组⎩⎪⎨⎪⎧1+x<a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( C )A .a<-36B .a ≤-36C .a>-36D .a ≥-3619.(2016台湾中考)若满足不等式20<5-2(2+2x)<50的最大整数解为a ,最小整数解为b ,则a +b 的值为( C )A .-15B .-16C .-17D .-1820.(2016凉山中考)已知关于x 的不等式组⎩⎪⎨⎪⎧4x +2>3(x +a ),2x>3(x -2)+5仅有三个整数解,则a 的取值范围是__-13≤a<0__.21.(2016石家庄模拟)已知不等式组:⎩⎪⎨⎪⎧3(2x -1)<2x +8,2+3(x +1)8>3-x -14的最大整数解满足ax +6=x -2a ,则a =__-1__.22.(2016原创)定义新运算:对于任意实数a ,b 都有a△b=ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.解:3△x=3x -3-x +1=2x -2,根据题意得:⎩⎪⎨⎪⎧2x -2>5,2x -2<9,解得72<x<112.23.(2016呼和浩特中考)已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围.解:解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1), ①12x≤8-32x +2a , ② 解不等式①得:x>-52,解不等式②得:x≤a+4,∵不等式组有四个整数解,∴1≤a +4<2, 解得-3≤a<-2.24.(2016益阳中考)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人. (1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1 460个,那么至少要招录多少名男学生?解:(1)设该班男生有x 人,女生有y 人,依题意得:⎩⎪⎨⎪⎧x +y =42,x =2y -3,解得⎩⎪⎨⎪⎧x =27,y =15. ∴该班男生有27人,女生有15人.(2)设招录的男生为m 名,则招录的女生为(30-m)名,依题意得:50m +45(30-m)≥1 460,即5m +1 350≥1 460,解得m≥22.答:工厂在该班至少要招录22名男生.25.(2016漳州中考)国庆期间,为了满足百姓的消费需求,某商店计划用170 000元购进一批家电,这批家电的进价和售价如下表:类别 彩电 冰箱 洗衣机 进价(元/台) 2 000 1 600 1 000 售价(元/台) 2 300 1 800 1 100若在现有资金允许的范围内,购买上表中三类家电共100台,其中彩电台数是冰箱台数的2倍.设该商店购买冰箱x 台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?解:(1)依题意,得:2 000·2x+1 600x +1 000(100-3x)≤170 000,解得x≤261213.∵x 为正整数,∴x 至多为26.答:商店至多可以购买冰箱26台;(2)设商店销售完这批家电后获得的利润为y 元,则y =(2 300-2 000)2x +(1 800-1 600)x +(1 100-1000)(100-3x),∴y =500x +10 000,∵500>0,∴y 随x 的增大而增大.∵x≤261213且x 为正整数,∴当x =26时,y 最大=500×26+10 000=23 000.答:当购买冰箱26台时,商店销售完这批家电后获得的利润最大,最大利润为23 000元.。
河北省中考数学总复习 第一编 教材知识梳理篇 第2章 方程(组)与不等式(组)第2节 一元二次方程及

第二节一元二次方程及应用河北五年中考真题及模拟一元二次方程的解法1.(2014河北中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a ,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 4a(b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(2017沧州中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(2016石家庄二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是( B )A .-4或-1B .4或-1C .4或-2D .-4或2一元二次方程根的判别式及根与系数的关系4.(2015河北中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是( B ) A .a<1 B .a>1 C .a ≤1 D .a ≥15.(2016河北中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( B ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .有一根为06.(2016唐山十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(2017唐山二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6;(2)方程x 2-5x +6=0的两根为2或3;①2*3=2×3-9=-3;②3*2=32-2×3=3.一元二次方程的应用8.(2016邯郸25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(2016石家庄十八县重点中学一模)为落实“两免一补”政策,某市2014年投入教育经费2 500万元,预计2016年要投入教育经费3 600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为__3__000__万元.10.(2017河北中考)某厂按用户的月需求量x(件)完成一种产品的生产,其中x >0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月) 120 100(1)求y 与x(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m.解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0,∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0,∵Δ=(-13)2-4×1×47<0, ∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50)=24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W<W′,W′-W=48(m-6),由m+1≤12知m取最大值11时,W′-W取得最大值240;∴m=1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax2+bx+c=0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法:(1)当b =0,c ≠0时,x 2=-c a,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根的情况可由__b2-4ac__来判定,我们将__b2-4ac__称为根的判别式.4.判别式与根的关系:(1)b2-4ac>0⇔方程有__两个不相等__的实数根;(2)b2-4ac<0⇔方程没有实数根;(3)b2-4ac=0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b2-4ac≥0;(2)当a,c异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论.6.一元二次方程应用问题常见的等量关系:(1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用,利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(2016保定十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22;(2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3;(3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,得x(x -2)=0.即x 1=2,x 2=0.1.方程(x -3)(x +1)=0的解是( C ) A .x =3 B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(2016唐山路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( A ) A .(x +2)2=9 B .(x -2)2=9 C .(x +2)2=1 D .(x -2)2=1 3.用公式法解方程:(1)(广东中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(兰州中考)x 2-1=2(x +1). 解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系 【例2】(2017包头中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(2016唐山丰润二模)方程x 2-x +3=0根的情况是( D ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根5.(2016保定博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(2017咸宁中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断一元二次方程的应用【例3】(2017达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x 的代数式表示第3年的可变成本为________万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x 1=0.1,x 2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染( A ) A .17人 B .16人C .15人D .10人【解析】设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x +1)人,每人传染x 个人,则传染x(x +1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x 个人+第二轮传染的x(x +1)人,列方程:1+x +x(1+x)=256,解得x 1=15,x 2=-17.因为x 表示人数,所以x =-17不合题意,应舍去;取x =15,故选C .【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x 元,则每件盈利(50-x)元,数量增多2x 件,再由单件利润×数量=2 100即可.【答案】解:设每件商品降价x 元,则商场日销售量增加2x 件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x 2-35x +300=0.解得x 1=15,x 2=20.∵要尽快减少库存,∴x =15不合题意,舍去,只取x =20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(2017南通中考)如图,为美化校园环境,某校计划在一块长为60 m ,宽为40 m 的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m .(1)用含a 的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a);(2)由题意,得60×40-(60-2a)(40-2a)=38×60×40, 解得a 1=5,a 2=45(舍去).答:此时甬道的宽为5 m .7.(2017巴中中考)某地2014年外贸收入为2.5亿元,2016年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为( A )A .2.5(1+x)2=4B .(2.5+x%)2=4C .2.5(1+x)(1+2x)=4D .2.5(1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为( C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(2017原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,每棵所出售的这批树苗售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x棵树苗.120×60=7 200(元).∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x-60)]=8 800,x1=220,x2=80,当x=220时,120-0.5×(220-60)=40<100,∴x=220舍去.∴x=80.答:该校共购买了80棵树苗.。
河北省中考数学总复习第一编教材知识梳理篇第2章方程组与不等式组第2节一元二次方程及应用精讲试题

第二节 一元二次方程及应用河北五年中考命题规律年份题号 考查点 考查内容 分值 总分19 一元二次方程的解法 综合题,在新定义的背景下用直接开平方法解一元二次方程 37 26(2) 一元二次方程及根的判别式利用题中已知条件列出方程,并用判别式判断根的情况 414 一元二次方程根的判别式 利用已知条件判断含字母系数的一元二次方程的根的情况2 212 一元二次方程根的判别式考一元二次方程无实数根求参数的取值范围 2 221 解一元二次方程 (1)从推导一元二次方程的求根公式的步骤中找错误,并写出正确的求根公式; (2)用配方法解一元二次方程10 10未考查命题规律纵观河北近五年中考,、、、考查了一元二次方程,分值2~10分,涉及的题型有选择、填空、解答,题目难度一般,其中一元二次方程的配方法在选择和解答题中各考查了1次,一元二次方程的应用在选择、填空中各考过1次,一元二次方程根的判别式考查了3次,属基础题.河北五年中考真题及模拟一元二次方程的解法1.(河北中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a ,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 4a(b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(沧州中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(石家庄二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是( B )A .-4或-1B .4或-1C .4或-2D .-4或2 一元二次方程根的判别式及根与系数的关系4.(河北中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是( B ) A .a<1 B .a>1 C .a ≤1 D .a ≥15.(河北中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( B ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .有一根为06.(唐山十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(唐山二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6;(2)方程x 2-5x +6=0的两根为2或3;①2*3=2×3-9=-3;②3*2=32-2×3=3. 一元二次方程的应用8.(邯郸25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(石家庄十八县重点中学一模)为落实“两免一补”政策,某市投入教育经费2 500万元,预计要投入教育经费 3 600万元.已知至的教育经费投入以相同的百分率逐年增长,则该市要投入的教育经费为__3__000__万元.10.(河北中考)某厂按用户的月需求量x(件)完成一种产品的生产,其中x >0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月) 120 100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m.解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0,∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0,∵Δ=(-13)2-4×1×47<0, ∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50)=24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W <W′,W ′-W =48(m -6),由m +1≤12知m 取最大值11时,W ′-W 取得最大值240; ∴m =1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax 2+bx +c =0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开 平方法这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如(x +m)2=n(n≥0)的方程. 配方法配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.公式法求根公式为__x =-b ±b 2-4ac 2a(b 2-4ac≥0)__,适用于所有的一元二次方程.因式分 解法因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法:(1)当b =0,c ≠0时,x 2=-c a,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由__b 2-4ac__来判定,我们将__b 2-4ac__称为根的判别式.4.判别式与根的关系:(1)b 2-4ac>0⇔方程有__两个不相等__的实数根;(2)b 2-4ac<0⇔方程没有实数根;(3)b 2-4ac =0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b 2-4ac≥0;(2)当a ,c 异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论.6.一元二次方程应用问题常见的等量关系:(1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用, 利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(保定十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22;(2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3;(3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,得x(x -2)=0.即x 1=2,x 2=0.1.方程(x -3)(x +1)=0的解是( C ) A .x =3 B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(唐山路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( A ) A .(x +2)2=9 B .(x -2)2=9 C .(x +2)2=1 D .(x -2)2=1 3.用公式法解方程:(1)(广东中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(兰州中考)x 2-1=2(x +1). 解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系【例2】(包头中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(唐山丰润二模)方程x 2-x +3=0根的情况是( D ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根5.(保定博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(咸宁中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断 一元二次方程的应用【例3】(达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x 的代数式表示第3年的可变成本为________万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x 1=0.1,x 2=-2.1(不合题意,舍去). 答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染( A ) A .17人 B .16人 C .15人 D .10人【解析】设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x +1)人,每人传染x 个人,则传染x(x +1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x 个人+第二轮传染的x(x +1)人,列方程:1+x +x(1+x)=256,解得x 1=15,x 2=-17.因为x 表示人数,所以x =-17不合题意,应舍去;取x =15,故选C .【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x 元,则每件盈利(50-x)元,数量增多2x 件,再由单件利润×数量=2 100即可.【答案】解:设每件商品降价x 元,则商场日销售量增加2x 件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x 2-35x +300=0. 解得x 1=15,x 2=20. ∵要尽快减少库存,∴x =15不合题意,舍去,只取x =20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(南通中考)如图,为美化校园环境,某校计划在一块长为60 m ,宽为40 m 的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m .(1)用含a 的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a); (2)由题意,得60×40-(60-2a)(40-2a)=38×60×40,解得a 1=5,a 2=45(舍去). 答:此时甬道的宽为5 m .7.(巴中中考)某地外贸收入为2.5亿元,外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为( A )A .2.5(1+x)2=4B .(2.5+x%)2=4C .2.5(1+x)(1+2x)=4D .2.5(1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为( C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,每棵所出售的这批树苗售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x 棵树苗. 120×60=7 200(元). ∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x-60)]=8 800,x1=220,x2=80,当x=220时,120-0.5×(220-60)=40<100,∴x=220舍去.∴x=80.答:该校共购买了80棵树苗.。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)
甲
25
35
乙
35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章方程(组)与不等式(组)第一节一次方程与方程组及应用年份题号考查点考查内容分值总分201622 一元二次方程用一元一次方程确定多边形的边924(1) 二元一次方程组用待定系数法确定一次函数解析式3 12201511 二元一次方程组的解法考查二元一次方程组如何消元2 2201220(2) 一元一次方程的应用与梯形结合,以行程问题为背景通过列一元一次方程求公路的长5 5201119 二元一次方程的应用二元一次方程解的运用(与整式运算结合)4 420108 一元一次方程的应用以买书为背景,根据题意判断所列一元一次方程正确的是2 2200918一次方程(组)的应用以水桶中铁棒的长度为背景,通过列一元一次方程组或二元一次方程求水的深度3 3命题规律纵观河北八年中考,一次方程(组)及应用在中考中最多只考1题,分值2-5分,以填空、解答为主,难度中偏下,注重基础,其中二元一次方程组的解法考了2次,二元一次方程(组)的应用在解答题中考了1次,填空题中考了2次(也可用一元一次方程来解),一元一次方程在解答、选择题中各考了1次.2016年还专门考查了一元一次方程解决实际问题中整数解的问题.命题预测 预计2017年,本考点仍为重点考查内容,难度中下等,故平时应分类强化训练.,河北8年中考真题及模拟)一次方程(组)的应用(7次)1.(2015河北11题2分)利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10 ①5x -3y =6 ②,下列做法正确的是(D )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×22.(2010河北8题2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根据题意,下面所列方程正确的是( A )A .x +5(12-x)=48B .x +5(x -12)=48C .x +12(x -5)=48D .5x +(12-x)=483.(2009河北18题3分)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55 cm ,此时木桶中水的深度是__20__cm .4.(2016河北22题9分)已知n 边形的内角和θ=(n -2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n +x)边形,发现内角和增加了360°,用列方程的方法确定x. 解:(1)甲对,乙不对.∵θ=360°,∴(n -2)×180=360.解得n =4.∵θ=630°,∴(n -2)×180=630,解得n =112.∵n 为整数,∴θ不能取630°;(2)依题意,得(n -2)×180+360=(n +x -2)×180.解得x =2.5.[2012河北20(2)题5分]如图,某市A ,B 两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD -DC -CB.这两条公路围成等腰梯形ABCD ,其中DC∥AB,AB ∶AD ∶DC =10∶5∶2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A 地出发,沿市区公路去B 地,平均速度是40 km /h .返回时沿外环公路行驶,平均速度是80km /h ,结果比去时少用了110h .求市区公路的长.解:(1)设AB =10x km ,则AD =5x km ,CD =2x km .∵四边形ABCD 是等腰梯形,∴BC =AD =5x km .∴AD +CD +CB =12x(km ).∴外环公路的总长和市区公路长的比为12x∶10x=6∶5;(2)由(1)可知,市区公路的长为10xkm ,外环公路的总长为12x km ,由题意得10x 40=12x 80+110,解得x =1,∴10x =10.答:市区公路的长为10 km .6.(2016石家庄新华区模拟)若⎩⎪⎨⎪⎧x =1,y =2是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为( A )A .7B .2C .-1D .-57.(2016唐山路南区三模)小明在解关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =△,2x -3y =5时,解得⎩⎪⎨⎪⎧x =4,y =⊗,则△和⊗代表的数分别是( B )A .△=1,⊗=5B .△=5,⊗=1C .△=-1,⊗=3D .△=3,⊗=-18.(2016石家庄二模)希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x 人,则下列方程中,正确的是( A )A .2(x -1)+x =49B .2(x +1)+x =49C .x -1+2x =49D .x +1+2x =499.(2016原创)已知关于x ,y 的二元一次方程ax +by =10(ab≠0)的两个解分别为⎩⎪⎨⎪⎧x =-1,y =2和⎩⎪⎨⎪⎧x =-2,y =-4,求1-a 2+4b 2的值.解:将x =-1,y =2代入方程ax +by =10中得:-a +2b =10,将x =-2,y =-4同样代入方程得:-a -2b =5,∴(-a +2b)(-a -2b)=50,∴-a 2+4b 2=-50,∴1-a 2+4b 2=1-50=-49.,中考考点清单)方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4. 性质1等式两边同时加上(或减去)同一个数或同一个式子,所得的结果仍①__相等__.如果a =b ,那么a±c②__=__b±c.续表 性质2等式两边同时乘以(或除以)同一个数(除数不为0),所得结果仍③__相等__.如果a =b ,那么ac =bc(c≠0),a c =bc (c≠0).一次方程(组)5.概念解法一元一 次方程 含有①__一个__未知数且未知数的次数是②__1__,这样的方程叫做一元一次方程.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.续表 二元一 次方程含有两个③__未知数__,并且含有未知数的项的④__次数__都是1的方程叫做二元一次方程.一般需找出满足方程的整数解即可.二元一 次方 程组两个⑤__二元一次方程__所组成的一组方程,叫做二元一次方程组.解二元一次方程组的基本思路是⑥__消元__.基本解法有:⑦__代入__ 消元法和⑧__加减__消元法.成⎩⎪⎨⎪⎧x =a ,y =b 的形式.列方程(组)解应用题的一般步骤(1)审 审清题意,分清题中的已知量、未知量;(2)设设①__未知数__,设其中某个量为未知数,并注意单位,对含有两个未知数的问题,需设两个未知数;(3)列 弄清题意,找出②__相等关系__;根据③__相等关系__,列方程(组); (4)解 解方程(组); (5)验 检验结果是否符合题意; (6)答 答题(包括单位). (1)消元思想:将二元一次方程组通过消元使其变成一元一次方程.(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷.(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程. (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题. (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破)一元一次方程及解法【例1】(1)(2015娄底中考)已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________;(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【学生解答】(1)1;(2)原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.【点拨】(1)把x =2代入即可;(2)先“化零为整”,再按去分母→去括号→移项→合并同类项→系数化为1来解.1.(2016厦门中考)方程x +5=12(x +3)的解是__x =-7__.2.(2016滨州中考)解方程2-2x +13=1+x2.解:去分母得:12-2(2x +1)=3(1+x),去括号得:12-4x -2=3+3x ,解得x =1.二元一次方程组及解法【例2】(2016无锡中考)解方程组:⎩⎪⎨⎪⎧2x -y =5,①x -1=12(2y -1).② 【学生解答】由②得2x -2y =1③.①-③,得y =4.把y =4代入①,得x =92.∴原方程组的解为⎩⎪⎨⎪⎧x =92,y =4.【点拨】解二元一次方程组的两种方法(代入法和加减法)用到的都是“消元”的思想,具体解题时两种方法可根据方程组中未知数系数的特点灵活运用.3.(2016杭州中考)设实数x ,y 满足方程组⎩⎪⎨⎪⎧13x -y =4,13x +y =2,则x +y =__8__.4.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2.由②,得3x -4y =2.①×2-②,得x =6.把x =6代入①得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一次方程(组)的应用【例3】某公园的门票价格如下表:购票人数 1~50 51~100 100以上 票价(元/人) 10 8 550多人,乙班不足50人.如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要515元.问:甲、乙两班分别有多少人?【解析】由两班单独购票时甲班票价8元/人,乙班票价10元/人,两个班共付920元及购团体票时票价5元/人,共付款515元,可列方程组求解.【学生解答】设甲、乙两班分别有x 人和y 人,得 ⎩⎪⎨⎪⎧8x +10y =920,5x +5y =515.解得⎩⎪⎨⎪⎧x =55,y =48. 答:甲班55人,乙班48人.【方法归纳】综合表格中的信息与文字叙述,理解题意是解决本题的关键.5.(2016江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元,根据题意得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28.解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.6.(2016资阳改编)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元,由题意得2x +3(x -30)=510.解得x =120. 答:一个篮球120元,一个足球90元.,中考备考方略)1.(2015重庆中考)已知关于x 的方程2x +m -8=0的解是x =3,则m 的值为( A )A .2B .3C .4D .52.(2016邯郸十一中模拟)若2a =3b ,则下列各式中不成立的是( D ) A .4a =6b B .2a +5=3b +5 C .a 3=b2D .a =3b 3.(2016株洲中考)在解方程x -13+x =3x +12时,方程两边同时乘以6,去分母后,正确的是( B )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)4.(2016广州中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为(B )A .-4B .4C .-2D .25.(2016廊坊二模)已知⎩⎪⎨⎪⎧x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是(D )A .1B .2C .3D .46.(2016杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( C )A .518=2(106+x)B .518-x =2×106C .518-x =2(106+x)D .518+x =2(106-x)7.(2016聊城中考)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( D )日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30A .27B .51C .69D .8.(2016台湾中考)若二元一次联立方程式⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,则a +b 的值为( D )A .192B .212C .7D .13 9.(2016温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是( A )A .⎩⎪⎨⎪⎧x +y =7,x =2yB .⎩⎪⎨⎪⎧x +y =7,y =2xC .⎩⎪⎨⎪⎧x +2y =7,x =2yD .⎩⎪⎨⎪⎧2x +y =7,y =2x 10.(2016临沂中考)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是( D )A .⎩⎪⎨⎪⎧x +y =78,3x +2y =30B .⎩⎪⎨⎪⎧x +y =78,2x +3y =30C .⎩⎪⎨⎪⎧x +y =30,2x +3y =78D .⎩⎪⎨⎪⎧x +y =30,3x +2y =78 11.(2016深圳中考)某商品的标价为200元,8折销售仍赚40元,则商品进价为________元( B ) A .140 B .120 C .160 D .10012.(1)(2016永州中考)方程组⎩⎪⎨⎪⎧x +2y =2,2x +y =4的解是__⎩⎪⎨⎪⎧x =2,y =0__ ,;)(2)(2016温州中考)方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是__⎩⎪⎨⎪⎧x =3,y =1__ ,.)13.(2016扬州中考)以方程组⎩⎪⎨⎪⎧y =2x +2,y =-x +1的解为坐标的点(x ,y)在第__二__象限.14.(2016原创)已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b)(a -b)的值为__-8__.15.(2016石家庄四十二中一模改编)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,求k 的值.解:解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 得⎩⎪⎨⎪⎧x =7k ,y =-2k.代入2x +3y =6中得k =34.16.(2016福州中考)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,那么甲、乙两种票各买了多少张?解:设甲种票买了x 张,则乙种票买了(35-x)张,由题意得24x +18(35-x)=750,解得x =20,∴35-x =15.答:甲种票买了20张,乙种票买了15张.17.(2016原创)按如图的运算程序,能使输出结果为3的x ,y 的值是( D )A .x =5,y =-2B .x =3,y =-3C .x =-4,y =2D .x =-3,y =-918.(2016原创)小亮解二元一次方程组⎩⎪⎨⎪⎧2x +y =●,3x -2y =19的解为⎩⎪⎨⎪⎧x =5,y =★,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则●+★=__6__.19.(2016盐城中考)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55 min ;加工4个甲种零件和9个乙种零件共需85 min ,则李师傅加工2个甲种零件和4个乙种零件共需__40__min .20.(2016石家庄41中一模)定义一种新运算“⊕”:a ⊕b =a -2b ,比如:2⊕(-3)=2-2×(-3)=2+6=8.(1)求(-3)⊕2的值;(2)若(x -3)⊕(x+1)=1,求x 的值.解:(1)(-3)⊕2=(-3)-2×2=-3-4=-7;(2)∵(x-3)⊕(x+1)=1,∴(x -3)-2(x +1)=1.∴x=-6.21.(2016石家庄四十一中模拟)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用x 的代数式分别表示裁剪出的侧面和底面个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解:(1)裁剪出的侧面个数为6x +4(19-x)=(2x +76)个,裁剪出的底面个数为5(19-x)=(-5x +95)个;(2)由题意得2x +763=-5x +952,解得x =7.当x =7时,2x +763=30.答:能做30个盒子.22.(2016沧州八中模拟)P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P 与n 的关系式是:P =n (n -1)24·(n 2-an +b)(其中a ,b 是常数,n ≥4).(1)填空:通过画图可得:四边形时,P =__1__(填数字),五边形时,P =__5__(填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.(注:本题的多边形均指凸多边形) 解:将上述值代入公式可得 ⎩⎪⎨⎪⎧4×(4-1)24·(16-4a +b )=1,①5×(5-1)24·(25-5a +b )=5.②化简得⎩⎪⎨⎪⎧4a -b =14,5a -b =19.解得⎩⎪⎨⎪⎧a =5,b =6.23.(2016连云港中考)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?解:(1)设该店有客房x 间,有房客y 人,根据题意得:⎩⎪⎨⎪⎧7x +7=y ,9(x -1)=y ,解得⎩⎪⎨⎪⎧x =8,y =63.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性订客房18间,则需付费20×18×0.8=288钱<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.。