测控电路课程设计温度测控电路
东莞理工学院 模电课程设计 温度监测及控制电路

温度监测及控制电路一、实验目的1、 学习由双臂电桥和差动输入集成运放组成的桥式放大电路。
2、掌握滞回比较器的性能和调试方法。
3、 学会系统测量和调试。
二、实验原理1、 实验电路如图21-1所示, 它是由负温度系数电阻特性的热敏电阻(NTC 元件)R t 为一臂组成测温电桥, 其输出经测量放大器放大后由滞回比较器输出“加热”与“停止”信号,经三极管放大后控制加热器“加热”与“停止”。
改变滞回比较器的比较电压U R 即改变控温的范围,而控温的精度则由滞回比较器的滞回宽度确定。
图21-1 温度监测及控制实验电路(1)、测温电桥由R 1、R 2、R 3、R W1及R t 组成测温电桥,其中R t 是温度传感器。
其呈现出的阻值与温度成线性变化关系且具有负温度系数,而温度系数又与流过它的工作电流有关。
为了稳定R t 的工作电流,达到稳定其温度系数的目的,设置了稳压管D 2。
R W1可决定测温电桥的平衡。
(2)、差动放大电路由A 1及外围电路组成的差动放大电路,将测温电桥输出电压△U 按比例放大。
其输出电压 B 6564W274A 4W2701)U R R R )(R R R R ()U R R R (U +++++-= 当R 4=R 5,(R 7+R W2)=R 6时)U (U R R R U A B 4W2701-+=R W3用于差动放大器调零。
可见差动放大电路的输出电压U 01仅取决于二个输入电压之差和外部电阻的比值。
(3)、滞回比较器差动放大器的输出电压U 01输入由A 2组成的滞回比较器。
滞回比较器的单元电路如图21-2所示,设比较器输出高电平为U 0H ,输出低电平为U OL ,参考电压U R 加在反相输入端。
当输出为高电平U 0H 时,运放同相输入端电位 0H F22i F 2F H U R R R u R R R u +++=+当u i 减小到使u +H =U R ,即 OH F2R F F 2TL i U R RU R R R u u -+== 此后,u i 稍有减小,输出就从高电平跳变为低电平。
测控电路课程设计温度测控电路

燕山大学测控电路课程设计说明书题目温度测控电路学院(系):电气工程学院年级专业: XX医疗仪器X班学号: XXXXXXXXXXXX学生姓名: XXX指导教师: XX教师职称: XX燕山大学课程设计(论文)任务书说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
20xx年7月 2日燕山大学课程设计评审意见表目录第1章引言 (2)1.1温度测量系统的简介 (2)第2章温度测量仪的电路设计 (3)2.1 温度测量仪总体框图 (3)2.2 AD590集成温度传感器 (4)2.3 K—℃变换器 (6)2.4 放大器 (7)2.5 比较器 (8)2.6 报警电路设计 (9)2.7 电路原理图 (10)第3章仿真与制作 (11)3.1 电路的仿真 (11)3.2 仿真结果和其分析 (12)第4章课程设计总结 (13)附录元件清单 (14)参考文献 (15)第1章引言1.1温度测量系统的简介生活中有很多需要温度测量的地方比如热水器、电冰箱等温度测量系统就是必不可少的。
它包括了温度传感器、放大器、比较器、电阻、模拟电路实验箱、发光二极管、蜂鸣器等等。
其中温度传感器是一个热敏电阻,它通过感知温度的变化来改变电路中电流的大小,并影响电路中二极管和蜂鸣器中所通过的电流,使其产生变化。
而后通过multisim 软件仿真的实现来使二极管发光以和使蜂鸣器报警,从而来实现温度预警。
温度的测量是生产生活中时常需要的工作,进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性和安全性、开发虚拟传感器和网络传感器测温系统等高科技的方向迅速发展。
Multisim是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
温度测控器课程设计

另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲) 发ROM功能命令 发存储器操作命令 处理数据。
(4) DS18B20与单片机的接口电路
DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源方式,如图2—10所示。单片机端口接单总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。
表2—4DS18B20分辨率的定义规定
R1
R0
分辨率/位
温度最大转换时间/ms
0
0
9
93.75
0
1
10
187.5
1
0
11
375
1
1
12
750
温度LSB
温度MSB
TH用户字节1
TL用户字节2
配置寄存器
保留
保留
保留
CRC
1字节
2字节
3字节
测控电路课程设计

测控电路课程设计一、教学目标本节课的教学目标是让学生掌握测控电路的基本原理和应用,培养学生对测控电路的兴趣和好奇心,提高学生的实际操作能力和创新能力。
具体分为以下三个方面:1.知识目标:使学生了解测控电路的基本概念、组成原理和功能,理解测控电路在实际工程中的应用,掌握测控电路的基本分析和设计方法。
2.技能目标:培养学生运用测控电路解决实际问题的能力,能独立进行测控电路的安装、调试和维护,具备一定的实验操作技能。
3.情感态度价值观目标:激发学生对测控电路的热爱和兴趣,培养学生勇于探究、创新的精神,使学生认识到测控电路在现代社会中的重要地位和作用。
二、教学内容本节课的教学内容主要包括测控电路的基本原理、组成要素、功能及其在实际工程中的应用。
具体安排如下:1.教材章节:根据人教版《电子技术》第五章第三节“测控电路”进行教学。
2.教学内容:(1)测控电路的基本概念:介绍测控电路的定义、分类及其在工程中的应用。
(2)测控电路的组成原理:讲解测控电路的组成要素,包括传感器、信号处理电路、执行器等,以及它们之间的关系。
(3)测控电路的功能:介绍测控电路在自动控制、信号处理等方面的功能和作用。
(4)测控电路的分析与设计方法:讲解测控电路的分析与设计方法,包括系统建模、系统分析、控制器设计等。
(5)测控电路的实际应用案例:介绍测控电路在工业生产、科学研究等领域的实际应用案例。
三、教学方法为了提高教学效果,本节课将采用多种教学方法相结合的方式进行教学,具体如下:1.讲授法:教师对测控电路的基本概念、组成原理、功能及应用进行系统的讲解,使学生掌握测控电路的基本知识。
2.案例分析法:通过分析实际应用案例,使学生了解测控电路在工程中的应用和价值。
3.实验法:安排课堂实验,让学生亲自动手进行测控电路的安装、调试和维护,提高学生的实际操作能力。
4.讨论法:学生进行分组讨论,分享学习心得和经验,培养学生团队合作精神和沟通能力。
测控电路课程设计:温度测量控制系统 (1)

温度测量控制系统学生姓名:董锦锦学号:20105042051学院:物理电子工程学院专业:电子信息工程指导教师:马建忠职称:教授摘要:温度的测量是生产生活中时常需要的工作,进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。
关键词:温度传感器;高精度;总线标准化;高可靠性;测温系统Temperature measurement and control systems Abstract:Temperature measurement is the production of life often need to work, in the 21st century, the temperature sensor is headed in high precision, multi-function, bus, standardization, high reliability and safety, development virtual sensor and network sensor, research monolithic temperature measuring system and other high-tech direction develop rapidly.Key words:The temperature sensor; High precision; Standardization of the bus; High reliability; Temperature measurement system1 绪论1.1指导思想本课题以PT100热电阻为温度检测元件,设计了一个对单点温度实时检测的单片机温度检测系统。
1.2基本设计内容及要求使用PT100温度传感器(电阻值随温度变化),设计传感器放大电路,将传感器的电阻值转变为0~5V电压信号,将温度值显示出来。
测控电路课程设计

测控电路课程设计
一、设计目的
通过测控电路的课程设计,学生将全面掌握测控电路的基本原理、设计方法及实现技术。
具体目标如下:
1. 深入理解测控电路的原理与技术;
2. 掌握常用传感器和执行器的使用方法;
3. 学会设计简单的测控电路;
4. 提高实践操作和解决问题的能力;
5. 培养团队协作和创新精神。
二、设计任务
设计一个温度控制系统,具体要求如下:
1. 使用热电阻作为温度传感器,实现温度的测量;
2. 设计一个控制电路,能够根据温度传感器测量的温度值,自动调节加热元件的功率,以实现温度的恒定控制;
3. 设计一个显示电路,实时显示当前温度值;
4. 设计一个按键电路,用于设定温度设定值;
5. 系统应具备过流保护功能,确保电路安全。
三、设计方案
1. 硬件电路设计:
a. 电源模块:为整个系统提供稳定的电源;
b. 传感器模块:采用热电阻测量温度,通过信号调理电路将温度信号转换为电信号;
c. 控制模块:根据温度信号调节加热元件的功率,实现温度的恒定控制;
d. 显示模块:使用LED显示屏实时显示当前温度值;
e. 按键模块:用于设定温度设定值;
f. 过流保护模块:检测电路中的电流异常,及时切断电源。
2. 软件程序设计:
a. 主程序:初始化硬件、启动定时器、开始循环检测温度和控制加热元件的功率;
b. 温度检测子程序:读取热电阻的电压信号,计算温度值;
c. 温度控制子程序:根据温度值和设定值比较,调节加热元件的功率;
d. 显示子程序:实时显示当前温度值;
e. 按键子程序:处理按键输入,设定温度设定值。
温度测控及其数显电路设计

《电子技术》课程设计报告班级机电1111 学号 1111106125 学生姓名宋建辉专业测控技术与仪器系别机械工程学院指导教师电子技术课程设计指导小组淮阴工学院电子与电气工程学院2013年7月2.内容编排1、设计目的:(1)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。
(2)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。
(3)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。
(4)培养学生的创新能力。
2、设计要求(1)电源电压:-5~+5V(2)主要单元电路和元器件参数计算,选择;(3)画出总体电路图;(4)设计,焊接电路,实现预期功能;(5)调试电路;(6)提交格式上符合要求,内容完整的设计报告。
3、总体设计1、温度检测电路:对PT100进行加热,其阻值随温度改变,由于其温度与电压近似于成线性关系这样就可以得到相应的电压值;2、信号放大电路:用运放对信号进行放大,送入V/F变换电路,利用V/F转换器LM331,转换成相应的频率信号;3、V/F变换电路:利用V/F转换器LM331将所得电压信号变换成相应的频率信号;4、十进制计数电路:将所得频率,转换成相应的十进制数;5、译码显示电路:由CD4511驱动三位数码管,显示相应的温度值,其刷新频率约为每秒一次;6、温度设定电路:运用电压跟随器,设定参考电压;其电压与温度的对应关系为0.01V/o C;7、超温比较电路:运用电压比较器,使输出信号达到参考电压时报警;声光报警电路:利用二极管和蜂鸣器实现声光报警;4、单元电路设计4.1单元电路设计包括:分析电路的组成、介绍电路工作原理、各单元电路元器件参数计算、选择功能说明及使用方法。
测控电路及应用课程设计

测控电路及应用课程设计设计背景测量和控制是现代工程中必不可少的技术手段,具有广泛的应用前景。
为了培养学生工程实践能力,提高学生对测控电路及应用的了解和掌握,本课程设计旨在通过实践探究基础测控电路的设计方法及应用效果。
设计目的通过本次课程设计,提高学生的实践能力、创新意识和团队协作精神,培养学生设计测控电路的能力,加深学生对现代测控技术的理解和掌握。
设计内容任务要求本次课程设计要求学生设计并实现基础测控电路的功能,包括:•温度测量电路•光电传感器电路•转速测量电路•声波测距电路设计流程设计流程包括以下步骤:1.初步分析任务及要求。
2.调查和学习有关测控电路及应用的知识,确定电路的基本原理。
3.参考其他类似的电路设计方案,确定电路的拓扑结构和元器件参数。
4.计算电路各部分参数,绘制电路原理图并进行仿真验证。
5.制作电路实物并调试验证,得出实验数据。
6.结合实验数据对设计方案进行评估,并对电路性能进行优化。
设计结果每个小组提交以下内容:1.设计报告–包括电路选择、分析、设计、制作和实验测试过程,以及对实验结果的分析和讨论。
–时间要求:800-1000字,MarkDown格式。
2.电路原理图–显示电路拓扑结构,元器件型号、参数、布局,以及与其他小组交互的信号接口。
–时间要求:电子版和手绘版。
3.实验记录–表格形式记录电路性能测试和实验数据,达到要求的测试次数。
–时间要求:MarkDown格式。
4.电路实物–包括各种元器件按照电路原理图连接起来的电路实物。
–时间要求:制作完毕并自行保存。
设计评分评分标准如下:1.设计报告(40%)–确定任务和分析电路原理(10%)–电路拓扑结构设计和参数计算(20%)–实验数据分析和电路性能评估(10%)2.电路原理图(20%)–电路原理图的设计和制作质量(10%)–电路拓扑结构正确和元件参数准确(10%)3.实验记录(20%)–实验记录中的数据准确性和完整性(10%)–使用MarkDown格式(10%)4.电路实物(20%)–电路连接正确和电路可靠性(10%)–电路外观美观、整洁(10%)总结测控电路及应用课程设计旨在通过实践探究基础测控电路的设计方法及应用效果,提高学生的实践能力、创新意识和团队协作精神,培养学生设计测控电路的能力,加深学生对现代测控技术的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燕山大学测控电路课程设计说明书题目温度测控电路学院(系):电气工程学院年级专业: XX医疗仪器X班学号: XXXXXXXXXXXX学生姓名: XXX指导教师: XX教师职称: XX燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:电子实验中心20xx年7月 2日燕山大学课程设计评审意见表目录第1章引言 (2)1.1温度测量系统的简介 (2)第2章温度测量仪的电路设计 (3)2.1 温度测量仪总体框图 (3)2.2 AD590集成温度传感器 (4)2.3 K—℃变换器 (6)2.4 放大器 (7)2.5 比较器 (8)2.6 报警电路设计 (9)2.7 电路原理图 (10)第3章仿真与制作 (11)3.1 电路的仿真 (11)3.2 仿真结果及其分析 (12)第4章课程设计总结 (13)附录元件清单 (14)参考文献 (15)第1章引言1.1温度测量系统的简介生活中有很多需要温度测量的地方比如热水器、电冰箱等温度测量系统就是必不可少的。
它包括了温度传感器、放大器、比较器、电阻、模拟电路实验箱、发光二极管、蜂鸣器等等。
其中温度传感器是一个热敏电阻,它通过感知温度的变化来改变电路中电流的大小,并影响电路中二极管和蜂鸣器中所通过的电流,使其产生变化。
而后通过multisim 软件仿真的实现来使二极管发光以及使蜂鸣器报警,从而来实现温度预警。
温度的测量是生产生活中时常需要的工作,进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器测温系统等高科技的方向迅速发展。
Multisim是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
第2章温度测量仪的电路设计2.1 温度测量仪总体框图使用温度测量仪,首先经过AD590集成温度传感器的作用,使外界温度转换为电流用表示。
因为上述为绝对温度K和电流之间的转换关系,而在设计中我们需要采用℃,所以我们必须使其转换成摄氏温度℃和电流之间的关系,这就要用到K —℃变换器。
通过K —℃变换器的作用,我们便得到想要的℃和电流之间的直接转换关系。
得到的电流再经过放大器的放大,即可直接用电压表读出被测对象的温度值。
然后放大后的电压接一比较器,比较器的输出端接报警设备。
报警设备可由一个发光二极管组成。
在设置了预警温度后,由比较器输出端的电压决定二极管是否发光,从而起到警报作用。
基本原理图如图2.1.1所示。
图2.1.1温度测量仪原理框图2.2 AD590集成温度传感器AD590是利用PN 结正向电流与温度的关系制成的电流输出型两端温度传感器。
这种器件在被测温度一定时,相当于一个恒流源。
该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。
即使电源在5~15V 之间变化,其电流只是在1μA 以下作微小变化.1、流过器件的电流(μA) 等于器件所处环境的热力学温度(开尔文) 度数。
2、 可测量范围-55℃至150℃.3、 供电电压范围+4V 至+30V.AD590集成温度传感器进行温度~电流转换。
它是一种电流型二端器件,其内部已作修正,具有良好的互换性和线性。
有消除电源波动的特性。
输出阻抗达10M Ω,转换当量为K A /1μ。
器件采用B -1型金属壳封装。
温度—电压变换电路如图2.2.2所示。
由图可得:由 611/10/O U U uA K R R K -==⨯=⨯ (R 一般取10K Ω)所以110/U mV K =。
图2.2.1 AD590原件符号图2.2.2 温度——电压转换电路2.2K—℃变换器因为AD590的温控电流值是对应绝对温度K ,而在设计中需要采用℃,由运放组成的加法器可以实现这一转换,参考电路如下图2.3图2.3 K —℃变换电路设流经R2,R1,R3的电流分别为 1,2,3i i i 对图2.3的反相输入节点可列出下面的方程: 123i i i += 由此得12123R U U U R R R --= ( 2.3.1 ) 若 123R R R == (实际应用中可取R1=R2=R3=5 KΩ)而 123'////R R R R = 计算得 ' 1.67R K =Ω 则式 ( 2.3.1 )可变为21R U U U =- ( 2.3.2 )元件参数的确定和-U R 选取的指导思想是:0℃(即273K )时,U2 = 0 V 综合式(2.2.1),可得2.73R U V =。
( 2.3.3 )2.3 放大器图2.4 反相比例放大器设流经R4,R6的电流分别为i4,i6。
由虚断的概念可知,i4=i6, 所以得出:6342R U R U = (2.4.1) 为了提供一个合适的静态偏置,以及减小输入级偏置电流引起的运算误差,故在其同向端接入一个平衡电阻546//R R R = ( 2.4.2 )要使U3满足100mV/℃, 又因为 U2=10mV/℃, 由式(2.4.1)可得634210R U R U == 所以我们可取45R K =Ω 650R K =Ω 5 4.5R K =Ω2.5 比较器电压比较器是集成运放非线性应用电路,常用于各种电子设备中.它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。
图2.5.1 电压比较器由电压比较器组成,如图2.5所示。
U ref 为报警时温度设定电压5V ,R7,R8用于稳定输入电压。
R 9用于改善比较器的迟滞特性,R10用于报警设备的输入电阻,用来控制输入电流的大小。
这些电阻决定了系统的精度。
由比较器的虚短和虚断概念得33489ref U U U U R R --= (2.5.1)经过调试,可取750R =Ω 850R =Ω 910R K =Ω2.6报警电路设计发光二极管为其核心设备,其发热量小,耗电量也少。
由低压电源供给,供电电压大大约为6-24 V 之间。
当3U 的值小于ref U 的值时,4U 输出为低电平,三极管截止,发光二极管无响应。
当4U 的电压值大于ref U 时,4U 输出为高电平,三极管导通,此时发光二极管发光,产生警报!图2.6.1 发光二极管图2.6.2 报警设备电路2.7电路原理图由上述各设计电路可得出如图2.7所示电路原理图。
图2.7 电路原理图第3章仿真与制作3.1 电路的仿真仿真电路如图3.1.1,3.1.2和3.1.3所示其中,图3.1.1是温度未达警戒线50℃的仿真电路;图3.1.2是温度刚好为50℃的仿真电路;图3.1.3是温度超过警戒线50℃的仿真电路。
图3.1.1 27℃时图3.1.2 50℃时图3.1.3 60℃时3.2 仿真结果及其分析由图3.2.1 可以看出:当恒流源取300uA(300K)时,转化为温度是300-273=27℃,而3U的电压值大约为2.7V,即仿真所得的实际结果与理论相同。
由图3.2.2 可以看出:当恒流源取323uA(323K)时,转化为温度是323-273=50℃,而3U的电压值大约为5V,即仿真所得的实际结果与理论相同。
由图3.2.2 可以看出:当恒流源取333uA(333K)时,转化为温度是333-273=60℃,而3U的电压值大约为6.0V,即仿真所得的实际结果与理论相同。
所以,仿真成功,可以通过此装置测得温度。
第四章课程设计总结此温度测量电路课程设计让我解和认识得到了多方面的锻炼。
一方面我对模拟电子技术专业知识有了进一步的掌握并熟悉了更多电子仪器的使用方法,掌握电子电路的测试方法,了解常用电子器件的类型和特性,同时掌握如何合理选用电子器件的原则。
应用知识更为得新应手,熟练自如。
有了更多对模拟电子技术综合性训练的机会。
也通过multisim软件模拟电子电路设计、安装、调试等各环节,培养了我运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。
另一方面对于动手能力的培养和敏捷思维方式的形成起到很大的作用。
设计一个电路首先要有合理的原理,再有合理的原理图,对于大型的电路还要注意分层分块的完成然后系统连接。
在以后的工作中对于我们的实践训练这是很重要的。
再一方面电子电路的安装与调试技能培养了我的创新能力和对治学要严谨的态度。
经过为期一个星期的课程设计让我的身心也得到了改善,自身素质也有所提高,而且通过与其他人的交流,也让我明白我还有很多不足,在今后的道路上我将尽我最大可能弥补这些不足,这次的课程设计是成功的,通过这次的课程设计使,我们对此门课程有了更深的了解,也让我获益良多。
附录元件清单参考文献[1]康华光.电子技术基础模拟部分(第五版).高等教育出版社[2] 李刚.现代测控电路.高等教育出版社.[3] 程勇.实例讲解Multisim 10电路仿真.人民邮电出版社.[4]郭照南.电子技术基础实验与仿真.中南大学出版社.。