人教版高中数学必修五教案
高中人教版数学必修五教案

高中人教版数学必修五教案教学目标:1. 理解数列和数列的定义;2. 掌握数列的通项公式和递推公式;3. 能够根据数列的性质进行问题求解;4. 掌握常数项数列、等差数列、等比数列的相关概念和性质。
教学重点:1. 数列的定义和概念理解;2. 数列的通项公式和递推公式的应用;3. 常数项数列、等差数列、等比数列的性质和求解方法。
教学难点:1. 能够灵活运用数列的公式解决具体问题;2. 掌握不同类型数列的特点和求解方法。
教学过程:第一课时:数列的定义和概念1. 引入数列的概念,让学生了解数列的定义;2. 通过具体案例,让学生理解数列的基本特点和规律;3. 练习一些简单的数列题目,让学生熟悉数列的表示方法。
第二课时:数列的通项公式和递推公式1. 讲解数列的通项公式和递推公式的概念;2. 通过实例演练,让学生掌握数列的通项公式和递推公式的求解方法;3. 练习一些相关题目,让学生熟练应用数列的公式。
第三课时:常数项数列、等差数列、等比数列1. 分别介绍常数项数列、等差数列、等比数列的概念和特点;2. 通过实例讲解,让学生掌握常数项数列、等差数列、等比数列的求解方法;3. 练习一些综合性题目,让学生灵活应用不同类型数列的求解方法。
课堂练习:1. 由前几项写出数列的通项公式:1, 4, 9, 16, ...2. 求解等差数列中第n项的公式,并计算第10项是多少:2, 5, 8, 11, ...3. 计算等比数列中的比值和首项,给出通项公式,并计算第5项是多少:3, 6, 12, 24, ... 教学反思:本节课主要围绕数列的基本概念展开,并以常数项数列、等差数列、等比数列为例,让学生了解不同数列的性质和求解方法。
在教学过程中,通过实例演练和课堂练习,让学生掌握数列的基本概念和相关公式的使用方法,提高他们的解题能力和应用能力。
同时,教师要引导学生积极思考,灵活运用数列的知识解决实际问题,提高他们的数学思维能力和创新能力。
人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。
通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。
第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。
通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。
第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。
通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。
第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。
通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。
第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。
通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。
人教版高三数学必修五《等差数列》教案及教学反思

人教版高三数学必修五《等差数列》教案及教学反思一、引言等差数列是高中数学中的重要内容,它在数学中的运用十分广泛。
在教学过程中,我们需要注重培养学生的思维能力和解决问题的能力,让他们能够灵活地运用所学知识,提高数学应用能力。
本文将会介绍人教版高三数学必修五《等差数列》的教学反思和教案。
二、教学反思1. 教学目标通过本次授课,我们的教学目标是:•掌握等差数列的概念,理解等差数列的性质和运用;•能够分析等差数列的通项公式和求和公式,灵活掌握运用;•培养学生的数学思维能力和解决实际问题的能力。
2. 教学内容本次授课的教学内容包括:•等差数列的定义、通项公式和求和公式;•等差数列的性质和运用;•等差中项和等差数列的应用。
3. 教学方法我们采用了多种教学方法,包括:•讲授法:通过精心准备的PPT和示例,向学生讲解等差数列的定义、通项公式和求和公式,并阐述等差数列的性质和运用;•互动式教学法:通过提问、举例和解题过程中的互动讨论,培养学生的思考能力和分析问题的能力;•组织小组讨论:通过小组讨论,让学生自主探索等差数列的应用,培养学生的团队合作精神和创新精神。
4. 教学效果经过本次教学,我们发现学生的数学知识水平有了明显的提高。
在讲解等差数列的性质和运用时,学生能够将数学知识与实际问题结合起来,灵活掌握应用技巧。
在解题过程中,学生能够主动思考和分析问题,掌握解题方法,并能够独立解答一些复杂题目。
三、教案设计1. 教学目标通过本节课的教学,让学生掌握等差数列的相关概念、性质和运用,并能够通过实际问题,灵活运用所学知识,提高数学应用能力。
2. 教学内容和教学步骤:第一步:引入通过实际问题导入,引发学生兴趣,激发学生对等差数列的认识和探索欲望。
第二步:讲授•定义等差数列的概念,并介绍等差数列的通项公式和求和公式。
•阐述等差数列的性质和运用,主要包括公差、项、数列取值等。
•介绍等差中项的概念,引入等差中项的应用。
第三步:练习通过练习巩固所学知识,提高学生的运用能力。
高中数学必修5《不等关系与不等式》教案

高中数学必修5《不等关系与不等式》教案一、教学内容不等关系与不等式二、教学目标1. 理解不等关系和不等式的概念;2. 掌握表示不等式的方法;3. 掌握一元一次不等式的解法;4. 掌握二元一次不等式的解法;5. 能够应用不等式解决实际问题。
三、教学重点1. 不等关系与不等式的概念;2. 一元一次不等式的解法;3. 能够应用不等式解决实际问题。
四、教学难点1. 二元一次不等式的解法;2. 能够应用不等式解决实际问题。
五、教学方法1. 讲授法;2. 举例法;3. 练习法。
六、教学过程1. 引入(10分钟)教师先用几道小学的例题,考察学生的知识储备,比如:“如果a>b,b>c,那么a>c吗?”,“a+b+b+c>c+c+a,a+b的大小关系是什么?”,建议让学生互相出题。
2. 讲授(40分钟)(1) 不等关系与不等式- 定义:如果两个数x、y之间存在大小关系,那么我们就称它们之间是一种关系,叫做不等关系。
而$x>y$、$x\geqslanty$等代数形式表示的关系就叫做不等式。
- 内容:不等关系的分类(大于、小于、大于等于、小于等于、等于),不等式的基本性质(两侧都加或减同一个有理数,符号不变;两侧都乘或除同一个正数,符号不变;两侧都乘或除同一个负数,符号不变反)(2)表示不等式的方法- 直观法:把不等式中的数相对数线上表示出来,即可得到不等式的关系。
- 求解法:对于 $a \space \Delta \space b$型的不等式,可以将它化为$a-b\space \Delta \space 0$型的不等式,即将不等式移到一个边上,然后求解。
(3)一元一次不等式的解法- 一元一次不等式:$ax+b\space \Delta \space0(ax+b\geqslant0\text{或} ax+b>0)$- 思路:先将不等式移到一个边上,然后根据系数a的正负以及$b\neq 0$的情况分类讨论解不等式。
高中数学必修5优秀教案3篇

高中数学必修5优秀教案3篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高中数学必修5优秀教案3篇高中数学必修5优秀教案1教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)高中数学必修五教案篇一教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。
心理体验,产生热爱数学的情感。
教学重点:等差数列前n项和的公式。
教学难点:等差数列前n项和的公式的灵活运用。
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。
提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。
(教师观察学生的表情反映,然后将此问题缩小十倍)。
我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10。
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
高中数学教案模板必修5

高中数学教案模板必修5
主题:必修5
目标:学生能够掌握必修5的重要知识点,提升数学解题能力。
时间:1个学时
教学过程:
一、导入 (5分钟)
1. 讲解本节课要学习的主题和重点内容。
2. 回顾上节课的知识,引出本节课的内容。
二、讲解与示范 (15分钟)
1. 介绍必修5的重要知识点,包括但不限于函数、导数、微分方程等。
2. 示范几道与知识点相关的例题,让学生了解如何解题。
三、练习与解答 (20分钟)
1. 学生通过书本上的练习题进行练习,老师指导学生如何解题。
2. 学生自行完成几道题目,老师现场解答学生提出的疑问。
四、巩固与拓展 (10分钟)
1. 学生进行课堂小测验,检验所学知识的掌握情况。
2. 教师根据学生表现,决定是否需要延长时间进行巩固。
五、总结与反思 (5分钟)
1. 教师对本节课的内容进行总结,强调重点。
2. 学生展示自己的收获和反思,提出疑问。
六、作业布置 (5分钟)
1. 布置与本节课内容相关的作业,以巩固所学知识。
2. 强调完成作业的重要性,并提醒学生按时提交。
反馈与评估:通过课堂小测验和学生的表现来评估学生对知识点的掌握程度,及时调整教学方法和内容,帮助学生提高学习效果。
注意事项:教师在教学过程中要注重学生的思维导向,引导学生独立解决问题,培养学生的数学思维能力。
高中数学必修五教案人教版

高中数学必修五教案人教版
教案名称:一元二次方程
教学目标:
1. 了解一元二次方程的概念和性质
2. 能够用公式求解一元二次方程
3. 能够应用一元二次方程解决实际问题
教学重点:
1. 一元二次方程的定义和性质
2. 一元二次方程的解法
3. 一元二次方程的应用
教学难点:
1. 解决一元二次方程实际问题时的思考过程
2. 不同形式的一元二次方程的解法选择
教学步骤:
一、导入新课
教师简要介绍一元二次方程的基本概念,并通过一个简单的例子引入新知识。
二、讲解一元二次方程的定义和性质
1. 介绍一元二次方程的一般形式及系数的含义
2. 讲解一元二次方程的解的个数及性质
3. 引导学生理解一元二次方程的图像和特点
三、讲解一元二次方程的解法
1. 介绍一元二次方程求解的常用方法:配方法、公式法和因式分解法
2. 案例演练,让学生掌握不同方法的应用技巧
四、讲解一元二次方程的应用
1. 指导学生如何将实际问题转化为一元二次方程
2. 案例分析,让学生理解一元二次方程在实际生活中的应用
五、课堂练习
布置练习题,帮助学生巩固所学知识并提高解题能力。
六、课堂总结
教师总结本节课的重点内容,并鼓励学生勤加练习,提高解题能力。
教学反思:
本节课通过引导学生了解一元二次方程的概念和性质,讲解了一元二次方程的解法和应用,培养了学生的数学思维和解决问题的能力。
在教学过程中,教师应注重案例分析和实际问
题应用,激发学生学习兴趣和思维能力,提高他们的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理知识结构梳理几何法证明正弦定理的证明向量法证明已知两角和任意一边正弦定理正弦定理 正弦定理的两种应用已知两边和其中一角的对角解三角形知识点1 正弦定理及其证明1正弦定理:2.正弦定理的证明:(1)向量法证明(2)平面几何法证明3.正弦定理的变形知识点2 正弦定理的应用1.利用正弦定理可以解决以下两类有关三角形的问题:(1)已知两角和任意一边,求其他两边和另一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。
2.应用正弦定理要注意以下三点:(1)(2)(3)知识点3 解三角形1.1.2余弦定理知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论3. 余弦定理能解决的一些问题:4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4)知识点2 余弦定理的的证明 证法1: 证法2:知识点3 余弦定理的简单应用利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角;(2)已知两边和它们的夹角,可以求第三边,进而求出其他角。
例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =25,且a+b=9,求c.1.2应用举例知识点1 有关名词、术语(1)仰角和俯角:(2)方位角:知识点2 解三角形应用题的一般思路(1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形模型;(3)合理选择正弦定理和余弦定理求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。
1.3实习作业实习作业的方法步骤(1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。
要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。
要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。
(2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。
一般的解决方法就是运用正弦定理、余弦定理解三角形。
第二章数列2.1数列的概念与简单表示法知识点1 数列的概念1.按照一定顺序排列着的一列数叫做数列。
2.关于数列的概念须理解好的以下几点:(1)(2)3.数列的表示方法4.关于定义的理解,还应注意以下几点:(1)(2)(3)知识点2 数列的通项公式1.数列的通项公式2.数列的通项公式的不唯一性3.对于数列通项公式的理解注意以下几点:(1)(2)(3)(4)知识点3 表示数列的基本方法1.基本方法2.对三种基本方法的理解:(1)(2)(3)3.数列的图像知识点4 数列的分类1.有穷数列和无穷数列2. 按照项与项之间的大小关系,即数列的增减性,可以分为以下几类: (1)递增数列: (2)递减数列: (3)摆动数列: (4)常数列:知识点5 数列的递推公式 递推公式的概念如果已知数列}{n a 的第一项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
递推公式也是给出数列的一种重要形式。
2.2等差数列知识点1 等差数列 1. 等差数列的定义 2. 定义还可以叙述为3. 对等差数列的理解还需注意以下六点: (1) (2) (3) (4) (5) (6)知识点2 等差数列的通项公式1.通项公式为d n a a n )1(1-+=,1a 为首项,d 为公差。
2.推导通项公式 方法1: 方法2: 方法3: 方法4:3.通项公式的变形4.通项公式的应用 (1) (2)知识点3 等差数列的图像 知识点4 等差中项 1. 2. 3.知识点5 等差数列的性质 1. 2. 3. 4. 5.2.3 等差数列的前n 项和知识点1等差数列前n 项和公式的推导 1. 举例:?100321=++++ 2. 推导等差数列前n 项和公式:3. 对等差数列前n 项和公式的理解,应注意以下四个问题: (1) (2) (3) (4)知识点2 等差数列前n 项和的性质 (1) (2) (3) (4)知识点3 利用前n 项和公式判定等差数列2.4 等比数列知识点1 等比数列的定义 1. 等比数列的定义 2. 关于定义的注意问题: (1) (2) (3) (4) (5) (6) (7)知识点2 等比数列的通项公式1. 等比数列通项公式:11-∙=n n q a a ()0≠q .2. 等比数列通项公式的推导: 方法1: 方法2: 方法3:3. 通项公式及其变式的应用: (1) (2) (3)知识点3 用函数的观点看等比数列的通项公式 知识点4 等比中项 1. 等比中项的意义2. 对等比中项的理解必须注意以下几点: (1) (2) (3)知识点5 等比数列的性质与等差数列的性质相类比,我们可以得到等比数列的如下性质: (1) (2) (3) (4) (5) (6) (7) (8)2.5等比数列的前n 项和知识点1 等比数列前n 项和公式 1. 公式的推导2. 应用等比数列前n 项和公式时需注意的几个问题 (1) (2) (3) (4)知识点2 等比数列前n 项和公式的应用 知识点3 等比数列的前n 项和的性质(1)上下标的“等和性”,即:qq a a q q a a q q a a s m n m n n n --=--=--=+-11111111;(2)若项数为n 2,则奇偶s s =q ;(3)m s ,m m s s -2,m m s s 23-, m k km s s )1(--, 成等比数列,公比为mq 。
第三章 不等式3.1不等关系与不等关系知识点1 不等式的有关概念 1.不等式的定义.2.同向不等式和异向不等式.3.绝对值不等式、条件不等式和矛盾不等式. (1) (2) (3)4.关于b a ≤和b a ≥的含义. 知识点2 实数比较大小的依据与方法 1.实数的两个特征.(1)任意实数的平方不小于0,即02≥⇔∈a R a ;(2)任意两个实数都可以比较大小.反之,可以比较大小的两个数一定是实数. 2.实数比较大小的依据. 3.实数比较大小的方法.两个实数大小的比较方法一般有两种: (1)作差法: (2)作商法:知识点3 不等式的性质及推导性质1:a b b a <⇔>. 性质2:c a c b b a >⇒>>,. 性质3:c b c a b a +>+⇒>.性质4:(1)bc ac c b a >⇒>>0,.(2)bc ac c b a <⇒<>0,. 性质5:d b c a d c b a +>+⇒>>,. 性质6:bd ac d c b a >⇒>>>,0. 性质7:)2,0≥∈>⇒>>n N n b a b a nn (. 性质8:)2,(0≥∈>⇒>>n N n b a b a n n.3.2一元二次不等式及其解法知识点1 一元二次不等式及一元二次不等式的解集(1)形如)0(02≥>++c bx ax 或者)0(02≤<++c bx ax (其中0≠a )的不等式叫做一元二次不等式.(2)设一元二次方程)0(02>=++a c bx ax 的两不等实根分别为1x 、2x (21x x <),则 不等式02>++c bx ax 的解集为}|{12x x x x x <>或; 不等式02<++c bx ax 的解集为}|{21x x x x <<; 不等式02≥++c bx ax 的解集为}|{12x x x x x ≤≥或; 不等式02≤++c bx ax 的解集为}|{21x x x x ≤≤. 知识点2 一元二次不等式与相应函数、方程的联系(1)先求出一元二次方程)0(02>=++a c bx ax 的根,再根据函数图像与x 轴的相关位置确定一元二次不等式的解集. (2)列表如下:解含参数的一元二次不等式,往往需要对参数进行讨论,比较(相应方程的)根的大小,从而确定不等式的解集.例1下列不等式:(1)02322>--x x ; (2)2632>+-x x ;(3)01692>+-x x ; (4)0542>+-x x .例2 解关于x 的不等式:0)1(2<--+a x a x .解:方程0)1(2=--+a x a x 的解为11-=x ,a x =2,函数a x a x y --+=)1(2的图像开口向上,所以(1) 当1-<a 时,原不等式的解集为}1|{-<<x a x ;(2) 当1-=a 时,原不等式的解集为∅; (3) 当1->a 时,原不等式的解集为}1|a x x <<-{.一元高次不等式0)(>x f 用数轴穿根法(或称根轴法,区间法)求解,其步骤是:(1)(2)(3)(4)知识点5 分式不等式的解法3.3二元一次不等式(组)与简单的线性规划问题知识点1 二元一次不等式(组)表示的平面区域1.回顾:2.二元一次不等式及其解的定义.3.二元一次不等式表示平面区域.4.二元一次不等式表示平面区域需注意的问题.(1)(2)(3)知识点2 线性规划1.线性规划问题举例.2.约束条件、线性约束条件和目标函数、线性目标函数.3.线性规划问题及可行解、可行域、最优解.3.4基本不等式:2b a ab +≤ 知识点1 基本不等式、算术平均数与几何平均数的概念(1)定理:如果(2)现给出这一定理的一种几何解释(如图)(3)对于公式ab b a 222≥+以及基本不等式2b a ab +≤,要注意: ①②③④⑤知识点2 利用基本不等式2b a ab +≤求函数的最值 1. 对于基本不等式+∈+≤R b a b a ab ,,2; 2. 利用公式2b a ab +≤求函数最值时应注意以下三个条件: (1)a ,b 均为正数;(2)b a +与ab 有一个为定值;(3)等号必须取到.以上三个条件缺一不可.另外使用),(222R b a ab b a ∈≥+也可以求某些函数的最值.谢谢!。