超大规模集成电路设计导论(VLSI)总复习(全英)

合集下载

超大规模集成电路分析与设计

超大规模集成电路分析与设计
➢ 第一代IC CAD系统
软件:SPICE; 设计技术特点:电路模拟和版图的设计验证
➢ 第二代IC CAD系统
技术特点: (1)以原理图为基础的EDA系统,以仿真和自动布局布线为核心 (2)自动综合器使被动的对设计结果的分析验证转为主动去选 择一个最佳的设计 结果。
➢ 第三代IC CAD系统
技术特点: (1)在用户与设计者之间开发了一种虚拟环境。 (2)各种硬件描述语言的出现(VHDL、Verilog HDL等) (3)高级抽象的设计构思手段(框图、状态图和流程图)
自顶向下的设计方法
行为级设计 算法描述 寄存器传输级 门级 电路级
版图级(物理级)
2. CMOS集成电路制造技术
2.1 半导体材料-硅(Silicon)
➢ 集成电路制造中最常用的一种材料,本征状态下是一种半导体 材料。
➢ 硅片的制备(西门子工艺:冶金级 SGS )
1. SiC(s)+ SiO2(s) 2. Si(s) + 3HCl(g) 3. 2SiHCl3(g) + 2H2(g)
2.2 硅片的制备 (7)
超净间(Cleanroom)
一个净化过的空间,它以超净空 气把芯片制造与外界的沾污隔离开 来。
级别 1 10 100 1000 10,000 100,000
0.1μm 3.50×10 3.50×102
0.2μm 7.70 7.50×10 7.50×102
0.3μm 3.00 3.00×10 3.00×102
1.2集成电路设计的发展(3)
EDA技术的发展方向
➢ 更广(产品种类越来越多) ➢ 更快(设计周期越来越快) ➢ 更精(设计尺寸越来越精细) ➢ 更准(一次成功率越来越高) ➢ 更强(工艺适用性和设计自动化程度越来越高)

超大规模集成电路设计导论(VLSI)总复习(全英)

超大规模集成电路设计导论(VLSI)总复习(全英)

VLSI复习题型:缩写5题10分简答12题60分计算3题30分Chapter 011.How to evaluate performance•Cost•Reliability•Speed (delay, operating frequency)•Power dissipation2.Regenerative property3.Delay :Chapter 021.Inverter layout2.Photolithography process1)Oxidation layering(氧化层)2)Pthotoresist coating(涂光刻胶)3)Stepper exposure(光刻机曝光)4)Photoresist development and bake(光刻胶的显影和烘干)5)Acid etching(酸刻蚀)6)Spin, rinse, and dry(旋转,清洗和干燥)7)Various process steps:Ion implantation(离子注入)Plasma etching(等离子刻蚀)Metal deposition(金属沉淀)8)Photoresist removal( or ashing) 去除光刻胶(即“沙洗”)Chapter 031.Linear/ Saturation mode2.Long channel vs short channel3.Capacitances= structure capacitances+channel capacitances+MOS diffusion capacitances4.Resistance=MOS sructure resistance+source and drain resistance+cantact resistance+wiringresistanceWith silicidation R方块ˆ is reduced to the range 1 to 4 Ω/方块(source and drain resistance)Chapter 041.C wire = C pp + C fringe + C interwire2.Dealing with resistance:1)Use better interconnect materials2)More interconnect layers3.RC Mode•Lumped RC model–total wire resistance is lumped into a single R and total capacitance into a single C–good for short wires; pessimistic and inaccurate for long wires•Distributed RC model–circuit parasitics are distributed along the length, L, of the wire4.DelayDelay of a wire is a quadratic function of its length, LThe delay is 1/2 of that predicted (by the lumped model)5.Reflection coefficient【画传输图(or 波形),计算题】Chapter 051.V M∝(W/L)p/(W/L)nIncreasing the width of the PMOS moves V M towards V DD,‰Increasing the width of theNMOS moves V M towards GND.2.Delay3.Power in CMOS1.Dynamic power consumption: charging and discharging capacitors;Not a function of transistor sizes;Need to reduce C L,Vdd,and f to reduce power.2.Short circuit currents: short circuit path supply rails during switching;Keep the input and output rise/fall times the same;If Vdd<Vtn+|Vtp|,then short-circuit power can be eliminated.3.Leakage: leaking diodes and transistors4.Technology scaling modelsFull scalingFixed voltage scalingGeneral scalingChapter 061.Static CMOS- output connected to either Vdd or GND via a low-resistance path⏹High noise margins⏹Low output impedance, high input impedance⏹No steady state path between Vdd and GND⏹Delay is a function of load capacitance and transistor resistanceDynamic CMOS--relies on temporary storage of signal values on capacitance of high-impedance circuit nodes.⏹Simpler, faster gates⏹Increased sensitivity to noise2.Static vs dynamic circuit⏹In static circuit at every point in time (except when switching) the output is connectedto either GND or V DD via a low resistance path.--fan-in of N requires 2N devices⏹Dynamic circuits rely on the temporary storage of signal values on the capacitance ofhigh impedance nodes--requires only N+2 transistors--takes a sequence of precharge and conditional evaluation phases to realize logicfunctions.●conditions on output1) once the optput of a dynamic gate is discharged, it cannot be charged again until thenext precharge opreation.2) Inputs to the gate can make at most one transition during evaluation.3) Output can be in the high impedance state during and after evaluation(PDN off), stateis stored in C L.●Properties of Dynamic Gates1)Logic function is implemented by the PDN only–number of transistors is N + 2 (versus 2N for static complementary CMOS)–should be smaller in area than static complementary CMOS2)Full swing outputs (VOL = GND and VOH = VDD)3)Nonratioed--sizing of the devices is not important for proper functioning (only for performance)4) Faster switching speeds5) Power dissipation should be better- consumes only dynamic power –no short circuit power consumption since the pull- up path is not on when evaluating-lower C L--both C int(since there are fewer transistors connected to the drain outpu t) and C ext(since there the output load is one per connectedgate, not two) -by construction can have at most one transition per cycle – no glitching6) Needs a percharge clockbinational vs Sequential logic4.Why PMOS in PUN and NMOS in PDN?Threshold drops5.Ratioed logic: Pseudo-NMOS→Small area and load, but static power dissipationChapter 07tch vs Register⏹Latch: level sensitive----As for positive: passes inputs to Q when the clock is high----transparent mode;When clock is low----hold mode⏹Flip-flop: edge sensitive2.Bistable circuit:The cross coupling of two inverters results in a bistablecircuit (a circuit with two stable states)⏹Have to be able to change the stored value by making A (or B) temporarily unstable byincreasing the loop gain to a value larger than 1Done by applying a trigger pulse at Vi1 or Vi2the width of the trigger pulse need be only a little larger than the total propagation delayaround the loop circuit (twice the delay of an inverter)⏹Two approaches used1.cutting the feedback loop (mux based latch)2.overpowering the feedback loop (as used in SRAMs)3.MS ET timing properties⏹Set-up time: time before rising edge of clk that D must be valid⏹Propagation delay: time for QM to reach Q⏹Hold time: time D must be stable after rising edge of clk4.Pipelining5.Schmitt Trigger(rise—P; fall—N)Chapter 091.Cross Talk: An unwanted coupling from a neighboring signal wire to a network nodeintroduces an interference that is generally called cross talk.2.Dealing with Capacitive Cross Talk•Avoid floating nodes•Protect sensitive nodes•Make rise and fall times as large as possible•Differential signaling•Do not run wires together for a long distance•Use shielding wires•Use shielding layers3.Cross Talk and Performance: when neighboring lines switch in opposite direction of victimline, delay increases.4.Impact of resistance is commonly seen in power supply distribution:–IR drop–Voltage variationsChapter 101.Clock Nonidealities:⏹Clock skew: Spatial variation in temporally equivalent clock edges;⏹Clock jitter: Temporal variations in consecutive edges of the clock signal⏹Variation of the pulse width2.Clock Uncertainties----Source of clock uncertainty(图形填空)(重点)简答题:•Clock‐Signal Generation (1)•Manufacturing Device Variations (2)•Interconnect Variations (3)•Environmental Variations (4 and 5)•Capacitive Coupling (6 and 7)3.Impact of Positive/Negative Clock Skew and Clock jitter (重点)1.Positive clock skew:Clock and data flow in the same direction2.Negative clock skew: Clock and data flow in opposite directions3.Jitter cause T to vary on a cycle-by-cycle basisCombined impact of skew and jitter:Constraints on the minimum clock period (positive)4.To reduce dynamic power, the clock network must support clock gating (shutting down(disabling the clock ) units)5. Clock distribution techniques--Balanced paths(H-tree network, matched RC trees)--Clock grids: minimize absolute delay6.Matched RC trees, represents a floor plan that distributes the clock signal so that the interconnections carrying the clock signals to the functional subblocks are of equal length.7. 彩图9:The unbalanced load creates a large skew, by careful tuning of the wire width, the load is balanced, minimizing the skew.8. Dealing with Clock Skew and Jitter•To minimize skew, balance clock paths using H-treeor matched-tree clock distribution structures. •If possible, route data and clock in opposite directions;eliminates races at the cost of performance.•The use of gated clocks to help with dynamic power consumption make jitter worse.•Shield clock wires (route power lines –VDD or GND –next to clock lines) to minimize/eliminate coupling with neighboring signal nets.•Use dummy fills to reduce skew by reducing variations in interconnect capacitances dueto interlayer dielectric thickness variations.•Beware of temperature and supply rail variations and their effects on skew and jitter. •Power supply noise fundamentally limits the performance of clock networks.Chapter 111.Full adder(P=A+B)2.Static vs dynamic Manchester Carry ChainStatic dynamic3.Square Root Carry Select Adder (PPT 24)4.Wallace‐Tree Multiplier(PPT 32)5.Logarithmic ShifterChapter 121.Semiconductor Memory Classification2.Bit line & word line3.Memory Timing(DRAM vs SRAM)DRAM: Multiplexde AddressingSRAM: Self-timed Address Switching/Changing 4.MOS OR ROM5. SRAM vs DRAM6. DRAM Timing7. SRAM ATD(Address Transition Detection)Chapter 131.Two Important Test Properties•Controllability ‐measures the ease of bringing anode to a given condition using only the input pins•Observability ‐measures the ease of observing thevalue of a node at the output pins2.Test Approaches•Ad‐hoc testing•Scan based test•Self test3.Scan Register11。

超大规模集成电路设计考试复习提纲

超大规模集成电路设计考试复习提纲

超大规模集成电路设计秋季学期考试复习提纲第一章集成电路设计进展一、基本概念1.集成电路制造工艺发展水平的衡量指标。

2.集成电路制造工艺的特点。

3.集成电路的分类方式与设计需具备的四个要素。

4.集成电路设计方法的演变过程。

5.新型EDA工具的发展趋势。

二、论述与分析1.集成电路制造工艺的发展趋势。

2.集成电路产业结构经历的变革。

3.何谓全定制设计、半全定制设计和定制设计。

4.基于EDA工具,简述一般IC的设计步骤。

5.集成电路的基本设计方法。

第二章集成电路制造工艺一、基本概念1.常用的集成电路制造工艺。

2.集成电路生产制造基本流程。

3.版图的定义、组成。

4.CMOS数字集成电路的延迟组成。

二、论述与分析1.Bipolar、MOS/CMOS等集成电路制造工艺的各自特性。

2.CMOS反相器的门延迟。

3.连线延迟。

第三章集成电路设计描述与仿真一、基本概念1.在数字系统集成电路设计中,需要完成两方面任务。

2.描述方式和描述域。

3.集成电路硬件设计通常的分层。

4.集成电路设计验证及常用方法。

5.集成电路设计验证中的逻辑仿真。

二、论述与分析1.描述方式一般选择原则。

2.模拟(或称仿真)过程与形式验证。

3.仿真建模与仿真流程。

第四章集成电路设计综合一、基本概念1.设计综合定义与分类。

2.逻辑综合定义、步骤和输入信息。

3.CMOS数字集成电路总功耗的组成。

4.高功耗对集成电路的影响。

5.功率优化应在不同的设计层次上进行。

二、论述与分析1.逻辑综合的方法与策略。

2.CMOS静态功耗的成因与动态功耗的成因。

3.静态功耗与动态功耗的常用优化方法。

第五章集成电路测试与可测试性设计一、基本概念1.集成电路测试的基本定义与概念。

2.逻辑门层次的故障模型。

3.测试生成一般方法和算法生成的一般步骤。

4.集成电路可测试性设计的相关概念与设计方法种类。

二、论述与分析1.集成电路测试的基本思想与面临的挑战。

2.对于数字集成电路建立故障模型的基本要求。

超大规模集成电路CAD 第一章 VLSI设计的概述教材

超大规模集成电路CAD 第一章 VLSI设计的概述教材
路 漫 漫 其 修 远 兮 吾 将 上 下 而 பைடு நூலகம் 索
差))
1952 年,英国皇家雷达研究所的达默第一次提出“集成电 路”的设想; 1958年美国德克萨斯仪器公司基尔比为首的小组研制出世 界上第一块集成电路了双极性晶体管(由12个器件组成的 相移振荡和触发器集成电路),并于1959年公布—这就是 世界上最早的集成电路,是现代集成电路的雏形或先驱 ; (基尔比于2000年获得诺贝尔物理学奖) 1960年成功制造出MOS管集成电路; 1965年戈登· 摩尔发表预测未来集成电路发展趋势的文章, 就是“摩尔定律”的前身; 1968年Intel公司诞生。
2019/4/12 4
第1章 VLSI概述
集成电路的发展除了物理原理外还得益于许多新工艺的 发明:
50年美国人奥尔和肖克莱发明的离子注入工艺; 56年美国人富勒发明的扩散工艺; 60年卢尔和克里斯坦森发明的外延生长工艺; 60年kang和Atalla研制出第一个硅MOS管; 70年斯皮勒和卡斯特兰尼发明的光刻工艺,使晶体管从点接触 结构向平面结构过渡并给集成电路工艺提供了基本的技术支持。 因此,从70年代开始,第一代集成电路才开始发展并迅速成熟。
图1 – 1 “点接晶体管放大器” 2019/4/12 3
路 漫 漫 其 修 远 兮 吾 将 上 下 而 求 索
第1章 VLSI概述
1948年,威廉· 肖克莱(William Shockley)—“晶体管之 父” ,提出结型晶体管的想法; 1951年,威廉· 肖克莱领导的研究小组成功研制出第一个可 靠的单晶锗NPN结型晶体管;(温度特性差、提纯度差、表面防护能力差(稳定性
路 漫 漫 其 修 远 兮 吾 将 上 下 而 求 索

中国科学院大学 段成华 VLSI 超大规模集成电路 期末复习笔记(1到10章)

中国科学院大学 段成华 VLSI 超大规模集成电路 期末复习笔记(1到10章)

MOS 管 耗尽区电荷以及宽度
阈值电压的定义,饱和区线性区等阶段的电流
阈值电压:强反型发生时
饱和区: 与 Vgs-Vt 平方成正比
线性区:
ID


n
(VGS
VT
)VDS

VDS 2
2

Vds 较小时忽略平方项,就是线性关系
沟调效应
增加 Vds 会使漏结的耗尽区变大,缩小了有效沟道长度。 影响为:Vds 会增大 ID
Vdd Vdd 0 'Supply' VgspVdd gatep dc='Supply' Vgsngaten Gnd dc='Supply'
.dc Vgsp0 'Supply' 'Supply/20' .dc Vgsn0 'Supply' 'Supply/20'
.print dc I1(mp) .print dc I1(mn)
* Set TSMC 0.18um library
*.model pch PMOS level=49 version = 3.1 *.model nch NMOS level=49 version = 3.1
.options list node post measout * Option List: Prints a list of netlist elements, node connections, and values for components, voltage and current sources, parameters, and more. * Option Node: Prints a node cross-reference table. * Option Post: Saves simulation results for viewing by an interactive waveform viewer. * Option Measout: Outputs .MEASURE statement values and sweep parameters into an ASCII file.

《超大规模集成电路设计》考试习题(含答案)完整版

《超大规模集成电路设计》考试习题(含答案)完整版

1.集成电路的发展过程经历了哪些发展阶段?划分集成电路的标准是什么?集成电路的发展过程:•小规模集成电路(Small Scale IC,SSI)•中规模集成电路(Medium Scale IC,MSI)•大规模集成电路(Large Scale IC,LSI)•超大规模集成电路(Very Large Scale IC,VLSI)•特大规模集成电路(Ultra Large Scale IC,ULSI)•巨大规模集成电路(Gigantic Scale IC,GSI)划分集成电路规模的标准2.超大规模集成电路有哪些优点?1. 降低生产成本VLSI减少了体积和重量等,可靠性成万倍提高,功耗成万倍减少.2.提高工作速度VLSI内部连线很短,缩短了延迟时间.加工的技术越来越精细.电路工作速度的提高,主要是依靠减少尺寸获得.3. 降低功耗芯片内部电路尺寸小,连线短,分布电容小,驱动电路所需的功率下降.4. 简化逻辑电路芯片内部电路受干扰小,电路可简化.5.优越的可靠性采用VLSI后,元件数目和外部的接触点都大为减少,可靠性得到很大提高。

6.体积小重量轻7.缩短电子产品的设计和组装周期一片VLSI组件可以代替大量的元器件,组装工作极大的节省,生产线被压缩,加快了生产速度.3.简述双阱CMOS工艺制作CMOS反相器的工艺流程过程。

1、形成N阱2、形成P阱3、推阱4、形成场隔离区5、形成多晶硅栅6、形成硅化物7、形成N管源漏区8、形成P管源漏区9、形成接触孔10、形成第一层金属11、形成第一层金属12、形成穿通接触孔13、形成第二层金属14、合金15、形成钝化层16、测试、封装,完成集成电路的制造工艺4.在VLSI设计中,对互连线的要求和可能的互连线材料是什么?互连线的要求低电阻值:产生的电压降最小;信号传输延时最小(RC时间常数最小化)与器件之间的接触电阻低长期可靠工作可能的互连线材料金属(低电阻率),多晶硅(中等电阻率),高掺杂区的硅(注入或扩散)(中等电阻率)5.在进行版图设计时为什么要制定版图设计规则?—片集成电路上有成千上万个晶体管和电阻等元件以及大量的连线。

超大规模集成电路与系统导论(附光盘)

超大规模集成电路与系统导论(附光盘)

超大规模集成电路与系统导论(附光盘)
第1章VLSI概论 1.1复杂性与设计 1.1.1设计流程举例1.1.2VLSI芯片的类型 1.2基本概念 1.3本书安排 1.4参考资料第1部分硅片逻辑第2章MOSFET逻辑设计 2.1理想开关与布尔运算 2.2MOSFET开关 2.3基本的CMOS逻辑门 2.3.1非门(NOT门) 2.3.2CMOS或非门(NOR门) 2.3.3CMOS与非门(NAND 门) 2.4CMOS复合逻辑门 2.4.1结构化逻辑设计 2.4.2异或门(XOR)和异或非门(XNOR) 2.4.3一般化的AOI和OAI逻辑门 2.5传输门(TG)电路逻辑设计 2.6时钟控制和数据流控制 2.7参考资料 2.8习题第3章CMOS集成电路的物理结构第4章CMOS集成电路的制造第5章物理设计的基本要素第2部分从逻辑到电子电路第6章MOSFET的电气特性第7章CMOS逻辑门电子学分析第8章高速CMOS逻辑电路设计第9章CMOS逻辑电路的高级技术第3部分VLSI系统设计第10章用Verilog——硬件描述语言描述系统第11章常用的VLSI系统部件第12章CMOS VLSI运算电路第13章存储器与可编程逻辑第14章系统级物理设第15章VLSI时钟和系统设计第16章VLSI电路的可靠性与测。

超大规模考试复习资料

超大规模考试复习资料

第一章集成电路设计进展一、基本概念1.集成电路制造工艺发展水平的衡量标准(1)特征尺寸一般是指集成电路在设计与生产中可以达到的最小线宽,也代表MOS 晶体管栅极在制造时可达到的最小沟道长度L。

(2)硅晶圆片直径是指一般集成电路芯片衬底材料硅晶圆片的直径。

(3)DRAM储存容量是指单片集成电路芯片上可存储数据信息的位数或信息量。

2.集成电路产业发展过程中一直遵循的Moore’s定律集成电路芯片上所集成的晶体管数量将每18~24个月翻一番。

3.集成电路的分类方式与设计需要具备的四个关键条件分类方式:(1)以集成度分类:小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路、特大规模集成电路、巨大规模集成电路(2)以实现功能特性与使用范围来分类:(实现功能特性分类)数字集成电路、模拟集成电路、数/模混合集成电路,(使用范围分类)通用集成电路、专用集成电路、专用标准产品或军用集成电路、工业用集成电路和民用集成电路(3)以设计方式分类:全定制设计集成电路、半定制设计集成电路、可编程设计集成电路(4)以制造工艺分类:双极工艺集成电路、MOS工艺集成电路、BiMOS工艺集成电路(5)从集成电路制造结构分类:厚膜混合集成电路、薄膜混合集成电路设计需要具备的四个关键条件:人才、工具、工艺库、资金二、论述与分析1.集成电路制造工艺的发展趋势集成电路制造工艺发展趋势性变化越来越明显,速度越来越快。

集成电路的特征尺寸越来越小、芯片尺寸越来越大、单片上的晶体管数越来越多、时钟速度越来越快、电源电压越来越低、布线层数越来越多、I/O引线越来越多2.集成电路产业结构经历的3次重大变革首次变革是以加工制造为主导的。

这一时期半导体制造在IC产业中充当主角,IC 设计和半导体工艺密切相关且主要以人工为主;第二次变革以芯片代工厂和集成电路设计公司的专业分工为标志。

这一时期是集成电路产业的一次大分工,设备产能提高,生产成本提高,相关厂家开始承接对外加工,形成了Foundry加工和Fabless 设计的专业分工,IC产业进入了以客户为导向的阶段,EDA工具的发展,使IC设计工程可以独立于生产工艺;第三次变革以设计、制造、封装和测试四业分离为标志。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VLSI复习题型:缩写5题10分简答12题60分计算3题30分Chapter 011.How to evaluate performance•Cost•Reliability•Speed (delay, operating frequency)•Power dissipation2.Regenerative property3.Delay :Chapter 021.Inverter layout2.Photolithography process1)Oxidation layering(氧化层)2)Pthotoresist coating(涂光刻胶)3)Stepper exposure(光刻机曝光)4)Photoresist development and bake(光刻胶的显影和烘干)5)Acid etching(酸刻蚀)6)Spin, rinse, and dry(旋转,清洗和干燥)7)Various process steps:Ion implantation(离子注入)Plasma etching(等离子刻蚀)Metal deposition(金属沉淀)8)Photoresist removal( or ashing) 去除光刻胶(即“沙洗”)Chapter 031.Linear/ Saturation mode2.Long channel vs short channel3.Capacitances= structure capacitances+channel capacitances+MOS diffusion capacitances4.Resistance=MOS sructure resistance+source and drain resistance+cantact resistance+wiringresistanceWith silicidation R方块ˆ is reduced to the range 1 to 4 Ω/方块(source and drain resistance)Chapter 041.C wire = C pp + C fringe + C interwire2.Dealing with resistance:1)Use better interconnect materials2)More interconnect layers3.RC Mode•Lumped RC model–total wire resistance is lumped into a single R and total capacitance into a single C–good for short wires; pessimistic and inaccurate for long wires•Distributed RC model–circuit parasitics are distributed along the length, L, of the wire4.DelayDelay of a wire is a quadratic function of its length, LThe delay is 1/2 of that predicted (by the lumped model)5.Reflection coefficient【画传输图(or 波形),计算题】Chapter 051.V M∝(W/L)p/(W/L)nIncreasing the width of the PMOS moves V M towards V DD,‰Increasing the width of theNMOS moves V M towards GND.2.Delay3.Power in CMOS1.Dynamic power consumption: charging and discharging capacitors;Not a function of transistor sizes;Need to reduce C L,Vdd,and f to reduce power.2.Short circuit currents: short circuit path supply rails during switching;Keep the input and output rise/fall times the same;If Vdd<Vtn+|Vtp|,then short-circuit power can be eliminated.3.Leakage: leaking diodes and transistors4.Technology scaling modelsFull scalingFixed voltage scalingGeneral scalingChapter 061.Static CMOS- output connected to either Vdd or GND via a low-resistance path⏹High noise margins⏹Low output impedance, high input impedance⏹No steady state path between Vdd and GND⏹Delay is a function of load capacitance and transistor resistanceDynamic CMOS--relies on temporary storage of signal values on capacitance of high-impedance circuit nodes.⏹Simpler, faster gates⏹Increased sensitivity to noise2.Static vs dynamic circuit⏹In static circuit at every point in time (except when switching) the output is connectedto either GND or V DD via a low resistance path.--fan-in of N requires 2N devices⏹Dynamic circuits rely on the temporary storage of signal values on the capacitance ofhigh impedance nodes--requires only N+2 transistors--takes a sequence of precharge and conditional evaluation phases to realize logicfunctions.●conditions on output1) once the optput of a dynamic gate is discharged, it cannot be charged again until thenext precharge opreation.2) Inputs to the gate can make at most one transition during evaluation.3) Output can be in the high impedance state during and after evaluation(PDN off), stateis stored in C L.●Properties of Dynamic Gates1)Logic function is implemented by the PDN only–number of transistors is N + 2 (versus 2N for static complementary CMOS)–should be smaller in area than static complementary CMOS2)Full swing outputs (VOL = GND and VOH = VDD)3)Nonratioed--sizing of the devices is not important for proper functioning (only for performance)4) Faster switching speeds5) Power dissipation should be better- consumes only dynamic power –no short circuit power consumption since the pull- up path is not on when evaluating-lower C L--both C int(since there are fewer transistors connected to the drain outpu t) and C ext(since there the output load is one per connectedgate, not two) -by construction can have at most one transition per cycle – no glitching6) Needs a percharge clockbinational vs Sequential logic4.Why PMOS in PUN and NMOS in PDN?Threshold drops5.Ratioed logic: Pseudo-NMOS→Small area and load, but static power dissipationChapter 07tch vs Register⏹Latch: level sensitive----As for positive: passes inputs to Q when the clock is high----transparent mode;When clock is low----hold mode⏹Flip-flop: edge sensitive2.Bistable circuit:The cross coupling of two inverters results in a bistablecircuit (a circuit with two stable states)⏹Have to be able to change the stored value by making A (or B) temporarily unstable byincreasing the loop gain to a value larger than 1Done by applying a trigger pulse at Vi1 or Vi2the width of the trigger pulse need be only a little larger than the total propagation delayaround the loop circuit (twice the delay of an inverter)⏹Two approaches used1.cutting the feedback loop (mux based latch)2.overpowering the feedback loop (as used in SRAMs)3.MS ET timing properties⏹Set-up time: time before rising edge of clk that D must be valid⏹Propagation delay: time for QM to reach Q⏹Hold time: time D must be stable after rising edge of clk4.Pipelining5.Schmitt Trigger(rise—P; fall—N)Chapter 091.Cross Talk: An unwanted coupling from a neighboring signal wire to a network nodeintroduces an interference that is generally called cross talk.2.Dealing with Capacitive Cross Talk•Avoid floating nodes•Protect sensitive nodes•Make rise and fall times as large as possible•Differential signaling•Do not run wires together for a long distance•Use shielding wires•Use shielding layers3.Cross Talk and Performance: when neighboring lines switch in opposite direction of victimline, delay increases.4.Impact of resistance is commonly seen in power supply distribution:–IR drop–Voltage variationsChapter 101.Clock Nonidealities:⏹Clock skew: Spatial variation in temporally equivalent clock edges;⏹Clock jitter: Temporal variations in consecutive edges of the clock signal⏹Variation of the pulse width2.Clock Uncertainties----Source of clock uncertainty(图形填空)(重点)简答题:•Clock‐Signal Generation (1)•Manufacturing Device Variations (2)•Interconnect Variations (3)•Environmental Variations (4 and 5)•Capacitive Coupling (6 and 7)3.Impact of Positive/Negative Clock Skew and Clock jitter (重点)1.Positive clock skew:Clock and data flow in the same direction2.Negative clock skew: Clock and data flow in opposite directions3.Jitter cause T to vary on a cycle-by-cycle basisCombined impact of skew and jitter:Constraints on the minimum clock period (positive)4.To reduce dynamic power, the clock network must support clock gating (shutting down(disabling the clock ) units)5. Clock distribution techniques--Balanced paths(H-tree network, matched RC trees)--Clock grids: minimize absolute delay6.Matched RC trees, represents a floor plan that distributes the clock signal so that the interconnections carrying the clock signals to the functional subblocks are of equal length.7. 彩图9:The unbalanced load creates a large skew, by careful tuning of the wire width, the load is balanced, minimizing the skew.8. Dealing with Clock Skew and Jitter•To minimize skew, balance clock paths using H-treeor matched-tree clock distribution structures. •If possible, route data and clock in opposite directions;eliminates races at the cost of performance.•The use of gated clocks to help with dynamic power consumption make jitter worse.•Shield clock wires (route power lines –VDD or GND –next to clock lines) to minimize/eliminate coupling with neighboring signal nets.•Use dummy fills to reduce skew by reducing variations in interconnect capacitances dueto interlayer dielectric thickness variations.•Beware of temperature and supply rail variations and their effects on skew and jitter. •Power supply noise fundamentally limits the performance of clock networks.Chapter 111.Full adder(P=A+B)2.Static vs dynamic Manchester Carry ChainStatic dynamic3.Square Root Carry Select Adder (PPT 24)4.Wallace‐Tree Multiplier(PPT 32)5.Logarithmic ShifterChapter 121.Semiconductor Memory Classification2.Bit line & word line3.Memory Timing(DRAM vs SRAM)DRAM: Multiplexde AddressingSRAM: Self-timed Address Switching/Changing 4.MOS OR ROM5. SRAM vs DRAM6. DRAM Timing7. SRAM ATD(Address Transition Detection)Chapter 131.Two Important Test Properties•Controllability ‐measures the ease of bringing anode to a given condition using only the input pins•Observability ‐measures the ease of observing thevalue of a node at the output pins2.Test Approaches•Ad‐hoc testing•Scan based test•Self test3.Scan Register11。

相关文档
最新文档