第一章 什么是组合数学
《组合数学》教学大纲

《组合数学》教学大纲《组合数学》教学大纲一、课程基本信息1、课程中文名称:组合数学2、课程类别:专业选修课3、适用专业:数学与应用数学、计算机专业4、课程地位:专业选修课5、总学时:30学时6、总学分:27、先修课程:数学分析、微分方程、高等代数二、课程目标1、组合数学是计算机应用领域中十分重要的基础理论课程,是计算机应用技术研究生的学位专业基础课。
学习该课程的主要目的是使学生掌握组合数学的理论、技术和方法。
应用组合数学方法解决实际工作中的计算机应用问题。
组合数学是一门提高思维分析能力和自我构造算法本领的必修课程。
2、通过组合数学这门课程的学习,可以有效地锻炼学生的论证能力,培养学生用组合学的思想和方法分析问题和解决问题的能力。
使学生能得到严格的逻辑推理与抽象思维能力的训练,建立数学模型与计算机科学实践之间的内在联系,不仅可以提高专业开发能力,而且为计算机教育打好数学基础。
通过本课程的学习,应达到知识和能力两方面的目标:(1)知识方面:系统地学习组合数学中的排列与组合、容斥原理及其应用、递归关系、生成函数、整数的分拆、鸽巢原理和定理、二分图问题和组合设计。
为解决实际问题,提高计算机专业开发能力打好知识基础。
(2)能力方面:使学生能得到组合数学的思想、方法和理论严格的逻辑推理与抽象思维能力的训练,了解数学中的抽象思维与计算机科学实践之间的内在联系,提高分析问题和解决问题的能力3、本课程开设时间比较灵活,总学时数为30学时。
三、课程内容第一章排列与组合(8学时)[教学目的与要求]本部分集中介绍排列和组合。
使学生认识到排列和组合是组合数学研究的最简单、最基本的课题。
通过三个基本计数原理及排列、组合公式的研究,进一步讨论了几个计数问题,能体会要想完满地解决一个排列和组合问题,往往需要较强的组合思维、巧妙的组合方法、熟练的组合技巧。
本章内容初步展示了组合数学的迷人魅力,有利于激发学生学习后续内容的兴趣。
§1.1 加法规则和乘法规则§1.2 排列§1.3 组合§1.4二项式定理§1.5组合恒等式第二章鸽笼原理(4学时)[教学目的与要求]本部分集中介绍鸽笼原理和定理,所谓的鸽巢原理也叫抽屉原理,是Ramsey 定理的特例。
高中数学组合数学与应用

高中数学组合数学与应用组合数学是高中数学的一个重要内容,它是数学中研究离散结构、组合问题的一个分支,也是许多实际问题的数学建模工具。
在本文中,我们将介绍组合数学的基本概念和应用。
一、组合数学的基本概念组合数学主要研究离散的、无序的集合以及其中的元素组合的方式。
下面是组合数学中常用的概念:1. 排列排列是指从$n$个不同元素中选出$m$个元素进行有序排列的方法数,通常用$P(n,m)$表示。
2. 组合组合是指从$n$个不同元素中选出$m$个元素进行无序组合的方法数,通常用$C(n,m)$或$\binom{n}{m}$表示。
3. 排列组合公式排列和组合之间存在一定的关系,可以通过以下公式进行转化:$$C(n,m)=\frac{P(n,m)}{m!}=\binom{n}{m}$$4. 二项式系数二项式系数是指二项式展开的系数,通常用$\binom{n}{k}$表示。
它的计算公式是:$$\binom{n}{k}=\frac{n!}{k!(n-k)!}$$二、组合数学的应用组合数学在实际问题中有着广泛的应用,主要体现在以下几个方面:1. 梅化尔问题梅化尔问题是组合数学中的经典问题之一。
问题描述为:在一个$n$个人的舞会中,每个人都想和其他所有人跳一次舞。
问需要进行多少次舞会可以满足所有人的需求?解答该问题需要使用组合数学的知识,即求解$n$个元素的排列数$P(n,n)$。
答案为$(n-1)!$次。
2. 集合运算组合数学中的集合运算包括并集、交集和差集等。
这些运算在数据库查询、信息检索等领域中得到广泛应用。
3. 赛事安排在体育赛事中,如何安排参赛队伍的对战组合是一个常见的问题。
组合数学可以帮助我们确定合适的赛程安排,以确保每个队伍都能与其他所有队伍进行比赛。
4. 密码学密码学是组合数学的重要应用领域之一。
组合数学中的排列和组合技术被广泛应用于密码的生成、破解以及信息加密等方面。
5. 图论图论是组合数学中的一个重要分支,它研究的是离散结构中的节点和边的关系。
组合数学引论教学设计

组合数学引论教学设计引言组合数学是数学中非常重要的分支,其研究对象是离散的结构和离散的问题。
组合数学的研究范围非常广阔,涉及到很多计算机、统计学、优化问题等领域,因此其教学也非常重要。
本文主要介绍组合数学引论的教学设计,旨在提高学生的兴趣,增强其掌握组合数学的能力。
教学目标•了解组合数学的基本概念和方法•掌握组合数学的常见应用•能够熟练运用组合数学的知识解决实际问题教学内容第一章:组合数学基础知识•排列与组合的定义•排列与组合的计算公式•排列与组合的应用第二章:图论与组合•图的基本概念•图的遍历算法•图的连通性问题•图的匹配问题第三章:树形计数•卡特兰数的定义•卡特兰数的递推公式•卡特兰数的应用第四章:生成函数•生成函数的定义•普通生成函数与指数型生成函数•生成函数的应用第五章:容斥原理•容斥原理的定义•容斥原理的应用•容斥原理的拓展应用教学方法•讲授法•课堂演示法•问题解决法•案例分析法教学评价课堂表现•准确性:理论知识掌握情况是否正确•严谨性:掌握概念和运算的准确性•灵活性:是否能够根据问题选择正确的解决方法•应用性:是否能够将理论知识用于实际问题的解决考试成绩•课堂测试:每章的小测验•期末考试:覆盖整个课程的考试教学资源•教材:《组合数学引论》(第2版)•幻灯片:基础概念、定理和例子的演示•作业:课后习题教学时间安排章节时间(周)第一章 2第二章 2第三章 2第四章 2第五章 2章节时间(周)期末复习 1期末考试 1总共时间10总结组合数学引论的教学设计任务繁重,但是非常重要。
本文提出了教学目标、教学内容、教学方法、教学评价、教学资源和教学时间安排等方面的指导,旨在帮助教师制定更有针对性的教学计划,提高学生的学习效果。
同时,在教学实践中,还应根据学生的实际情况不断调整教学内容和方法,使教学更加灵活、科学、高效。
组合数学--组合数学第一章

1.2排列与组合
定义:从n个不同元素中取r个不重复的元 素组成一个子集,而不考虑其元素的顺序, 称为从n个中取r个的无重组合。 组合的个数用C(n,r)表示。
1.2排列与组合
从n个中取r个的排列的典型例子是从n 个不同的球中,取出r个,放入r个不同的 盒子里,每盒1个。第1个盒子有n种选择, 第2个有n-1种选择,······,第r个有nr+1种选择。
例:长度为n的0,1符号串的数目为多少?
一一对应原理
• “一一对应”概念是一个在计数中极为 基本的概念。一一对应既是单射又是满 射。
• 如我们说A集合有n个元素 |A|=n,无非 是建立了将A中元与[1,n]元一一对应的 关系。
• 在组合计数时往往借助于一一对应实现 模型转换。
• 比如要对A集合计数,但直接计数有困难, 于是可设法构造一易于计数的B,使得A 与B一一对应。
1.2排列与组合
例 有5本不同的日文书,7本不同 的英文书,10本不同的中文书。 1)取2本不同文字的书; 2)取2本相同文字的书; 3)任取两本书
1.2排列与组合
解 1) 5×7+5×10+7×10=155; 2) C(5,2)+C(7,2)+C(10,2) =10+21+45=76; 3) 155+76=231=( 5+27+10)
1.7 若干等式及其组合意义
1.7 若干等式及其组合意义
1.7 若干等式及其组合意义
• 证2 从n个元素中取偶数个数的组合数
(包含0),等于取奇数个数的组合数。
• r为偶数的组合和r为级数的组合之间建 立一一对应即可。
• 举例说明
1.7 若干等式及其组合意义
组合数学卢开澄课后习题答案

组合数学卢开澄课后习题答案组合数学是一门研究离散结构和组合对象的数学学科,它广泛应用于计算机科学、统计学、密码学等领域。
卢开澄是中国著名的组合数学家,他的教材《组合数学》是该领域的经典之作。
在学习组合数学的过程中,课后习题是巩固知识、提高能力的重要途径。
下面我将为大家提供一些卢开澄课后习题的答案。
第一章:集合与命题逻辑1.1 集合及其运算习题1:设集合A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}。
习题2:证明若A∩B=A∩C,且A∪B=A∪C,则B=C。
答案:首先,由A∩B=A∩C可得B⊆C,同理可得C⊆B,因此B=C。
然后,由A∪B=A∪C可得B⊆C,同理可得C⊆B,因此B=C。
综上所述,B=C。
1.2 命题逻辑习题1:将下列命题用命题变元表示:(1)如果今天下雨,那么我就带伞。
(2)要么他很聪明,要么他很勤奋。
答案:(1)命题变元P表示今天下雨,命题变元Q表示我带伞,命题可表示为P→Q。
(2)命题变元P表示他很聪明,命题变元Q表示他很勤奋,命题可表示为P∨Q。
习题2:判断下列命题是否为永真式、矛盾式或可满足式:(1)(P∨Q)→(P∧Q)(2)(P→Q)∧(Q→P)答案:(1)该命题为可满足式,因为当P为真,Q为假时,命题为真。
(2)该命题为永真式,因为无论P和Q取何值,命题都为真。
第二章:排列与组合2.1 排列习题1:从10个人中选取3个人,按照顺序排成一队,有多少种不同的结果?答案:根据排列的计算公式,共有10×9×8=720种不同的结果。
习题2:从10个人中选取3个人,不考虑顺序,有多少种不同的结果?答案:根据组合的计算公式,共有C(10,3)=120种不同的结果。
2.2 组合习题1:证明组合恒等式C(n,k)=C(n,n-k)。
答案:根据组合的计算公式可得C(n,k)=C(n,n-k),因此组合恒等式成立。
前言-组合数学概述ppt课件

ppt精选版
27
Ramsey数
推广为一般问题:给定任意正整数a和b, 总存在一个最小整数 r(a,b),使得r(a,b) 个人中或者有 a 个人互相认识,或者 有 b 个人互相不认识。称 r(a,b) 为 Ramsey数。
ppt精选版
28
Erdös -Szekeres 定理
Ramsey定理是由Erdös和Szekeres于1935年提 出的。它是下述定理的一个推广:
ppt精选版
13
Euler 定理
如果一个图包含一条经过每条边恰好一次的闭途 径,则称这个图为欧拉图。
对任意的非空连通图,若它是欧拉的, 当且仅当它 没有奇度点。
Königsberg桥对应的图
ppt精选版
14
36 军官问题 (欧拉 1779)
The Great Frederic的阅兵难题-------欧拉的困惑
1 1,1 1,2,1 1,3,3,1 1,4,6,4,1 1,5,10,10,5,1 1,6,15,20,15,6,1
ppt精选版
12
七桥问题
近代图论的历史可追溯到18世纪的七桥问 题—穿过Königsberg城的七座桥,要求每座桥 通过一次且仅通过一次。
Euler1736年证明了不可能存在这样的路线。
ppt精选版
21
中国邮递员问题
1962年中国组合数学家管梅谷教授提出了著 名的“中国邮递员问题”。
一个邮递员从邮局出发,要走完他所管辖 的每一条街道,然后返回邮局。那么如何 选择一条尽可能短的路线。
ppt精选版
22
中国邮递员问题
这个问题可以转化为:给定一个具有非负 权的赋权图G,
(1)用添加重复边的方法求G的一个Euler赋
组合数学全集教案高中上册

组合数学全集教案高中上册教材:高中上册《组合数学全集》
教案内容:
第一章:基本概念
1.1 组合数学的概念及基本性质
1.2 排列与组合的概念及计算方法
1.3 排列与组合的应用
第二章:二项式定理
2.1 二项式定理的概念及推导
2.2 二项式定理的应用
第三章:二项式系数
3.1 二项式系数的概念及性质
3.2 二项式系数的计算方法
第四章:二次项展开
4.1 二次项展开的概念及性质
4.2 二次项展开的计算方法
第五章:多项式系数
5.1 多项式系数的概念及性质
5.2 多项式系数的计算方法
第六章:多项式展开
6.1 多项式展开的概念及性质
6.2 多项式展开的计算方法
教学目标:
1. 理解组合数学的基本概念和性质
2. 掌握排列与组合的计算方法及应用
3. 熟练运用二项式定理及二项式系数进行计算和推导
4. 熟练掌握二次项展开及多项式系数的计算方法
5. 能够运用多项式展开的知识解决实际问题
教学方法:
1. 讲授与演示相结合,示范解题过程
2. 小组合作,讨论解题思路
3. 练习与应用相结合,强化知识点的理解和应用能力
评估方式:
1. 课堂练习
2. 作业
3. 期中期末考试
教学时数:40课时
教学内容比较丰富,需要学生在课下进行反复练习,巩固所学知识点。
希望同学们能够在本学期内掌握组合数学的各种理论知识,提高计算能力和解题能力。
祝大家学习进步!。
组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当n为偶数时:
f(n)=
当n为奇数时:
f(n)=
证明:因为f(n)为2行n列的多米诺牌覆盖的棋盘。
所以当n为偶数时:
当所有多米诺牌都竖放时,有 种方法。
当只有1个(并列2个)多米诺牌横放,其余都竖放时,则有 种方法。
(1)当切除的方格位于奇数与奇数的位置时,因为m为奇数则m-1为偶数,因此除去方格所在的行,分成的剩余棋盘的行必然为偶数。所以该部分一定能完美覆盖;而方格所在的行数为1,列数为n-1为偶数,所以该部分也能被完美覆盖。因此,当切除的方格位于奇数行奇数列交叉处时剩下的棋盘可被完美覆盖。
(2)当切除的方格位于偶数行与偶数列交叉处时,以被切除的方格为中心分割出其周围紧邻的方格作为一部分,则该部分一定能被完美覆盖,而剩余部分经过分割必然会分成行与列至少有一个偶数的各部分棋盘。因此该各部分也能被完美覆盖。因此,当切除的白色方格位于偶数行与偶数交叉处时,剩下的棋盘可被多米诺牌完美覆盖。
综合(1)(2),则如果切除棋盘上的任意一个白色方格,那么剩下的棋盘可被多米诺牌完美覆盖。
3.解:犯人不能得到自由。
假设囚室为一张8行8列且由黑白方格构成的棋盘,设左上角方格为白色,则对角位置方格也为白色。如果从左上角白色方格能够依次通过每个方格到达右下角的白色方格,则需要跨越63次,然而左上角白格到白格需要跨越偶数次。因此假设于事实矛盾。所以,犯人不能得到自由。
当只有2个(并列4个)多米诺牌横放,其余都竖放时,则有 种方法。
当只有3个(并列6个)多米诺牌横放,其余都竖放时,则有 种方法。
……
当最多只有n/2个(并列即:f(n)=
同理:当n为奇数时:
f(n)=
f(12)= =233.
(2)g(1)=0,g(2)=3,g(3)=0,g(4)=12,g(5)=0
(4)当m为奇数,n同时为奇数时,m*n为奇数,则棋盘中有奇数个方格,所以在多米诺牌尽可能多覆盖棋盘时,必然会留出一个方格,因此不能由多米诺牌完美覆盖。
所以综上:一张m行n列棋盘被多米诺牌完美覆盖当且仅当m和n中至少有一个是偶数。
2.证明:因为左上角的方格为白色,所以白色方格必然落在偶数行与偶数行交叉位置和奇数行与奇数列交叉位置上。
第一章什么是组合数学
1.证明:因为一张多米诺牌覆盖两个方格。所以,
(1)当m、n同时为偶数时,m*n偶数,则棋盘可以由整数个多米诺牌完美覆盖。
(2)当m为偶数,n为奇数时,m*n为偶数,则棋盘中有偶数个方格,所以可以由多米诺牌完美覆盖。
(3)当m为奇数,n为偶数时,m*n为偶数,则棋盘中有偶数个方格,所以可以由多米诺牌完美覆盖。
13 15 24 33 42 44 4
21 23 32 41 43 3 12
11.证明:
假设2阶幻方存在,为
则a+b=b+d,则a=d
这与一个n阶幻方是由整数1,2,3,……n^2组成的n*n方阵矛盾。
所以假设不成立,即不存在2阶幻方。
12.解:30 39 48 1 10 19 28
38 47 7918 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45