23.1.1图形的旋转 -
23.1 图形的旋转(9大题型)

23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。
【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。
人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。
本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。
图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。
通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。
但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。
因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。
三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。
2.教学难点:旋转的计算方法,旋转在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。
2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。
2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。
3.计算器:为学生提供计算器,便于进行旋转的计算练习。
七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。
2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。
人教版九年级数学上册23.1.1《图形的旋转》试题及答案

23.1图形的旋转附答案班级姓名座号月日主要内容 : 旋转及对应点的相关观点及其应用一、讲堂练习:1. 把一个图形绕着某一点O 转动一个角度的图形变换叫做, 点O叫做,转动的角叫做.2. 如图 ,OAB 绕点 O 按顺时针方向旋转获得OEF ,在这个旋转过程中:(1) 旋转中心是点;旋转角是;(2) 经过旋转 , 点 A、 B 分别挪动到点的地点;(3) 对应线段 : 线段 OF 与线段, 线段 OE 与线段,线段 EF 与线段;(4) 对应角 :∠EOF 与,∠E与,∠F与.3.( 课本 63 页 ) 时钟的时针在不断地旋转, 从上午 6 时到上午9 时, 时针旋转的旋转角是多少度 ?从上午 9 时到上午 10 时呢 ?4.( 课本 63 页 ) 如图 , 杠杆绕支点转动撬起重物, 杠杆的旋转中心在哪里?旋转角是哪个角?二、课后作业 :1.在以下现象中 , 不属于旋转现象的是 ()A. 方向盘的转动B.水龙头开关的转动C. 电梯的上下挪动D. 钟摆的运动2.如图 , 将正方形图案绕点O旋转 180 后 , 获得的图案是 ()A B C D3. 钟表分针从 2 点 15 分到 2 点 20 分, 旋转的度数为 ()A. 20B. 26C. 30D. 364. 如图 , 在Rt ABC中 , ACB 90 , A 40 , 以直角极点C为旋转中心 , 将旋转到AB C的地点,此中A,B分别是A,B的对应点,且点 B 在斜边 A B CA 交 AB于D,则旋转角等于()A. 70B. 80C. 60D. 50第 4 题ABC 逆时针上, 直角边15. 如图 ,ABC 与ADE 都是等腰直角三角形, C 和AED 都是直角,点 E 在 AB 上,假如ABC 经逆时针旋转后能与ADE 重合,那么旋转中心是点;旋转的度数是.6. 如图 ,ABC 为等边三角形, D 为ABC 内一点,ABD 经过旋转后抵达ACP 的地点,则(1) 旋转中心是点;(2)旋转角度是;(3)ADP 是三角形.第5题第6题7.( 课本 66 页 ) 如图 , 说出压水机压水时的旋转中心和旋转角.8.( 课本 66 页 ) 如图 , 吃米的小鸡是站立的小鸡经过旋转获得的, 旋转中心是O .从图上量一量旋转角是多少度.三、新课预习 :1.对应点到旋转中心的距离;对应点与旋转中心所连线段的夹角等于;旋转前、后的图形.2.如图 , OAB绕O点按顺时针方向旋转获得OEF ,在这个旋转过程中,找出图中相等的角和相等的线段 .3. 如图 , E 是正方形ABCD 中, CD 边上随意一点,以点 B 为中心,把 EBC 逆时针旋转90 ,画出旋转后的图形 .2参照答案一、讲堂练习:1. 把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转, 点O叫做旋转中心,转动的角叫做旋转角.2. 如图 ,OAB 绕点 O 按顺时针方向旋转获得OEF ,在这个旋转过程中:(1) 旋转中心是点O;旋转角是∠ AOE、∠ BOF;(2) 经过旋转 , 点 A、 B 分别挪动到点E、F的地点;(3) 对应线段 : 线段 OF 与线段OB, 线段 OE 与线段OA,线段 EF 与线段AB;(4) 对应角 :∠EOF 与∠AOB,∠E与∠A,∠F 与∠B.3.( 课本 63 页 ) 时钟的时针在不断地旋转, 从上午 6 时到上午9 时, 时针旋转的旋转角是多少度 ?从上午 9 时到上午 10 时呢 ?解:时针1小时转30 ,从上午6时到9时,时针要旋转30 3 90 ;从 9时到 10时,时针要旋转 30 .4.( 课本 63 页 ) 如图 , 杠杆绕支点转动撬起重物, 杠杆的旋转中心在哪里?旋转角是哪个角?解 : 杠杆的旋转中心在点O,旋转角是∠ AOA .二、课后作业:1.在以下现象中 , 不属于旋转现象的是 ( C )A. 方向盘的转动B.水龙头开关的转动C.电梯的上下挪动D.钟摆的运动2. 如图 , 将正方形图案绕点O旋转 180 后, 获得的图案是( D )A B C D3.钟表分针从 2 点 15分到 2点 20分, 旋转的度数为 ( C )第 4 题A. 20B. 26C. 30D. 364. 如图 , 在Rt ABC中 ,ACB90, A 40, 以直角极点C为旋转中心 , 将ABC逆时针旋转到ABC的地点,此中A,B分别是 A,B 的对应点 , 且点B在斜边A B上, 直角边CA 交 AB于D ,则旋转角等于( B )A. 70B. 80C. 60D. 505.如图,ABC 与ADE 都是等腰直角三角形, C和AED都是直角 ,点E在 AB上,假如ABC 经逆时针旋转后能与ADE 重合,那么旋转中心是点A;旋转的度数是45°.6. 如图,ABC 为等边三角形, D 为ABC 内一点, ABD 经过旋转后抵达ACP 的地点,则(1) 旋转中心是点A; (2)旋转角度是60°;(3)ADP是等边三角形 .第5题第6题37.( 课本 66 页 ) 如图 , 说出压水机压水时的旋转中心和旋转角.解 : 压水机的旋转中心为把手柄与机体的连结点, 旋转角为把手柄旋转的角度 .8.( 课本 66 页 ) 如图 , 吃米的小鸡是站立的小鸡经过旋转获得的, 旋转中心是O .从图上量一量旋转角是多少度.解 : 经丈量旋转角AOA 约等于85.三、新课预习 :1.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等 .2.如图 , OAB绕O点按顺时针方向旋转获得OEF ,在这个旋转过程中, 找出图中相等的角和相等的线段 .答 : 相等的角是 :A E , B F ,AOBEOF ,AOE BOF .相等的线段是 : AB EF ,OA OE,OB OF .3.如图 , E 是正方形ABCD中 , CD边上随意一点 , 以点B为中心 , 把 EBC 逆时针旋转 90 , 画出旋转后的图形 .答 : E BA是由EBC逆时针旋转90后获得的 .4。
九年级数学23.1.1《图形的旋转》说课课件

4.巩固练习 深化知识 随堂练习1 随堂练习1
下列现象中属于旋转的有( 下列现象中属于旋转的有( C ) 个 ①地下水位逐年下降;②传送带的移动; 地下水位逐年下降; 传送带的移动; ③方向盘的转动;④水龙头开关的转动; 方向盘的转动; 水龙头开关的转动; ⑤钟摆的运动;⑥荡秋千运动. 钟摆的运动; 荡秋千运动. A.2 B.3 C.4 D.5
B C
试一试
如图,△ 绕点O旋转得 如图 △ABC绕点 旋转得 绕点 到△ DEF,则: 则 B
E A C
D F
O 点C的对应点是________; 的对应点是 点F 点O 旋转中心是________; 旋转中心是________; ________ , ∠AOD,∠BOE, 旋转角是_________________ 旋转角是_________________ ∠COF ;
认识旋转 旋转的概念
A 在平面内,把一个图形绕着 在平面内,把一个图形绕着 图形 O A 某一个定点转动一个角度 定点转动一个角度的图形 某一个定点转动一个角度的图形 变换叫作旋转(Circumrotation). 变换叫作旋转(Circumrotation). 旋转 B B´
/ C 这些运动有什么共同特点? 这些运动有什么共同特点? A
O
3.实例探究 培养能力
活动三:知识应用 香港特别行政区区旗中央的紫荆花图案 个相同的花瓣组成, 由5个相同的花瓣组成,它是由其中一瓣 经过几次旋转得到的? 经过几次旋转得到的?
例 题
如图: 是等边三角形, 是 如图:∆ABC是等边三角形,D是BC 是等边三角形
A M . N. E C
上一点, 经过旋转后到达∆ 上一点,∆ABD经过旋转后到达∆ACE的B D 经过旋转后到达 的 位置。( 。(1)旋转中心是哪一点? 位置。( )旋转中心是哪一点? 点A (2)旋转了多少度? 60度 )旋转了多少度? 度 的中点, (3)如果 是AB的中点,那么经过上述旋 )如果M是 的中点 中点N 中点 转后, 转到了什么位置? 转后,点M转到了什么位置? AC中点 转到了什么位置
初中数学教学课例《23-1-1旋转》课程思政核心素养教学设计及总结反思

角度的图形变换叫做.点 O 叫做,转动的角叫做.
教学过程
2.一般地,可以根据定义得出旋转的以下性质:
(1)对应点到旋转中心的距离.
(2)对应点与旋转中心所连线段的夹角等于.
(3)旋转前、后的图形.
(二)自主探究
例 1.如图所示,AC 是正方形 ABCD 的对角线,△ABC 经过旋转后到达△AEF 的位置,则旋转中心是哪点?旋 转方向是什么?旋转角度是多少?点 B 的对应点是什 么?
例 2.选择题: (1)如图所示,在平面直角坐标系中,点 A、B 的坐标分别为(-2,0)和(2,0).月牙①绕点 B 顺时针旋转 90°得到月牙②,则点 A 的对应点 A’的坐 标为() A.(2,2)B.(2,4)C.(4,2)D.(1,2) (2)下列各组图中,图形甲变成图形乙,既能用 平移,又能用旋转的是() (三)归纳总结: 1 一般地,可以根据定义得出旋转的以下性质: (1)对应点到旋转中心的距离相等. (2)对应点与旋转中心所连线段的夹角等于旋转 角. (3)旋转前、后的图形全等. 2.画已知图形旋转后的图形时,首先要确定一些对 应点的位置,这主要由旋转角度及对应点到旋转中心的 距离相等等条件确定,也可以利用一些特殊图形的性 质.
作研究、交流体会,培养学生的学习能力和图形的辨析
能力。
【知识与技能】
通过具体实例认识图形的旋转,理解“对应点到旋
转中心的距离相等”以及“旋转前、后的图形全等”的
基本性质。
【过程与方法】
教学目标
经历对具有旋转特征的图形进行观察、分析、动手
操作和画图等过程,按要求作出简单平面图形旋转后的
图形。
【情感、态度与价值观】
3、学生认知障碍点:学生的生活经验不足,大部
人教版初中数学九年级上册第二十三章23.1.1旋转的概念与性质

3.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对 应点D恰好落在BC边上.若AC= 3 , ∠B=60 °,则CD的长为( D ) A. 0.5 B. 1.5 C. 2 D. 1
E
A
C
D
B
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,旋转角等 于 44 ° .
A1 C,
A1B
BC,
A1BD CBF,
△BCF≌△BA1D;
1.下列现象中属于旋转的有( C )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的
转动;⑤钟摆的运动;⑥荡秋千运动.
A.2 B.3 C.4 D.5
2. 下列说法正确的是( B )
A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
3.旋转不改变图形的形状和大小.
A E
F
B
D O C
探究新知
素养考点 1 旋转作图
例1 如图,E是正方形ABCD中CD边上任意一点,以点A 为中心,把△ADE顺时针旋转90°,画出旋转后的图形.
想一想:本题中作 图的关键是什么?
A
D
E
作图关键-确定点E的对应点E′
B
C
例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点 B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=
x
A.45°,90° B.90°,45° C.60°,30° D.30°,60°
人教版九年级数学上册:23.1.1图形的旋转
图123.1.1图形的旋转知识点在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O 叫做______,转动的角叫做______.因此,图形的旋转是由______和_____及_ 决定的.一.选择题1. 下列物体的运动不是旋转的是( )A .坐在摩天轮里的小朋友B .正在走动的时针C .骑自行车的人D .正在转动的风车叶片2.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A .6个B .7个C .8个D .9个3.同学们曾玩过万花筒吗?如图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG 可以看成是把菱形ABCD 以点A 为中心( )得到的.A 、顺时针旋转60°B 、顺时针旋转120°C 、逆时针旋转60°D 、逆时针旋转120°4.图1可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是( )A .900B .600C . 450D .3005.如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )A 、300B 、600C 、900D 、1200图2二、填空6.如果图形上的点P经过旋转变为点P′,那么这两点叫做这个旋转的______.7.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.7题图8.如图,△ABC绕着点O旋转到△DEF的位置,则旋转中心是______.旋转角是______.AO=______,AB=______,∠ACB=∠______.8题图9题图9.如图,正三角形ABC绕其中心O至少旋转______度,可与其自身重合.A'10.一个平行四边形ABCD ,如果绕其对角线的交点O 旋转,至少要旋转______度,才可与其自身重合.11.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了______度.12.如图,把△ABC 绕C 顺时针旋转350,得到△A 'B 'C ,若∠BCA '=1000,则∠B /CA=_______。
图形的旋转的教学设计
23.1.1图形的旋转一、教材分析本节课是九年级上册第二十三章“23.1图形的旋转”的第一课时,主要研究旋转的定义,旋转的性质及其应用。
它是在学生学习了平移和轴对称基础上学习的,对发展学生的空间观念是一个渗透,是后续学习中心对称图形及其图形变化的基础,是空间与图形领域的基础知识,在教材中,起着承上启下的作用,同时,旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题.二、教学目标(一)结合生活中的具体实例认识旋转;(二)探索、理解旋转前后两个图形的对应线段相等、对应点到旋转中心的距离相等以及对应点与旋转中心的连线所成的角都等于旋转角。
(三)能按要求作出简单平面图形旋转后的图形。
(四)经历观察、思考、分析、概括、抽象等过程,得出所要学的知识。
(五)进一步体会知识与现实的紧密联系;(六)认识到通过旋转得到的图形,感受几何的美。
三、教学重点:掌握图形的旋转变换及其性质。
解决方法:通过观察图形,具体的实例进行思考。
四、教学难点:作出简单的平面图形旋转后的图形。
解决方法:在教师的引导下,勤思考,可以通过具体的操作来实现。
五、教学方法:探究式、引导法。
六、教学安排:1课时。
七、教学方法(一)多媒体辅助教学:突破学生学习旋转空间想象困难这一难点。
(二)情境教学法:用“数学之美”的挂历作为开篇吸引学生的注意力,调动学习兴趣。
(三)自主学习、合作探究法:课前以小组为单位预习新知并准备相应的旋转的实物与图片,课堂上采用教师主导,小组合作的学习方式,让学生遵循“观察——思考——分析——概括——归纳——总结”的主线进行学习八、教学准备学生:复习旧知、预习新知并准备旋转的实物或图片等教师:制作教学课件、三角板及圆规等。
九、教学环节(一)复习旧知铺垫新知观察两组图形变换。
提问学生是什么变换?问:我们曾经学过哪两种图形变换?还记得它们的概念和性质吗?设计意图比照前两种变换的概念和性质,一方面保证知识的连贯性,另一方面帮助学生探究分析旋转。
23.1 图形的旋转(1)教学设计
23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标1.知识与技能了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.2.过程与方法让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.。
人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计
人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《23.1图形的旋转(第1课时)》这一章节主要介绍了图形的旋转性质及其在实际问题中的应用。
通过本节课的学习,学生能够理解图形旋转的定义,掌握图形旋转的性质,并能够运用旋转性质解决一些实际问题。
本节课的内容是学生进一步学习图形变换的基础,对于培养学生的空间想象能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。
但是,对于图形旋转这一概念,学生可能较为陌生,因此需要在教学中给予充分的引导和解释。
此外,学生可能对于实际问题中的应用方面存在一定的困难,因此需要通过具体的例子和练习来帮助学生理解和掌握。
三. 教学目标1.知识与技能目标:学生能够理解图形旋转的定义和性质,并能够运用旋转性质解决一些实际问题。
2.过程与方法目标:通过观察和操作,学生能够培养空间想象能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对图形变换产生兴趣,并能够自主学习和探索。
四. 教学重难点1.重点:图形旋转的定义和性质。
2.难点:图形旋转在实际问题中的应用。
五. 教学方法1.引导法:通过提问和解释,引导学生思考和探索图形旋转的性质。
2.实例教学法:通过具体的例子和练习,帮助学生理解和掌握图形旋转的应用。
3.小组合作学习:学生分组进行讨论和练习,培养学生的合作和沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示图形旋转的定义和性质,以及一些实际问题的例子。
2.练习题:准备一些与图形旋转相关的练习题,用于巩固学生对知识的理解和应用能力。
3.教学工具:准备一些教具,如图形模板和旋钮,用于直观地展示图形旋转的过程。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的图形成交和平移的知识,为新课的学习做好铺垫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)旋转中心是_______.
的中点,那么经过上
A
2题的作图,回答:对称点是
相等的线段有_____________________________________.
AC=4,现将△ABC
′B′C′重叠部分的
六、课后练习:
必做题:70页第3题和第5题
选做题:
1.仔细观察下列图案,然后回答下列问题(填序号).
(1)是轴对称图形的有;(2)是旋转对称图形的有;(3)是中心对称图形的有;
(4)既是轴对称又是中心对称图形的有 . 2.下列图中,是中心对称图形的是( )
3.下列命题中的真命题是( )
A.关于中心对称的两个图形全等
B.全等的两个图形是中心对称图形
C.中心对称图形都是轴对称图形
D.轴对称图形都是中心对称图形
列图形中,是中心对称图形的是()
在平面坐标系中,两个点关于原点对称时,它们的坐标
(x, y)关于原点O 对称,点P' 坐标。