二次函数的应用教学案例

合集下载

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。

二次函数教案(3篇)

二次函数教案(3篇)

二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

初中数学二次函数教案(5篇)_1

初中数学二次函数教案(5篇)_1

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。

进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!二次函数数学活动教案(热门16篇)教学工作计划能够确保教学活动有条不紊地进行,提高教师的教学效率。

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。

次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。

)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。

3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。

)二、新课教授【例1】画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

九年级数学下册《二次函数的应用》优秀教学案例

九年级数学下册《二次函数的应用》优秀教学案例
四、教学内容与过程
(一)导入新课
在导入新课环节,我将结合学生的实际生活,提出以下问题:“同学们,你们在生活中遇到过抛物线运动吗?比如抛硬币、投篮等。这些现象与数学中的哪个知识点有关?”通过这个问题,引导学生回顾之前学过的抛物线知识,为新课的学习做好铺垫。
接着,我会展示一些与二次函数相关的图片和实例,如拱桥、卫星轨道等,让学生观察并思考这些图像的共同特点。在此基础上,引出本节课的主题——二次函数的应用,激发学生的好奇心和探究欲望。
小组合作是本章节教学的重要组成部分。我将根据学生的学习特点和兴趣,合理分组,使学生在合作交流中共同进步。在小组合作过程中,引导学生明确分工、相互协作,共同探讨二次函数的性质、图像以及应用问题。通过小组讨论、成果展示等形式,培养学生的团队协作能力和表达能力。
(四)反思与评价
在教学过程中,我将重视学生的反思与评价,让学生在反思中总结经验,不断提高。在每节课结束后,引导学生回顾所学内容,总结二次函数的性质、图像和应用方法,查找自己在学习过程中的不足之处,并进行针对性的改进。同时,开展多元化的评价方式,如自我评价、同伴评价、教师评价等,全面了解学生的学习情况,激发学生的学习积极性,促进学生的全面发展。此外,我还将关注学生的情感态度与价值观的培养,鼓励学生积极参与课堂活动,充分展示自己的个性特长,使学生在数学学习中获得成功的体验。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,每组选出一名组长负责组织讨论。以下为讨论的主题和步骤:
1.各小组结合教材和实例,探讨二次函数在实际问题中的应用方法。
2.各小组分享自己在讨论过程中的发现和心得,相互交流、学习。
3.针对本节课的重点和难点,引导学生相互提问、解答,共同提高。
4.学会使用数学软件或图形计算器绘制二次函数图像,以便更好地理解二次函数的几何性质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的应用教学案例
一、教学目标
1.知识目标:学生能够利用二次函数与一元二次方程的关系求解;能够利用二次函数图象解决实际问题,从而熟练运用数形结合的方法解决问题。

2.技能目标:培养学生根据实际情况把二次函数转化为方程进行而解决问题的能力,引导学生把实际问题数学化,即建立数学模型解决实际问题。

3.情感目标:经历“问题情境——自主探究——交流与讨论——猜想结论——得出结论”的数学思维、活动过程,体验成功的喜悦,感受数学与实际生活的紧密联系,增加学习数学的兴趣。

二、教学重、难点
1.教学重点:把二次函数转化为方程的数学思想。

2.教学难点:把实际问题转化为与二次函数有关的数学问题。

三、教学用具
多媒体
四、教学过程
(一)引入练习:
1.已知一次函数23+=x y ,当x = 时,1-=y 。

【设计意图】利用简单的一次函数,学生体验“已知函数值求自变量取值”的方法,为下面的练习做铺垫。

2.已知二次函数322--=x x y ,当1=x 时,y = ;当x = 时,5=y 。

【设计意图】在上一题基础上解决二次函数中的问题,由此总结二次函数与一元二次方程之间的关系。

(学生独立完成,体验二次函数与一元二次方程的联系,得出结论:)
(二)二次函数与一元二次方程:
(展示图片,联系实际,学生通过用自己做了解的交通常识来回答一系列问题,从而调动起学习的兴趣和解决问题的积极性,同时实现师生之间的互动。


情境:甲、乙两车在限速为40km/h 的湿滑弯道上相向而行时相撞。

事后勘察测得,甲车刹车距离为12m ,乙车刹车距离超过10m ,但小于12m 。

根据有关资料,在这样的湿滑路面上,甲车的刹车距离甲S (m )与车速x (m )之间的关系为201.01.0x x S +=甲,乙车的刹车距离乙
S (m )与车速x 之间的关系为x S 4
1=
乙; (先由学生独立思考,再分小组与同学交流意见,讨论“用什么来衡量甲、乙谁违章”,打开解决问题的窗口),即
求:⑴甲车刹车前的行驶速度?甲车是否超速?
⑵乙车刹车前的行驶速度?乙车是否超速?
【设计意图】联系实习生活,体现“二次函数与一元二次方程的联系”在实际生活中的应用。

利用交通事故案例,贴近生活,充分调动学生的积极性与学习兴趣,展开讨论,做出判断。

再独立解题。

c bx ax y ++=2一元二次方程 m c bx ax =++2二次函数
y=m
(学生独立计算结果,与同学交流计算结果,得到正确的结论,选代表回答问题。


解:根据题意可知:当12=甲y 时,1201.01.02=+x x 即:0121.001.02=-+x x
解得:40,3021-==x x (舍)
∴甲车刹车前的行驶速度是30km/h. ∵30<40 ∴甲车并不违章.
又∵124
110<<x ∴4840<<x ∴乙车违章. 说明:1.考虑到x 的实际意义,应舍去-40。

2.对于乙车的刹车距离是个取值范围,可做适当的提示引导。

(三)商场中的二次函数:
1.练习:某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500
个,根据销售经验,售价每提高1元销售量响应减少10个:
(1)假设销售单价提高x 元,那么销售每个篮球所获得的利润是 元;这种篮球每
月销售量是 个.
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出 最大利润,此时篮球的售价应定为多少元?
【设计意图】又一贴近生活实例,体验二次函数在市场中的运用。

在学生已练习的基础上,独立完成,并由学生分析,得出解决此类问题的基本模式:销售利润=(单价-进价)×销量 (学生独立审题、解答。

并板书问题(2)的解题过程。

请同学回答问题(1)的解题思路,由其他同学对解题思路与板书过程进行修改。

从而实现学生与学生之间的相互交流。

最后由教师总结此类题的解题模式与方法:)
销售利润=每件的利润×销量=(单价-进价)×销量
变式:某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500
个,根据销售经验,售价每降低1元,销售量相应增加10个;假设销售单价降低x 元,那么销售每个篮球所获得的利润是 元;这种篮球每月销售量是 个.
【设计意图】在原题目基础上进行变型,让学生体验同一类问题的不同问法,学会举一反三,熟练掌握此类问题。

2.(中考题)某公司经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,销
售量w(千克)与销售单价x(元/千克)之间存在着如图所示的一次函数关系.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求w 与x 之间的函数关系式;
(2)求y 与x 之间的函数关系式;当x 取何值时,y 的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内
获得2250元的销售利润,销售单价应定为多少元?
【设计意图】将此类问题的中考题进行简单变型,将一次函数与二次函数相结合,在相应提示下学生可以独立完成前两个问题。

由学生自己分析并讨论,第三问的解题方法,以及对解的取舍问题。

(前两问由学生独立解决,第三问带领学生一起分析。


解:(1)根据题意,设b kx w +=,因为图象经过(50,140),(100,40),可得:

⎨⎧=+=+4010014050b k b k 解得:⎩⎨⎧=-=2402b k 所以:w 与x 的函数关系式为:2402+-=x y
(2)由题意可知:()()240250+--=x x y
整理可得:1200034022-+-=x x y 配方得:()24508522
+--=x y 所以:当x=85时,y 有最大值,最大值为2450。

(3)当y=2250时,22501200034022=-+-x x 即:071251702=--x x
解得:95,7521==x x
因为公司要求x ≤90,所以x=75
即,公司要想获得2250元的销售利润,应该把单价定为75元。

(四)课堂小结:
1.二次函数与一元二次方程的关系。

2.商场中的二次函数,可用模式“销售利润=(售价-进价)×销售量”来解决,体现数学建模的思想。

五、教学反思
本堂课基本达到教学目标,重难点突出。

课堂教学紧凑,能够给学生独立思考与相互讨论的时间与空间,但课后发现还有许多不足:
1.体现出学生的薄弱点:对于二次函数顶点的求解过程不够熟练,需要加强练习。

需要加强对利润问题的练习。

2.对课堂气氛调动不够,学生因为紧张发挥的也不好,气氛有点呆板,不利于学生的积极学习。

应该多增加学生的活动,让学生气氛活跃起来,让整堂课讲的更有精神。

3.课堂上给学生讨论与交流的时间和空间不够,没有达到预期的效果。

4.对于学生课堂上出现的错误点出了,但点的不够透彻。

相关文档
最新文档