动生电动势产生分析
高二物理教案:理解动生电动势的含义与本质

高二物理教案:理解动生电动势的含义与本质理解动生电动势的含义与本质前言电动势是电磁学中一个重要的概念,广泛应用于各类电路和电器的设计和运作中。
动生电动势是一种重要的电动势,有着广泛的应用和重要的意义。
因此,在高中物理课程中,我们需要对动生电动势进行深入的学习和理解,以便更好地掌握电磁学理论和应用。
正文一、动生电动势的概念及本质动生电动势是指在磁通量变化的过程中,所产生的电动势。
其本质是由磁场的变化产生的电场力引起电荷在导体中移动而产生的电动势。
从能量的角度来看,电磁感应所产生的电动势是一种能量转换的现象,磁能被转换为电能。
二、动生电动势的公式动生电动势的公式可以用法拉第电磁感应定律来描述,即ε = -NdΦB/dt其中,ε表示电动势,N表示导体匝数,ΦB表示磁通量,t表示时间。
该公式表明,动生电动势与磁通量的变化率呈负相关,即磁通量变化越快,则产生的电动势也越大。
三、动生电动势的特点及应用1.动生电动势的大小与磁通量变化的速率成正比。
2.动生电动势的方向遵循楞次定律,即当磁通量的变化方向与导体匝数的绕线方向相反时,电动势的方向与电荷的运动方向相同;当磁通量的变化方向与导体匝数的绕线方向相同时,电动势的方向与电荷的运动方向相反。
3.动生电动势具有停留时间短、波动频率高的特点,因此通常用于高频电路和电器的设计和应用中。
4.应用方面,动生电动势广泛应用于各类电器和电路中,如变压器、电动机、发电机等,具有重要的实际意义。
四、动生电动势的实验为了更好地理解动生电动势的含义和本质,我们可以进行以下的实验:1.实验名:匝数对电动势的影响实验实验原理:利用霍尔效应实验器,改变绕制的线圈匝数,观察电动势的变化。
实验流程:① 在霍尔效应实验器上调节磁极,使其位于电感线圈的一侧;② 将霍尔效应实验器测量端的电压表和磁极所靠近的一端连接;③ 连接好线路后,让磁场跨过电感线圈,测量电动势ε,记录数据;④ 按照不同匝数分别重复以上步骤,记录不同条件下的电动势数据;实验结果:通过实验可以得出电动势的大小与导体匝数呈正比关系,即匝数越多,电动势越大;反之,匝数越少,电动势越小。
从动生电动势的产生看磁场中能量转换及安培力与洛伦兹力的关系

从动生电动势的产生看磁场中能量转换及安培力与洛伦兹力的关系
磁场中能量转换及安培力与洛伦兹力之间的关系是物理学研究的一大重要课题。
两者之间的关系对许多科学研究都有着重要的意义。
以下探讨从电动势的产生来看磁场中能量转换及安培力与洛伦兹力的关系。
电动势是一种极具发展潜力的能量,它由复杂的物理过程产生,通过磁场中的
能量转换及安培力与洛伦兹力的动作来产生。
首先,磁场中负电荷耦合时,易于产生安培力,这是因为它们之间可以形成安培链,使交流端口高压方向有负荷旋转方向。
当安培链中的电容器变化时,它将会使末端受电荷偏转,从而产生出一种动态作用力,这就是安培力。
其次,洛伦兹力被认为是安培力的负面反作用,它可以阻止负荷旋转,使动作受阻而难以继续。
这种反作用力就是洛伦兹力。
这种反作用力也与电动势的形成有关,当洛伦兹力 and 安培力相互抗衡时,
便会产生一种特殊的动作,也就是电动势。
因此,电动势的形成是由安培力与洛伦兹力共同作用的结果,而磁场中能量转换及安培力与洛伦兹力就是导致电动势形成的关键要素。
在科学研究中,磁场中能量转换及安培力与洛伦兹力的作用有时也会受到与之
相关的物理学现象的影响。
例如,电雾辐射会影响安培力的形成,从而影响洛伦兹力的传播;太阳的光谱也会影响磁场中能量的转换,从而影响电动势的形成。
总之,磁场中能量转换及安培力与洛伦兹力的关系是电动势产生的重要要素。
通过深入研究,可以更好地了解两者之间机理的实质,也可以更快速有效地开发出越来越多的新能源。
动生电动势的产生机制

动生电动势地产生机制
设有一段导线在稳恒磁场中运动,导线上任一导线元在某时刻地速度为,
载流子地电量为(设为正电荷),载流子在洛仑兹力地作用下,从端向端运动.
导线上所有导线元中地载流子都作同样地运动,结果使端积累正电荷,在端出现负电荷.当两端地正负电荷在导体内产生地电场作用于载流子地电场力和载流子受到地洛仑兹力平衡时,载流子地上述运动才停止.
这时若用另一根导线将、端连起来构成闭合回路,在回路中就出现了感应电流,、两端因电流而减少地电荷在失去平衡地洛仑兹力作用下获得不断补充.
在磁场中运动地导线是一个电动势源,产生电动势对应地非静电力是洛仑兹力.
通常将导体在磁场中运动产生地电动势称为动生电动势.
在这里,非静电性电场强度为
上地动生电动势为
对于导体回路,动生电动势为
可以证明(略),上式和法拉第电磁感应定律是一致地.。
动生电动势与感生电动势

【解】由于金属棒处在通电导线的非均匀磁场中,因此必
须将金属棒分成很多长度元dx,规定其方向由A指向B。这样 在每一dx处的磁场可以看作是均匀的,其磁感应强度的大小为
B 0I
2x
根据动生电动势的公式可知,dx小段上的动生电动势为
d动
(v
B)
dl
Bv
cos
dx
0I
2x
vdx
由于所有长度元上产生的动生电动势的方向都相同,所以金
d
dt
d dt
S
B
dS
又根据电动势的定义可得
L EK dl
式中,EK为感生电场的电场强度。感生电场的电场强度是 非静电性场强。
则有
L EK
dl
d dt
B dS B dS
s
s t
dB
s
S t
若闭合回路是静止的,即所包围面积S不随时间变化,即
S 0 ,则上式可写成
t
B L EK dl s t dS
性场强为
Ek
fL (e)
vB
根据电动势的定义可得,动生电动势为
a
动
L Ek
dl
(v B) dl
b
上式是动生电动势的一般表达式。由上式可知,动生电动势
的方向是非静电性场强 Ek v B 在运动导线上投影的指向。
【例9-2】如下图所示,长直导线 中通有电流I=10A,有一长l=0.1m的 金属棒AB,以v=4m·s-2的速度平行于 长直导线作匀速运动,棒离导线较近的 一端到导线的距离a=0.1m,求金属棒 中的动生电动势。
1861年,英国物理学家麦克斯韦提出感生电场的假设,认为 由于磁场变化而产生一种电场,是这个电场使导体中自由电子作 定向运动而形成电流。麦克斯韦还认为,即使没有导体,这种电 场同样存在。这种由变化磁场激发的电场称为感生电场。
动生电动势公式的推导及产生的机理

动生电动势公式的推导及产生的机理摘要:在本文中,应用导数的知识推导出动生电动势在各种特殊情况下的表达形式,并进一步探究了动生电动势产生的机理。
揭示了产生动生电动势的实质是运动电荷在磁场中受到洛伦磁力的结果。
关键词:电磁感应定律;动生电动势;洛伦磁力法拉第电磁感应定律告诉我们,只要通过回路所围面积中的磁通量发生变化,回路中就会产生感应电动势。
由公式s B dSφ=⎰⎰可知,使磁通量发生变化的方法是多种多样的,但从本质上讲,可归纳为两类:一类是磁场保持不变,导体回路或导体在磁场中的运动;另一类是导体回路不动,磁场发生变化。
前者产生的感应电动势称为动生电动势,后者产生的电动势为感生电动势。
在本文中,主要对动生电动势公式的推导及其产生的机理作浅显的阐释。
一、动生电动势在各种特殊情况下的表达形式在磁场保持不变的情况下,由于导体回路或导体运动而产生的感应电动势称为动生电动势(一)、在磁场中运动的导线内的动生电动势例1,如图1所示,一个由导线做成的回路ABCDA,其中长度为l的导线段AB在磁感应强度为B的匀强磁场中以速度V向右作匀速直线运动,AB、V和B 三者相互垂直,求运动导线AB段上产生的动生电动势。
解析:由题意可知,导线AB 、V 和B 三者相互垂直。
若在dt 时间内,导线AB 移动的距离为dx ,如右图所示,则在这段时间内回路面积的增量为dS ldx =。
如果选取回路面积矢量的方向垂直纸面向里,则通过回路所围面积磁通量的增量为:d ΦB S Bldx ==根据法拉第电磁感应定律知,导线AB 内所产生的感应电动势为[1]d Φε dt=- 其中,负号代表感应电动势的方向。
所以,在运动导线AB 段上产生的动生电动势的表达式为dx εBlv dtBl =-=-即运动导线AB 段上产生的动生电动势的大小为:Blv ,方向:B A →.例2、如图2所示,在方向垂直纸面向内的均匀磁场 B 中,一长为 l 的导体棒OA 绕其一端 O 点为轴,以角速度大小为ω逆时针转动,求导体棒OA 上所产生的动生电动势。
《大学物理》6.2动生电动势感生电动势解读

b
B B 1 2 dS 解: bc R S t t 2
B 0 t
× ×
O × × × ×
uc ub
a
× ×
上页
b E c
下页
四、涡电流
产生原因: 大块的金属导体处在变化的磁场中时,通过金属 块的磁通量发生变化,从而产生感应电动势,在 金属内部形成电流,称为涡电流。 涡电流特点:
A
G
E
B
。。
下页
如何度量这种本领? ε----电动势
上页
电动势: 电源把单位正电荷经内电路从 负极移到正极的过程中,非静 电力Fk所作的功 从场的观点: 非静电力对应非静电场
A非 q
q
E0
Fk qEk A非 Fk dl q Ek dl Ek dl
d 1.热效应: i dt
I
i
R
I(ω)
Q I 2 Rt 2
表明: 交流电频率越高发热越多——感应加 热原理
I(ω)
I(ω) I(ω)
I’
2.磁效应: 阻尼摆
上页 下页
小结:
动生电动势:磁场分布不变, 回路或导线在磁场中运动而引起的感应电动
势 感生电动势:导体回路不动,磁场随时间发生变化而引起的感应电动势
静电场
静止电荷
涡旋电场
变化磁场
有源场
无源场
上页 下页
感生电动势的计算 法拉第电磁感应定律
i
L
d d Ek dl
dt
dt
S B d S
因为回路固定不动,磁通量的变化仅来自磁场的变化
动生电动势

四、解题方法及举例
ε i = ∫ vB dl sin θ1 cos θ 2
−
+
1.确定导体处磁场 B ; 2.确定 v 和 B 的夹角θ1; 3.确定 v×B 的与 dl 的夹角 θ2; 4.分割导体元dl,求导体元上的电动势 d ε i 5.由动生电动势定义求解。
例1:在均匀磁 场 B 中,一长为 L 的导体棒绕一 端 o 点以角速度 ω 转动,求导体 棒上的动生电动 势。 解1:由动生电动 势定义计算
dy ∵v = dt
v
dx
由于假想回路中只有 I 导体棒运动,其它部 a L y 分静止,所以整个回 路中的电动势也就是 ⊗B 导体棒的电动势。 电动势的方向由楞次定律可知水平向左。
设计制作 干耀国
山东科技大学济南校区
× ×ω × v
× ×o × × × × × × ×
× L
l × × × × B ×
d ε i = vBdl sin
π
2
cos π = −vBdl
dl
导体元的速度为: v = lω 整个导体棒的 动生电动势为:
εi = ∫ d εi
−
+
= − ∫ vB dl = − ∫ l ωBdl
1 2 = − ωBL 2
+
ε i = ∫ E k ⋅d l
−
非静电场在电源内部从负极到正极移 动单位正电荷所作的功。
2.动生电动势定义 × × × × × × × × 当导体在磁 场中运动时内部 × × × × × × × × f × × × × × v L 的电荷所受的洛 × × × × × × 仑兹力 fL 为非静 × 电力,它将电荷 × × × × × × × B 从低电位移到高 × × × × × × × × 电位。 由电场强度定义和洛仑兹力的定义, fL 所产生的非静电场 Ek 满足: fL = q E k = q v × B
动生电动势深入探究动生电动势的概念与产生原理

动生电动势深入探究动生电动势的概念与产生原理动生电动势(又称感应电动势)是指通过磁场的变化而产生的电动势。
它是电磁感应现象的一种表现,广泛应用于电磁感应和电磁设备中。
本文将深入探究动生电动势的概念与产生原理,以加深对这一重要电学现象的理解。
一、动生电动势的概念动生电动势是指通过磁场的变化而在导体中产生的电动势。
当导体相对于磁场的磁通量发生变化时,会在导体中产生电场,从而产生电势差,即动生电动势。
动生电动势可由法拉第电磁感应定律来描述,该定律指出,动生电动势的大小与磁通量的变化率成正比。
二、动生电动势的产生原理动生电动势的产生原理涉及到磁场的变化以及导体中的电子运动。
当磁场线与导体垂直时,导体中的自由电子受到洛伦兹力的作用,沿着导体内部的方向运动。
若导体相对于磁场作匀速平移运动,自由电子将会受到一个恒定的洛伦兹力,导致电流的产生。
当导体相对于磁场作非匀速运动时,导体内的自由电子将受到不同的洛伦兹力。
这些力的变化将导致电子在导体中形成电场。
由于电子的集体运动,整个导体中会产生一个电势差,即动生电动势。
动生电动势的大小与磁通量的变化率有关。
磁通量是指磁场线穿过某个曲面的总数量,通常由磁感应强度和曲面的面积决定。
当磁场的磁通量发生变化时,导体中的电子将受到不同大小的洛伦兹力,进而导致动生电动势的产生。
三、动生电动势的应用动生电动势是电磁感应的基础,广泛应用于各个领域。
以下介绍几个常见的应用:1. 发电机:发电机利用动生电动势原理将机械能转化为电能。
通过让导体绕过磁场旋转,产生磁通量的变化,从而在导体中产生动生电动势,实现电能的转换和储存。
2. 变压器:变压器也是一种利用动生电动势原理工作的设备。
当交流电通过一个线圈时,变压器的铁芯中的磁通量随着电流的变化而发生变化,从而在另一个线圈中产生动生电动势,实现电压的变换。
3. 感应加热:感应加热是通过感应加热装置将电能转化为热能。
当高频交变电流通过线圈时,线圈中的磁场变化会导致导体加热,实现能量的转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动生电动势产生分析
作者:朱兵
在垂直纸面向里的匀强磁场中,导体受到一个向右外力F,使得导体做向右切割磁感线的运动,从而使导体内的自由电子因向右运动(当电流在导体内流过时,事实上是因为导体内的自由电荷(在金属中的自由电荷是电子,而在溶液中的自由电荷则为阴、阳离子)产生漂移而造成的)而产生向左的微电流I,则据左手定则,导体中电子受到一向下的洛仑兹力F1,导致电子在下端堆积,同时正电荷在上端多余出来堆积,于是导体上下端出现电势差,产生感应电动势E,即动生电动势是由于洛仑兹力使电荷堆积而形成的,而在导体中自由电子向下运动时又会产生一个向上的电流I1,所以又依据左手定则,此时导体会受到一个向左的安培力F2的作用,从而与导体运动方向相反而做负功。
所以综上所述,向下的洛仑兹力与向左的安培力都是由外力F使导体运动而产生的,但其中的洛仑兹力与安培力实质是不做功的,因为向下的洛仑兹力对自由电子做正功,而向左的安培力则实质对导体做负功,(安培力是洛仑兹力的宏观表现)所以这两个同性质的力于体系中做功的代数和等于零。
洛仑兹力总体表现不做功,所以洛仑兹力的作用并不提供能量,而只是传递能量。
故实质为外力通过运动产生洛仑兹力而将机械能转化为电能。
2011年12月18日星期日凌晨3:52 撰。