Mathematica介绍

合集下载

数学软件Mathematica简介

数学软件Mathematica简介

图形渲染
Mathematica可以生成高质量的图形和动画,用于工程 设计的可视化展示。这有助于工程师更好地理解设计原 理和性能特点,提高设计效率。
数据科学中的应用
数据挖掘
Mathematica提供了强大的数据分析和挖 掘工具,可以帮助数据科学家从大量数据中 提取有价值的信息。例如,聚类分析、关联 规则挖掘等。
提供交互式编程环境, 方便用户进行编程和调 试。
Mathematica的起源与发展
起源
Mathematica最初由美国数学家 Stephen Wolfram于1988年开发, 旨在提供一个强大的数学工具包,以 简化复杂的数学计算和可视化。
发展
经过多年的不断更新和完善, Mathematica已经成为一款功能强大 、易用性强的数学软件,广泛应用于 科研、教育、工程等领域。
支持多种类型的2D和3D图形,如散点图、 线图、曲面图、等高线图等。
数据可视化工具
提供丰富的数据可视化工具,如直方图、饼 图、热力图等。
可视化动画
可以创建动态的视觉效果和动画,以更好地 展示数据和过程。
可视化交互
用户可以通过交互式界面与图形进行交互, 以获取更多信息。
编程语言的高级特性
函数式编程
Mathematica采用函数式编程语言,支持高阶函数、匿名函数等特性。
数和微分方程求解方面更优秀。
与MATLAB的比较
MATLAB主要面向工程和科学计算,特别适合矩阵计算和数值分析。Mathematica在 符号计算、公式推导和数据可视化方面更胜一筹,而MATLAB在实时控制系统设计和信
号处理方面更具优势。
与其他编程语言的比较
要点一
与Python的比较
Python是一种通用的高级编程语言,广泛用于数据科学、 机器学习和Web开发等领域。Mathematica在数学计算和 符号推导方面更强大,而Python在灵活性和开放性方面更 优秀,两者在某些领域可以相互补充。

mathematica软件简介

mathematica软件简介

数据清洗
02
03
数据统计和分析
Mathematica可以方便地导入和 导出各种数据格式,如CSV、 Excel、数据库等。
Mathematica可以进行数据清洗 ,包括缺失值处理、异常值处理 等。
Mathematica可以进行各种数据 统计和分析,如描述性统计、回 归分析、聚类分析等。
图形和可视化
丰富的可视化功能
Mathematica软件具有丰富的可视化功能,可以生成各 种类型的图表和图形,包括二维和三维图形、动画、图像 处理等。
灵活的编程环境
Mathematica软件提供了一个灵活的编程环境,用户可 以使用Mathematica的编程语言(Wolfram Language )编写自定义函数和程序,扩展软件的功能。
THANK YOU
01
Mathematica可以进行各种代数运算,包括多项式
运算、矩阵运算、微积分运算等。
符号求解方程
02 Mathematica可以求解各种符号方程,如线性方程
、非线性方程、微分方程等。
符号化简
03
Mathematica可以将复杂的数学表达式进行符号化
简,得到最简形式。
数据处理和分析
01
数据导入导出
02
mathematica的基本操作
mathematica的基本操作
• Mathematica是一款由Wolfram Research公司开发的数学软 件,它以符号计算为核心,广泛用于科学计算、数值计算、数 学建模、数据分析和可视化等领域。
03
mathematica的功能介绍
符号计算
代数运算
mathematica的主要特点和优势
符号计算

mathematica简介

mathematica简介
求函数 f 的对自变量var的导数(或偏导数)
求函数 f 对自变量 x1,x2,混合偏导数 求函数 f 对自变量 x1,x2,的 n1,n2,阶混合偏导数
求导数(偏导数)
D[f , var]
D[f , x1, x2 ,]
D[f , {x1,n1},{ x2 ,n2},]
NUDT
Mathematica软件简介
NUDT
Mathematica软件简介
1
0.5
t1 -0.5
t3 1
t2
2
3
-1
NUDT
Mathematica软件简介
可选参数 PlotStyle(曲线的线型、颜色) PlotPoints(规定作图时取的最小点数)
GridLines(用于加网格线,可以在指定位置或默认)
Background(用于指定背景颜色,或灰度GreyLevel)
NUDT
Mathematica软件简介
表的操作 Join[ t1 , t2] Union[ t1 , t2] 将表 t1 和表 t2连接成一个表 将表 t1 和表 t2 的并集组成一个表
某些特殊属性表的建立 Table[ f , {i,imin , imax , stepi} , { j , jmin , jmax , stepj}]
绘制f(x)在区间[a, b]范围的图形
Plot[{f1(x), f2(x),}, {x, a, b}] 绘制多个函数图形 可选参数 PlotRange(绘图范围)、AspectRatio(高宽比)、
Axes(坐标)、AxesLabel(坐标名称)、
Ticks(坐标刻度标记)、AxesStyle(坐标轴颜色、线宽)
解方程(组) Solve[ eqns , vars ] 对系数按常规约定求解出方程(组)

Mathematica软件简介(精)

Mathematica软件简介(精)
function 20 15 10 5 -7.5 -5 -2.5 -5 -10 -15 -20 2.5 5 7.5 x
NUDT
Mathematica软件简介
1 0.5 0 -0.5 -1 -4 -2 0 2 4 -4 -2
4 2 0
1 0.5 0 -0.5 -1 -5 0 -5 5 0
5
1
2
0.5
自定义函数
如何定义分段函数? (4)算式及变量替换
NUDT
Mathematica软件简介
(5)表 表是存贮多个数、变量或算式等对象的一种数据结构,一 个表用一对花括号表示,其成员(元素)在括号内用逗号 隔开,同一个表的成员可以是不同的数据类型,表的成员 还可以是一个表(子表)。
表元素的操作 t[[n]] 表示表 t 的第 n 个元素(同Part[t , n]的意义) t[[i , j]] 表示表 t 中第 i 个子表的第 j 个元素 Length[ t ] 表示表 t 的元素个数
NUDT
数 学 实 验
—用计算机做数学
科学实验 根据一定目的 , 运用仪器、设备等物质手段,在人 为控制的条件下模拟自然现象,以认识自然界事物 的本质和规律为目的和任务。
数学实验 以数据、图形等为“思想材料”,以计算机为手段, 以数学软件为实验平台,通过对数学问题和实际问 题的探索,得到相应问题的解,并进行计算机模拟。
NUDT
Mathematica软件简介
【主要内容】介绍著名数学软件MATHEMATICA的 基本功能和使用方法,内容包括:MATHEMATICA 基础、基本的符号运算、绘制图形以及高级应用的简 单介绍。 【主要目的】了解 MATHEMATICA的基本操作,会 利用该软件进行符号演算、数值计算和绘制各种几何 图形,为其它数学试验搭好软件平台。

Mathematica入门(一)

Mathematica入门(一)

NUDT
Mathematica入门 入门
表的操作 Join[ t1 , t2] Union[ t1 , t2] 将表 t1 和表 t2连接成一个表 将表 t1 和表 t2 的并集组成一个表
某些特殊属性表的建立 Table[ f , {i,imin , imax , stepi} , { j , jmin , jmax , stepj}]
t1 = 1, 2, 4 t2 = 1, 3, Sin x , Cos x
8 8@ @ <D D 8 <
表元素的操作 t[[n]] 表示表 t 的第 n 个元素(同Part[t , n]的意义 个元素( 的意义) 的意义 t[[i , j]] 表示表 t 中第 i 个子表的第 j 个元素 Length[ t ] 表示表 t 的元素个数
p = x + 2 x y+ y p . x® 1
2
p = x2 + 2 x y + y2 p . x ® 1, y ® 2
8 <
NUDT
Mathematica入门 入门
(5)表 表是存贮多个数、变量或算式等对象的一种数据结构, 表是存贮多个数、变量或算式等对象的一种数据结构,一 个表用一对花括号表示,其成员(元素) 个表用一对花括号表示,其成员(元素)在括号内用逗号 隔开,同一个表的成员可以是不同的数据类型, 隔开,同一个表的成员可以是不同的数据类型,表的成员 还可以是一个表(子表)。 还可以是一个表(子表)。
1
-1.5
-1
-0.5 -0.5
0.5
1
1.5
-2
-1
1
2
-1
-1
-2
NUDT
Mathematica入门 入门

Mathematica简介

Mathematica简介

Mathematica简介§1 引言Mathematica软件是一个功能强大的数学软件。

利用Mathematica软件可以完成许多数值计算与符号演算的工作。

它可以做任意位精确度的数值计算,可以做有理式的各种演算,可以求有理式与超越方程的精确解,可以做一般表达式的向量与矩阵的各种运算,可以求一般表达式的极限`导数`积分以及幂级数展开,可以求解微分方程等等。

利用Mathematica软件可以非常方便地绘制图形。

它可以做出一元和二元的散点图等等。

Mathematica软件的命令系统本身构成了一种功能强大的程序设计语言,用这种语言可以比较方便地定义用户需要的各种函数和程序包,系统本身也提供了许多应用程序包。

§2 Mathematica 软件的基本命令双击Mathematica软件的图标即可启动Mathematica软件。

在命令窗口中输入命令,如Sin[Pi/2],然后同时按下Shife与Enter键即可执行相应的命令。

在输入的命令前出现提示符“In[1]:=”,其中“In”表示“输入”,数字“1”表示输入命令的序号;在运行结果之前会自动出现提示符“Out[1]=”,其中“Out”表示“输出”。

2.1 算术运算Mathematica软件的算术运算是指加减乘除及乘方`开方运算。

例1In[1]:= 3*(5-2)+4^(6-3)/2Out[1]= 41在Mathematica软件中,乘法用“*”或“”(空格)表示,除法用“/”表示,乘法用“^”表示。

例2In[2]:= 3^(1/3)Out[2]= 31/3In[3]:= 1/3+2/511Out[3]=15在Mathematica软件中,若输入的数据是精确的,计算结果保留精确数字。

若要计算近似值,可用下面的命令:例3 In[4]:= N[3^(1/3)]Out[4]= 1.44225函数N[x]表示x的近似值。

若采用浮点数输入,则计算结果为近似值,见例4。

Mathematica简介

Mathematica简介

Mathematica简介Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。

很多功能在相应领域内处于世界领先地位,截至2009年,它也是为止使用最广泛的数学软件之一。

Mathematica的发布标志着现代科技计算的开始。

自从20世纪60年代以来,在数值、代数、图形、和其它方面应用广泛,Mathematica是世界上通用计算系统中最强大的系统。

自从1988发布以来,它已经对如何在科技和其它领域运用计算机产生了深刻的影响。

人们常说,Mathematica的发布标志着现代科技计算的开始。

自从上世纪六十年代以来,在数值、代数、图形、和其它方面一直有个别的软件包存在。

但是,Mathematica的基本概念是用一个连贯的和统一的方法创造一个能适用于科技计算各个方面的软件系统。

实现这一点的关键之处是发明了一种新的计算机符号语言。

这种语言能仅仅用很少量的基本元素制造出广泛的物体,满足科技计算的广泛性。

这在人类历史上还是第一次。

当Mathematica1.0版发布时,《纽约时代报》写道:“这个软件的重要性不可忽视”;紧跟着《商业周刊》又将Mathematica评比为当年十大最重要产品。

在科技界,Mathematica被形容为智能和实践的革命。

Mathematica的影响最初,Mathematica的影响主要限于物理学、工程学、和数学领域。

但是,随着时间的变化,Mathematica在许多重要领域得到了广泛的应用。

现在,它已经被应用于科学的各个领域--物理、生物、社会学、和其它。

许多世界顶尖科学家都是它的忠实支持者。

它在许多重要的发现中扮演着关键的角色,并是数以千计的科技文章的基石。

在工程中,Mathematica已经成为开发和制造的标准。

世界上许多重要的新产品在它们的设计某一阶段或其它阶段都依靠了Mathematica的帮助。

在商业上,Mathematica在复杂的金融模型中扮演了重要的角色,广泛地应用于规划和分析。

Mathematica简介

Mathematica简介

Mathematica简介Mathematica简介软件概述Mathematica是由美国Wolfram公司研究开发的⼀个著名的数学软件,是⼀种强⼤的数学计算、处理和分析的⼯具。

它有着强⼤的符号计算功能, 可以作多项式的各种运算(四则运算、展开、因式分解等)、有理式的各种计算;它可以求⼀个复杂函数的极限、导函数、不定积分和作幂级数的展开、矩阵的运算等。

强⼤的数值计算功能, 可以作任意位精确度(实数值或复数值) 的数值计算;可以求多项式⽅程、有理⽅程和超越⽅程的精确解和近似解;求解微分⽅程、计算定积分的任意精度的近似值等。

它还具有强⼤的可视化功能,可以将2D和3D函数图形,声⾳的制作和播放;强⼤的并⾏计算功能,提⾼了软件的计算能⼒等等。

功能介绍Mathematica主要⽤于求解研究和⼯程计算领域中的问题,也可处理能够完成符号运算、数值计算,图形可视化,并⾏计算,程序与编程等多种操作。

笔记本和⽂档Mathematica 笔记本包含了⼀个⾼质量的⽂字处理系统的所有常见功能,并添加了许多其它的特殊功能。

程序构建的符号⽂档,采⽤独特灵活的格式。

笔记本基础,笔记本格式和样式,特殊字符,布局和表,数学排版,笔记本和界⾯定制,⽂档⽣成,底层笔记本设计等。

Mathematica 的笔记本它⽀持完整的标记、级联样式表、快速改变⽂档的能⼒。

优化的笔记本不仅可以交互使⽤,⽽且可以输出到⽹页或打印设备。

符号计算Mathematica 的基本核⼼思想是所有对象、数据、程序、公式、图形、⽂档、可以⽤符号表达式来表⽰。

这个统⼀概念构成了其统⼀的符号规划范式,使更多独特的Mathematica语⾔和系统成为可能。

Mathematica 的核⼼是⾼级的符号语⾔,它与⼴泛应⽤的编程式程序规范相统⼀,并且它独特的符号设计概念为程序设计概念增加了新的灵活性。

数值计算Mathematica的数值计算功能,包括计算⽅法,最优化与数理统计⽅⾯的内容,它的特点是准确计算与数值计算相结合,能够通过可选参数提⾼计算精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mathematica 5.0使用简介Mathematica是美国Wolfram Research公司研制的一种数学软件, 集文本编辑、符号运算、数值计算、逻辑分析、图形、动画、声音于一体, 与Matlab、Maple一起被称为目前国际上最流行的三大数学软件. 它以符号运算见长, 同时具有强大的图形功能和高精度的数值计算功能. 在Mathematica中可以进行各种符号和数值运算, 包括微积分、线性代数、概率论和数理统计等数学各个分支中公式的推演、数值求解非线性方程、最优化问题等,可以绘制各种复杂的二维图形和三维图形,并能产生动画和声音.Mathematica系统与常见的高级程序设计语言相似, 都是通过大量的函数和命令来实现其功能的. 要灵活使用Mathematica, 就必须尽可能熟悉各种内部函数(包括内置函数和软件包函数). 由于篇幅限制, 本附录以2003年发布的Mathematica 5.0为基础, 简单分类介绍软件系统的基本功能, 及与微积分有关的函数(命令)的使用, 其他功能请读者自行查阅帮助或有关参考文献. 另外, 为节省篇幅, 本附录有时也将键盘输入和系统输出尽可能写在同一行, 并省略某些输出, 读者可上机演示观看结果1 启动与运行Mathematica是一个交互式的计算系统, 计算是在用户和Mathematica互相交互、传递信息数据的过程中完成的. Mathematica系统所接受的命令都被称作表达式, 系统在接受了一个表达式之后就对它进行处理(即表达式求值), 然后再把计算结果返回.1.1 启动假设在Windows环境下已安装好Mathematica 5.0, 那么进入系统的方法是: 在桌面上双击Mathematica图标(图1-1)或从“开始”菜单的“程序”下的“Mathematica 5”联级菜单下单击Mathematica图标(图1-2)均可.图1-1 图1-2启动了Mathematica后, 即进入Mathematica的工作环境----Notebook窗口(图1-3), 它像一张长长的草稿纸, 用户可以在上面输入一行或多行的表达式, 并可像处理其他计算机文件一样, 对它进行创建、打开、保存、修改和打印等操作.第一个打开的Notebook工作窗口, 系统暂时取名Untitled-1, 直到用户保存时重新命名为止, 必要时用户可同时打开多个工作窗口, 系统会依次暂时取名为Untitled-2、Untitled-3 .图1-3 Mathematica的工作窗口在工作窗口中, 你就可键入想计算的东西, 比如键入2+3, 然后同时按下Shift键和Enter键或者只按下数字键盘区(右小键盘区)的Enter键, 这时系统开始计算并输出计算结果5, 同时自动给输入和输出附上次序标识In[1]:=和Out[1]= ;若再输入第二个表达式a=1+Abs[-3]-2*Sin[Pi/2]后, 按Shift+Enter输出结果, 系统也会作类似处理, 窗口变化如图1-4.图1-4 完成运算后的Mathematica的窗口1.2 基本命令Mathematica的基本命令有如下两种形式:(1)表达式/ 执行表达式运算, 显示结果, 并将结果保存在Out[x]中;(2)变量=表达式/ 除(1)的功能外, 还对变量进行赋值.注意:命令行后面如果加上分号“;”, 那么就不显示运算结果.1.3 退出要退出Mathematica, 可单击关闭窗口按钮或从菜单“File”中选择“Exit”(或“Close”)或按Ctrl (或Alt)+F4, 这时如果窗口中还有未保留的内容, 系统会显示一对话框, 询问是否保存. 单击“否(N)”,则关闭窗口;单击“是(Y)”,则调出“SaveNotebook”对话框, 等待你输入文件名, 保存“Notebook”的内容后再退出. 所保存的内容是以“.nb”为扩展名的Mathematica文件, 以后需要时, 可通过菜单“File”中的“Open”调入使用.1.4 使用联机帮助系统在使用Mathematica的过程中, 常常需要了解一个命令的详细用法, 或者想知道系统中是否有完成某一计算的命令, 联机帮助系统是最详细、最方便的资料库. 通常可使用如下两种求助方法:(1) 获取函数和命令的帮助在Notebook界面下, 用? 或?? 可向系统查询运算符、函数和命令的定义和用法. 例如查询函数Abs的用法可用Abs / 系统将给出调用Abs的格式及Abs命令的功能(如果用两个问号“??”, 则信息会更详细些);Abs* / 给出所有以Abs这三个字母开头的命令.(2) 使用Help菜单任何时候都可以通过按F1键或点击菜单项Help, 选择Help Browser调出帮助菜单, 供你选择浏览各种类的命令格式及功能.1.5 说明在输入时要注意如下几个规则:(1) 输入的字母严格区分大小写. 系统预定义变量和函数名第一字母一定要用大写(可参见表1-1和表1-2);(2) 变量名不能以数字开头, 当中也不能出现空格, 否则数字与字母之间或空格之间系统会默认是相乘关系, 例如x2可作变量名, 但2x表示2*x;(3) 严格区分花括号、方括号与圆括号, 函数后面的表达式一定要放在方括号内, 而算术表达式中的括号只允许用圆括号(无论有多少层);(4) 数值计算时, 输出的结果将尽量保持精确值, 即结果中有时会含有分式、根式或函数的原形式. 例如In[1]:=1/2+1/3 Out[1]= 5 6In[2]:=Sqrt[4+8] Out[2]=In[3]:=Sin[1+2] Out[3]= Sin[3]这时, 若要得到小数表示的结果(近似数), 可在命令行后面加上“//N”或引用N函数, 函数格式为N[表达式, 有效数位]. 例如In[1]:=1/2+1/3 //N Out[1]= 0.833333In[2]:=N[Sqrt[4+8],10] Out[2]=3.464101615(5) 特殊字母、符号的输入,可使用热键(见表1-3), 当然也可利用符号输入平台: 先从菜单“File”中的“Palettes”打开基本输入面板“4 BasicInput”窗口(见图1-5), 点击相应的符号即可实现数学运算的输入.符号输入平台(菜单项“File→Palettes”)中含有9种输入面板, 利用它们可大大方便字符、命令、函数的输入, 尤其是“3 BasicCalculation”窗口(“基本计算面板”,可见图1-5), 其中含有常用的7大类函数的输入面板, 需要应用某类函数的栏目时, 只须点击相应栏目的左端折叠标志符号“”, 即变成展开标志符号“∇”, 同时打开它所含下级的函数(类)输入面板, 最后找到所需的命令单击选定. 例如要输入一个2阶方阵, 可点击“File→Palettes→3 BasicCalculation →Lists andMatrices →Creating Lists and Matrices”,再点击选定“⎛⎫⎪⎝⎭”即可.图1-5 Mathematica的符号输入平台(6) 前面旧的命令行In[x], 可通过光标的上、下移动,对它进行编辑、修改再利用;对前面计算好的结果Out[x], 也可使用如下的方式调用:% / 代表上面最后一个输出结果;%% / 代表上面倒数第二个输出结果;%n / 代表上面第n个输出结果, 即Out[n].2 变量与函数变量和函数是Mathematica中广泛应用的重要概念, 对它们的操作命令非常丰富, 这里仅介绍几种基本的操作方法, 其它功能请读者随着学习的深入, 自己逐步去体会.2.1 变量赋值在Mathematica中, 运算符号“=”起赋值作用, 此处的“=”应理解为给它左边的变量赋一个值, 这个值可以是一个数值、一个数组、一个表达式,也可以是一个图形. 赋值有如下的基本形式:(1) 变量名=值/ 给一个变量赋值(2) 变量名1=变量名2=值/ 给二个变量赋相同值(3) {变量名1, 变量名2,…}={值1, 值2,…} / 给多个变量赋不同的值注意:变量一旦赋值后, 那么这个值将一直保留, 此后, 无论变量出现在何处, 都会用该值替代它, 直到你清除或再次定义它为止. 对于已定义的变量, 当你不再使用它的时候, 为防止它影响以后的运算, 最好及时清除它的值.清除变量值命令有如下两种形式:(1)变量名=.(2)Clear[变量名列表] /列表中列出的是要清值的变量名,之间用逗号分开例如In[1]:= x=y=2 Out[1]= 2In[2]:= s=2x+3y Out[2]= 10In[3]:= x=.In[4]:= s=2x+3y Out[4]= 6+2x2.2 变量替换表达式中的变量名(未赋值)就像一个符号, 必要时我们可用新的内容替换它. 变量替换格式如下:(1) 表达式/.变量名->值(2) 表达式/.{变量名1->值1, 变量名2->值2,…}例如In[1]:= 1+2x+3y/.{x->2,y->s+1} Out[1]= 5+3(1+s)注意: 变量替换与变量赋值的差异在于, 变量替换是暂时性的, 而变量赋值是长久性的.2.3 定义函数Mathematica系统提供了大量的内部函数让用户选用(可参见表1-2), 用户若有需要也可以自己定义新函数, 这些自定义的函数会加入到当前的系统中, 如同内部函数一样可被随时调用. 自定义函数的一般形式是:函数名[自变量名_]=表达式或函数名[自变量名_]:=表达式注意:下划线“_”是在自变量名的右边, 它表示左边的自变量是形式参数. 类似地, 可定义不少于两个自变量(多元)函数. 如二元函数定义为函数名[自变量名1_, 自变量名2_]=表达式In[1]:= f[x_]=x+3;{f[x],f[y],f[2]} Out[1]= {3+x,3+y,5} In[2]:= g[x_,y_]=x^2-y^2;In[3]:= g[1,2] Out[3]= 43 表与矩阵表是指形式上由花括号括起来的若干个元素, 元素之间用逗号分隔. 在运算中可对表作整体操作, 也可对表中的单个元素操作. 表可以表示数学中的集合、向量和矩阵, 也可以表示数据库中的一组记录. 表中的元素可以是任何数据类型的数值、表达式,甚至是图形或表格.3.1 表的基本操作(1) 建表: 表中元素较少时, 可在给出表名时又定义表中元素, 格式如下表名(变量名)={元素1,元素2, …}这里, 元素可以是不同类型的数据.经常地, 使用建表函数快速建表:表名=Table[通项公式, {循环变量,循环初值,循环终值,步长}]其中, 当循环初值或步长是1时可以省略, 循环范围还可多重设置.例如In[1]:= A={1,2,3};2+3A Out[1]= {5,8,11}In[2]:= t=Table[i+j,{i,2},{j,3}] Out[2]={{2,3,4},{3,4,5}}(2) 元素处理: 处理表元素常用的格式(函数)有A[[i]] \ 取表A中的第i个元素Part[A{i,j,…}] 或A[[{i,j,…}]] \ 取表A中的第i,j,..元素组成新表Part[A,i]=值或A[[i]]=值\ 给表A的第i个元素重新赋值3.2 矩阵的基本操作矩阵是表的特殊形式(二维表), 所有标准的表操作都可用于矩阵操作, 除此而外, 它具有很多特殊的运算函数, 下面就简单介绍几类常用的函数.(1) 创建特殊矩阵函数(表3-1)(2) 截取矩阵块函数(表3-2)(3) 矩阵的基本运算函数(表3-3)注意:[1] 向量也是表的特殊形式(一维表), 对它的操作命令很多是与矩阵操作相类似的, 这里就不在另列. 且在Mathematica的实际应用中, 是不区分行向量还是列向量的.[2] 矩阵(向量)间的相乘要用点乘符号“.”表3-1 创建特殊矩阵4 符号运算Mathematica是在一个完全集成环境下的符号运算系统, 它具有强大的处理符号表达式的能力, 代数运算、微分、积分和微分方程求解等都是很典型的例子.4.1 代数运算(1) 展开格式: Expand[表达式]注: 对多项式按幂次展开; 对分式展开分子, 各项除以分母.(2) 分解因式格式: Factor[表达式]注: 对多项式进行因式分解; 对分式分子、分母各自因式分解.(3) 化简格式: Simplify[表达式]例如In[1]:= Expand[(1+2x)^2] Out[1]= 1+4x+4x2In[2]:= Factor[%] Out[2]= (1+2x)2In[3]:= Simplify[1/(1+1/(1+x))+1/(2(1-x))] Out[3]=11 222xx x++-+说明:代数运算还有很多操作函数, 读者必要时可从“File→Palettes→2 AlgebraicManipulation ”的窗口面板中选用.4.2 微分(1) 一阶导数格式: D[函数,自变量] / 函数关于指定自变量的导数(2) 高阶导数格式: D[函数,{自变量,n}] / 函数关于指定自变量的n阶导数(3) 混合偏导数格式: D[函数, x , y,…] / 函数关于自变量x , y,…的混合偏导数(4) 全微分格式: Dt[函数] / 函数关于各变量的全微分例如In[1]:= D[Sin[x],x] Out[1]= Cos[x]In[2]:= D[Sin[2x],{x,2}] Out[2]= -4Sin[2x]In[3]:= D[Sin[x*y],x,,y] Out[3]= Cos[xy]-xySin[xy]In[3]:= Dt[Sin[x*y],x,y] Out[3]= Cos[xy](yDt[x]+xDt[y])4.3 积分(1) 不定积分格式: Integrate[函数,自变量](2) 多重不定积分格式: Integrate [函数,自变量1,自变量2]或Integrate [函数,自变量1,自变量2,自变量3](3) 定积分格式: Integrate[函数,{自变量,下限,上限}]或NIntegrate[函数,{自变量,下限,上限}] / 数值积分(4) 多重定积分格式: Integrate[函数,{自变量1,下限1,上限1},…]或NIntegrate[函数,{自变量,下限,上限},…] / 数值积分例如In[1]:= Integrate[Sin[x]+1,x] Out[1]= x-Cos[x]In[2]:= Integrate[4x*y+1,x,y] Out[2]= xy+x2y2In[3]:= Integrate[Sin[x]+1,{x,0,1}] Out[3]= 2-Cos[1]In[4]:= NIntegrate[Sin[x]+1,{x,0,1}] Out[4]= 1.4597In[5]:= Integrate[4x*y+1,{x,0,1},{y,0,1}] Out[2]= 24.4 常微分方程的准确解在Mathematica中, 使用函数DSolve[]可以求解线性和非线性的常微分方程(组). 求特解时, 可将定解的条件作为方程的一部分.格式: DSolve[方程,未知函数,自变量]例如In[1]:= DSolve[y’[x]==2x,y[x],x] Out[1]={{y[x]->x2+C[1]}} In[2]:= DSolve[{y’[x]==2y[x],y[0]==3},y[x],x] Out[2]={{y[x]->3e2x }}In[3]:= DSolve[{y’[x]==z[x],z’[x]== -y[x]},{y[x],z[x]},x]Out[3]={{y[x]->C[1]Cos[x]+C[2]Sin[x], z[x]->C[2]Cos[x] -C[1]Sin[x]}}注: 大多数情况, 微分方程的精确解是不能用初等函数表示出来的, 这时, 只能求其数值解, 并结合作图功能画出解的大致图形, 这些内容后面再作介绍.4.5 幂级数展开格式: Series[函数表达式,{变量,展开点x0,阶数n}]例如In[1]:= Series [Sin[x],{x,0,5}] Out[1]=3560[]6120x xx x -++注:去掉表达式中的误差项O[x]n 可调用Normal[] 函数.5 数值计算Mathematica的优势在于符号运算, 但对于数值问题, 它也提供了丰富的数值计算功能, 例如求和(有限或无限)、求极限值、解代数方程、求非线性方程数值解和求微分方程数值解等。

相关文档
最新文档