第一章工程材料类型及金属的晶体结构
第一章金属的晶体结构作业答案

第⼀章⾦属的晶体结构作业答案第⼀章⾦属的晶体结构1、试⽤⾦属键的结合⽅式,解释⾦属具有良好的导电性、正的电阻温度系数、导热性、塑性和⾦属光泽等基本特性.答:(1)导电性:在外电场的作⽤下,⾃由电⼦沿电场⽅向作定向运动。
(2)正的电阻温度系数:随着温度升⾼,正离⼦振动的振幅要加⼤,对⾃由电⼦通过的阻碍作⽤也加⼤,即⾦属的电阻是随温度的升⾼⽽增加的。
(3)导热性:⾃由电⼦的运动和正离⼦的振动可以传递热能。
(4) 延展性:⾦属键没有饱和性和⽅向性,经变形不断裂。
(5)⾦属光泽:⾃由电⼦易吸收可见光能量,被激发到较⾼能量级,当跳回到原位时辐射所吸收能量,从⽽使⾦属不透明具有⾦属光泽。
2、填空:1)⾦属常见的晶格类型是⾯⼼⽴⽅、体⼼⽴⽅、密排六⽅。
2)⾦属具有良好的导电性、导热性、塑性和⾦属光泽主要是因为⾦属原⼦具有⾦属键的结合⽅式。
3)物质的原⼦间结合键主要包括⾦属键、离⼦键和共价键三种。
4)⼤部分陶瓷材料的结合键为共价键。
5)⾼分⼦材料的结合键是范德⽡尔键。
6)在⽴⽅晶系中,某晶⾯在x轴上的截距为2,在y轴上的截距为1/2;与z轴平⾏,则该晶⾯指数为(( 140 )).7)在⽴⽅晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为(ī10),OC晶向指数为(221),OD晶向指数为(121)。
8)铜是(⾯⼼)结构的⾦属,它的最密排⾯是(111 )。
9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体⼼⽴⽅晶格的有(α-Fe 、 Cr、V ),属于⾯⼼⽴⽅晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六⽅晶格的有( Mg、Zn )。
3、判断1)正的电阻温度系数就是指电阻随温度的升⾼⽽增⼤。
(√)2)⾦属具有美丽的⾦属光泽,⽽⾮⾦属则⽆此光泽,这是⾦属与⾮⾦属的根本区别。
(×)3) 晶体中原⼦偏离平衡位置,就会使晶体的能量升⾼,因此能增加晶体的强度。
金属学与热处理第一章 金属的晶体结构

晶体结构特征:
点阵参数: a1=a2=a3=a,
α 1=α 2=α 3=1200
平面轴X1、X2、X3和Z轴的夹角=90 ——四轴坐标系
O
Z轴的单位长度=c,用a、c两个量来度量
点阵参数:α=β=90º, γ=120º; a1=a2=a3≠c, 理想状态:c/a=1.633
第一章 金属的晶体结构
本章教学目的
建立金属晶体结构的理想模型 揭示金属的实际晶体结构
§1-1 金属
一. 金属的特性和概念
1. 特性
金属通常表现出的特性:良好的导电性、导 热性、塑性、金属光泽、不透明。
2. 概念
(1) 传统意义上的概念。 (2) 严格意义上的概念:具有正的电阻温度系 数的物质,即电阻随温度的升高而增加的物质。
晶向─晶体点阵中,由阵点组成的任一直线,代 表晶体空间内的一个方向,称为晶向。 晶面─晶体点阵中,由阵点所组成的任一平面, 代表晶体的原子平面,称为晶面。
1.晶向指数的标定
晶向指数─用数字符号定量地表示晶向,这种数字符 号称为晶向指数。 以晶胞为基础建立三维坐标体系: z C′ O′ A′ c
γ O β α
晶体有各向异性, 非晶体则各向同性。
各向异性:不同方向上的性能有差异。
3.晶体与非晶体的相互转化性
玻璃
长时间保温
金属 极快速凝固
“晶态玻璃”
“金属玻璃”
非晶新材料的发展:光、电、磁、耐蚀 性、高强度等方面的高性能等。
二.晶体学简介
1.晶体结构模型的建立
(1) 假设:原子为固定不动的刚性小球,每个原子 具有相同的环境。
O′
z B′
C′
工程材料及热加工—金属及合金的晶体结构

晶胞: 晶胞
从晶格中取出一个能保持点阵几何特征的基本单元叫晶胞。显然 晶胞作三维堆砌就构成了晶格。晶格的最小单元。
晶格常数: 晶格常数
晶胞各棱边的长度。
3、典型的金属晶体结构 典型的金属晶体结构: 典型的金属晶体结构 金属元素除了少数具有复杂的晶体结构外,绝大多数都具 有比较简单的晶体结构,其中最典型、最常见的晶体结构 有三种类型: 体心立方晶格、面心立方晶格和密排六方晶格。
3.1体心立方晶格
bcc
结构:原子分布在立方晶胞的八个顶角及其体心位置。 举例:Cr、V、Mo、W和α-Fe等30多种。
3.2面心立方晶格 fcc 结构:原子分布在立方晶胞的八个顶角及六个侧面的中心。 举例:Al、Cu、Ni和γ-Fe等约20种。
3.3密排六方晶格 hcp 结构:原子分布在六方晶胞的十二个顶角,上下底面的中 心及晶胞体内两底面中间三个间隙里。 举例:Mg、Zn、Cd、Be等20多种。 不金属的强度通常较低,而合金在强度、硬度等力学性 能方面比纯金属高得多,所以工程上广泛应用的是合金。 1、合金 合金 1.1定义:两种或两种以上金属元素,或金属元素与非金属 元素,经熔炼、烧结或其它方法组合而成并具有金属特 性的物质。 exp:钢,铸铁,黄铜,青铜 1.2组元:组成合金最基本的独立的物质称为组元。 元素、稳定的化合物 一元合金、二元合金等 1.3合金系:相同的组元所组成的一系列合金。
金属及合金的晶体结构
一、金属的晶体结构 二、合金的晶体结构 课时:2学时
一、金属的晶体结构
1、晶体 晶体:
定义:有规则的周期性重复排列。 例如:固态金属及合金。 特点:固定的熔点,规则的几何外形,各向异性。
非晶体:无序 非晶体
2、基本概念 晶体点阵: 晶体点阵: 阵点: 阵点: 晶格: 晶格
第一章 金属与合金的晶体结构

晶格-描述晶体中原子排列规律的空间格架。
晶胞-空间点阵中最小的几何单元。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际 排列。 特征:a 可能存在局部缺陷; b 可有无限多种。
空间点阵相同,是否晶体结构相同?
2 晶胞
(1)晶胞:构成空间点阵的最基本单元。
(2)选取原则: a 能够充分反映空间点阵的对称性; b 相等的棱和角的数目最多; c 具有尽可能多的直角;
(c)
配位数=12;致密度=0.74
3、密排六方晶格:记为HCP 密排六方晶格的晶胞是一个六方柱体,由六个呈长 方体的侧面和两个呈六边形的底面所组成,如图所示。 属于这种晶格类型的金属有Mg、Zn、Be、Cd等。
两个晶格常数:正六边形边长a;上下两底面之间的距离c。 轴比:c/a 配位数:12;致密度:0.74(与面心立方相同)
(c) 2003 Brooks/Cole Publishing / Thomson Learning™
说明: a 指数意义:代表一组平行的晶面; b 0的意义:面与对应的轴平行; c 平行晶面:指数相同,或数字相同但正负号相反; d 晶面族:晶体中具有相同条件(原子排列和晶面间距 完全相同),空间位向不同的各组晶面。用{hkl}表示。 e 若晶面与晶向同面,则hu+kv+lw=0; f 若晶面与晶向垂直,则u=h, k=v, w=l。
金属特性:导电性、导热性好;正电阻温度系数;好的延 展 性;有金属光泽等。
(4)分子键与分子晶体
原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O
© 2003 Brooks/Cole Publishing / Thomson Learning™
第一章金属的晶体结构

图2-6密排六方晶胞
第三节 晶体学概念
• • • • • • • 1.3.1 晶胞中的原子数 体心立方: 面心立方: 密排六方: 1.3.2 原子半径 1.3.3 配位数和致密度 配位数:指晶体结构中与任一个原子最近邻且等距离的原 子数目。 • 体心立方晶体8个,面心立方12个,密排六方12个,所以 面心立方和密排六方致密度高 • 致密度分别为0.68、0.74、0.74
图2-5
面心立方晶胞
• (3)密排六方晶胞(close packed lattice hexagonal):密排六方晶体的晶胞如图1.6所示。 • 它是由六个呈长方形的侧面和两个呈正六边形的 底面所组成的一个六方柱体。因此,需要用两个 晶格常数表示,一个是正六边形的边长a,另—个 是柱体的高c。在密排六方晶胞的每个角上和上、 下底面的小心都有一个原子,另外在中间还有三 个原子。因此,密排六方晶格的晶胞中所含的原 子数为:6×1/6×2+2×1/2+3=6个。 • 具有密排六方晶体结构的金属有Mg、Zn、Be、 Cd、α-Ti、α-Co等。
A、B组元组成的固溶体也可表示为A(B), 其中A为溶剂, B为 溶质。例如铜锌合金中锌溶入铜中形成的固溶体一般用α表 示, 亦可表示为Cu(Zn)。
• 固溶体特性:1固溶体成分可以在一定范围内变化, 在相图上表现为一个区域。2固溶体必须保持溶剂 组元的点阵类型。3纯金属结构有哪些类型,固溶 体也应有哪些类型,即固溶体本身没有独立的点 阵类型。4组元的原子尺寸不同会引起的点阵畸变, 原子尺寸相差越大,引起的畸变也越大。
• 1.3.4晶体中原子的排列方式(略) • 1.3.5 晶体结构中的间隙 • 三种典型晶体结构的四面体间隙、八面体间 隙(图1-13,1-14,1-15) • 间隙半径与原子半径之比rB/rA=?(见表1-2) • 可见面心立方结构八面体间隙比体心立方结 构四面体间隙还大,因此溶碳量大的分类 • 1.按溶剂分类 • (1)一次固溶体:以纯金属组元作为溶剂的 固溶体称为一次固溶体,也叫边际固溶体。 • (2)二次固溶体:以化合物为溶剂的固溶体 称二次固溶体,或叫中间固溶体。如电子 化合物、间隙相。 • 有的化合物和化合物之间,也可以相互溶 解而组成固溶体,如Fe3C和Mn3C,TiC和 TiN等。
机械工程材料 第1章 金属的晶体结构

常见的化学键
离子键 共价键 分子键 金属键
化学键的特性决定材料的组织结构和性能
第一节 材料的化学键
1.金属键
金属正离子和自由电子之间的相互吸引力而使金属原子结合的方式。
金属特性:导电、导热性,塑性,强度,金属光泽。
金属键模型
正离子与自由电子之间的吸引力
第一节 材料的化学键
2. 结合力和结合能
双原子作用模型
第四节 合金的相结构
(2) 按固溶度 有限固溶体、无限固溶体
(3) 按相对分布 有序固溶体、无序固溶体
无序分布
偏聚分布
短程有序分布
第四节 合金的相结构
2、固溶体的性能
溶入溶质原子形成固溶体而使金属强度、硬度升高而塑性、 韧性下降的现象。——固溶强化 溶质原子含量↑,σb、HB↑,ψ、αk↓ 固溶强化效果:间隙固溶体>置换固溶体。
可影响合金相的类型。
第四节 合金的相结构
1、固溶体——固态下组元间相互溶解而形成的相。 溶剂:原子分数多者,其晶格保持不变的组元。 溶质:原子分数少者。
溶剂
溶质
特点:所形成的固相晶体结构仍然保持溶剂晶格类型
第四节 合金的相结构
固溶体的分类:(1) 按溶质原子在晶格中的位置
置换固溶体 、间隙固溶体
x
第二节 材料晶体结构的概念
4、晶格特征参数
晶格常数:描述晶胞几何形状与大小的参数。如立方晶胞: 三棱边a、b、c; 三棱边夹角α、β、γ
晶胞所占原子数: 指一个晶胞所占的原子总数
配位数: 指晶体结构中与任何一个原子最近领且等距离的原子数目
致密度: 晶胞中原子所占体积与晶胞体积之比
其中配位数和致密度可衡量晶胞中原子排列的紧密程度
机械工程材料 第一章 材料的内部结构

第一章 材料的内部结构
原子结构
结 构
原子的空间排列
晶态和非晶态。晶体结构显 著影响材料的各种性能和功 能。
显微组织
第一章 材料的内部结构
原子结构
结 构
原子的空间排列
显微组织
晶粒(原子集团)的形态、大 小、合金相的种类、数量和分 布等参数 。
第一章 材料的内部结构
1.1 原子键合及其特性 1.2材料的原子排列 1.3 金属的典型晶体结构 1.4 合金相结构 1.5 陶瓷的相结构
1.2材料的原子排列
晶面及晶面指数
晶面是指晶体原子堆垛质心平面
晶面指数的确定方法 ①在以晶胞的边长作 为单位长度的右旋坐 标系中取该晶面在各 坐标轴上的截距。 ②取截距的倒数。 ③将倒数约成互质整 数,加一圆括号。
1.2材料的原子排列 六方晶系
第一章 材料的内部结构
1.1 原子键合及其特性 1.2材料的原子排列 1.3 金属的典型晶体结构 1.4 合金相结构 1.5 陶瓷的相结构
第一章 材料的内部结构
电子结构
结 构
原子的空间排 列
显微组织
本周,班长 或课代表到 空间材料实 验室9号楼 104室找肖 景东老师确 定试验时间
第一章 材料的内部结构
电子结构
结 构
原子的空间排列
显微组织
原子核外电子的排布 方式显著影响材料的 电、磁、光和热性能, 还影响到原子彼此结 合的方式,从而决定 材料的类型
1.1材料的原子键合及其特性
黑色金属: 铁和以铁为基的合金
金属材料
钢 铸铁 铁基合金
有色金属: 黑色金属以外的所有金属及其合金, 如铝(Al)、铜(Cu)等 (应用最广的是黑色金属,重点学习) • 简单金属原子之间的结合键完全为金属键; • 过渡族金属原子的结合键以金属键为主,但也有共价键成分; • 由于金属键没有方向性,原子之间也没有选择性,所以在受外力 作用而发生相对移动时金属键不会破坏; • 以金属为主体的工程金属材料不仅具有较高的弹性模量、硬度 和强度,而且具有很好的塑性、韧性、导电和导热性能。
吉林大学工程材料第1章 金属的晶体结构和结晶

由于金属键无方向性及饱和性,使得大部分金 属都具有紧密排列的趋向,以致其中绝大多数的金 属晶体都属于三种密排的晶格形式。
三、金属晶体中常见的三种晶格类型
度量晶体中原子排列的紧密程度的方法:
常用的有配位数、致密度。
A:配位数: 晶格中任一原子周围所紧邻的最近且 等距的原子数。 (定性的)
B:致密度:
表格 1-3 三种典型晶格的密排面和密排方向
晶格类型 体心立方 面心 密排六方
密排面 {110} {111} 底面
密排方向 〈111〉 〈110〉 底面对角线
以后我们将看到,金属晶格的密排面及密排方向 的确定,对我们研究金属的特性是有重要意义的。
五、晶体的各向异性
对于同一个完整的晶体,当我们从不同方向 上测量某些量时,(如弹性模量E、强度极限 b、 屈服极限 s 、电阻率、磁导率、线胀系数、耐蚀 性等),将得到不同的数值。如铁(-Fe) 〈111〉方向E=2.80×105MN/m2 〈100〉方向E=1.30×105MN/m2 这就引出一个新的概念:
晶界这种晶体缺陷的存在,是晶体中不同晶格位向相 邻晶粒之间的过渡所形成的面缺陷(如图1-12a)。
(a)
(b)
图1-12 晶界(a)及亚晶界(b)示意图
而亚晶界这种晶体缺陷,是亚晶粒间所存在的微小 晶格位向差形成的面缺陷(如图1-12b)。可以把 它看作是一种位错的堆积或称“位错墙”。
三、晶体缺陷对金属性能的影响
{111}
1 3 0 . 58 6 a2 3 2 a 2
3a 0.29a 6
〈111〉 <111>
1 2 1 1.16 2 a 3a
6a 0.82a 3
规律 : 原子间彼此相接触的晶面和晶向为最密排的晶面和晶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 工程材料类型及金属的晶体结构
1.1. 3 原子间键合 四、分子键:分子偶极间吸引力产生的化学结合力。
第一章 工程材料类型及金属的晶体结构
1. 1.3 原子间键合 五、氢键:氢原子因正负电子中心偏移产生的静电吸引
形成的化学结合力。
氢原子中唯一的电子被其它原子所共有(共价键结合),裸露 原子核 将与近邻分子的负端相互吸引——氢桥
► 缺点:目前性能高的价贵。
第一章 工程材料类型及金属的晶体结构
1. 1. 3 原子间键合 一、离子键:正离子与负离子静电吸引产生的化
学结合力
第一章 工程材料类型及金属的晶体结构
1. 1. 3 原子间键合 二、共价键:原子间共用电子对产生的化学结合力
第一章 工程材料类型及金属的晶体结构
1.1. 3 原子间键合 三、金属键:金属正离子与“自由电子气”静电吸
第一章
工程材料类型及金属的晶体结构
第一章 工程材料类型及金属的晶体结构
主要内容
1.1 工程材料类型 1.2 晶体的概念
1.2.1 短程有序与长程有序 1.2.2 晶体结构的基本概念和类型 1.2.3 同素异构 1.3 晶体缺陷
第一章 工程材料类型及金属的晶体结构
1.1 工程材料类型 工程材料是指具有一定性能,在特定条件下,能够承
1.2.晶体概念 1.2.1.短程有序与长程有序 短程有序:
第一章 工程材料类型及金属的晶体结构
1.2.晶体概念 1.2.2 晶体结构的基本概念和类型
{晶
固态物质
体
组成晶体的原子或离子、分子呈规则、周期性 重复排列的固体;例如:水晶、天然水晶石
非晶体 组成非晶体的原子或离子、分子呈无规则排列
的固体。例如:松香、石蜡和玻璃
思考题:实际晶体结构和布 拉菲”空间点阵有何区别?
第一章 工程材料类型及金属的晶体结构
1.2.2 晶体结构的基本概念和类型 5.常见的金属晶格类型 工业上使用的金属虽然有几十种,但除少数金 属具有复杂的晶体结构外,大多数金属均具有比较 简单的晶体结构。最常见的晶体结构只有三种,即 体心立方 (bcc) 面心立方 (fcc) 密排六方 (hcp) 前两种属于立方晶系,后一种属于六方晶系。
第一章 工程材料类型及金属的晶体结构
1. 1.3 原子间键合 六、工程材料的键性 金属材料:金属键(绝大部分) 共价键(亚金属) 陶瓷材料:离子键、共价键 高分子材料:共价键、分子键
第一章 工程材料类型及金属的晶体结构
1.2.晶体概念 1.2.1.短程有序与长程有序 短程有序:原子在分子范围内按一定规律排列,而分
1.1 工程材料类型 ⑵ 按成分分类----四大类材料
第一章 工程材料类型及金属的晶体结构
1.1.2 材料特征(characteristic)
(1)金属材料(metals) ► 优点:兼有良好力学性能(较高强度、刚度、塑性、韧性)及某 些理化性能(良好导电、导热性等)和较好的工艺性,价格便宜或适 中。大量用作结构材料,部分用作功能材料。 ► 缺点:地球上资源有限;高温及特殊环境中不能胜任。
第一章 工程材料类型及金属的晶体结构
1.2.2 晶体结构的基本概念和类型 1.晶格(点阵)
为了便于研究晶体中原 子排列的情况,通常用一个 小钢球代替一个原子,并把 不停振动的原子当作在它平 衡位置上静止不动,这样金 属晶体结构就可用许多小钢 球互相紧密接触的堆砌模型 来表示(刚球模型)。
第一章 工程材料类型及金属的晶体结构
1.2.2 晶体结构的基本概念和类型 1.晶格(点阵)
• 进一步简化原子堆砌模型:可将一个 钢球原子视为一几何质点,用平行几 何线条在三维空间通过原子中心使其 相互连起来,这样就构成了一个几何 格架。
这种几何空间 置称为结点或阵点。
第一章 工程材料类型及金属的晶体结构
担某种功能,被用来制取零件和元件的材料。 1.1.1 分类 ⑴ 按使用功能分类:
• 结构材料(structural material) 实现运动、传递运动,承担力、负荷为主(机械工程等)。
• 功能材料(functional material) 理化功能为主,力性为辅(导电材料、磁盘、光纤等)。
第一章 工程材料类型及金属的晶体结构
子之间则随机无规律的连接在一起,这种结合方式称 为短程有序。多数以共价键、范德华键结合的材料往 往是短程有序。
SiO2一个Si原子与4个O原子 结合,而SiO2单元体间则随 机连接。
长程有序:原子在整个材料内部都按一定规律排列, 则称为长程有序。原子长程有序,即构成了整个晶体。
第一章 工程材料类型及金属的晶体结构
1.1.2 材料特征 (3)高分子材料(高聚物,Polymer)
► 优点:较高弹性、耐磨性、绝缘性、抗腐蚀性、重量 轻,加工性好,原料丰富。
► 缺点:强度低;不耐高温(≤300℃);易老化易燃。 (4)复合材料(Composites两种或多种材料复合而成)
► 优点:具有单一材料所不具备的优异性能;可按需要 进行人为设计、制造。
1.2.2 晶体结构的基本概念和类型 2. 晶胞 晶胞是晶格中能代表原子排列的最小几何单元体,它 是一个简单的多面体结构。G:\VIDEO\晶胞.AVI
第一章 工程材料类型及金属的晶体结构
1.2.2 晶体结构的基本概念和类型 3.晶格常数 为研究晶胞的形状与大小, 通常用晶胞的三个棱边长度a、 b、c和棱边夹角α、β、γ六 个参数表示,棱边长度a、b、 c称为晶格常数,以nm(纳米) 为单位,1nm =10-9 m,以前用 Å度量,1Å=0.1nm。
(2)陶瓷材料(无机非金属材料,金属与非金属的化合物如 Al2O3、SiC)。
► 优点:优良理化性能(耐蚀、光、电、热学性能,绝缘性能等) 及极好的耐高温特性,且原料来源广泛。主要用在特殊场合(特殊陶 瓷)及日常(传统陶瓷)。 ► 缺点:性脆、难加工,可靠性差。
第一章 工程材料类型及金属的晶体结构
图1-1 晶格常数示意图
第一章 工程材料类型及金属的晶体结构
1.2.2 晶体结构的基本概念和类型 4.晶胞类型 晶胞一共有14种类型,分属于7个晶系。 实际晶体结构都可抽象的归属于14种晶胞中的一种,并
用其描述其原子排列规律。14种晶胞类型是由布拉菲 (Bravais)于1848年根据“每个阵点周围具有相同环 境”的要求,利用数学方法推算出来的,而且只能有14 种,因此也称为“布拉菲”空间点阵。