离散控制系统
离散控制系统的设计与实现

离散控制系统的设计与实现离散控制系统是一种用于监测和调节非连续过程的系统,广泛应用于自动化领域。
本文将介绍离散控制系统的设计和实现方法,着重探讨控制器的选择、信号处理、系统建模和参数调整等方面。
1. 控制器选择离散控制系统的核心是控制器的选择。
常见的控制器包括比例控制器(P控制器)、积分控制器(I控制器)、微分控制器(D控制器)以及它们的组合(PID 控制器)。
在选择控制器类型时,需要根据被控对象的性质和控制要求来决定。
例如,对于快速响应的系统,可以采用PID 控制器;而对于稳态误差较大的系统,可以选择带有积分环节的控制器。
2. 信号处理在离散控制系统中,信号处理是实现控制过程中重要的一环。
一般情况下,需要对输入信号进行采样和量化处理,以将连续信号转换为离散信号。
此外,还需要进行滤波和去噪处理,以保证输入信号的准确性和稳定性。
3. 系统建模离散控制系统的设计需要建立合适的数学模型。
通过建立系统的数学模型,可以更好地理解系统的行为和特性,并且可以进行仿真和优化。
常见的系统建模方法包括状态空间模型和传递函数模型。
在实际应用中,可以根据系统的动态特性和稳态响应来选择合适的建模方法。
4. 参数调整离散控制系统的性能往往与控制器参数的选择有关。
参数调整是离散控制系统设计中重要的一步。
传统的参数调整方法包括试错法、经验法和经典控制理论等。
此外,还可以采用现代控制理论中的自适应控制、模糊控制和神经网络控制等方法,来实现参数的自适应调整。
5. 实现与优化离散控制系统的实现可以采用硬件实现和软件实现两种方式。
在硬件实现中,通常使用单片机或者微控制器作为核心处理器,并配以外围接口和传感器等。
在软件实现中,可以使用计算机来进行控制器的设计和仿真,通过与外部控制设备的连接,实现对被控对象的控制。
离散控制系统的优化是一个不断迭代的过程。
通过实际应用中的数据采集和实验,可以对控制系统的性能进行评估和优化。
常见的优化方法包括参数调整、控制策略的改进和系统结构的优化等。
自动控制原理第7章线性离散控制系统

状态方程
状态方程是描述线性离散控制系统动态行为的数学模型,其形 式为 X(k+1) = A*X(k) + B*U(k),其中X(k)表示在时刻k的系统 状态向量,U(k)表示在时刻k的控制输入向量,A和B是系统矩 阵。
自动控制原理第7章 线性离散控制系统
目录
CONTENTS
• 引言 • 线性离散控制系统的数学模型 • 线性离散控制系统的稳定性分析 • 线性离散控制系统的性能分析 • 线性离散控制系统的设计方法 • 线性离散控制系统的应用案例
01
引言
线性离散控制系统的定义与特点
定义
线性离散控制系统是指系统的动态行为由差分方程或离散状态方程描述的一类控制系统。
适性。
常见的智能家居控制系统包括智 能照明、智能安防、智能环境监
测等。
案例三:工业自动化控制系统设计
工业自动化控制系统是线性离散 控制系统的另一个重要应用领域, 主要用于实现生产过程的自动化
和智能化。
工业自动化控制系统通常采用分 布式控制结构,通过各种传感器、 执行器和主控制器实现对生产设
备的监测和控制。
离散控制系统的稳定性判据
劳斯-赫尔维茨稳定性判据
通过计算离散控制系统的传递函数的极点和零点,判断系统的稳定性。如果所有极点都位于复平面的左半部分,则系 统稳定;否则系统不稳定。
奈奎斯特稳定性判据
通过分析离散控制系统的频率响应,判断系统的稳定性。如果频率响应的相位曲线在-π~π范围内,则系统稳定;否则系 统不稳定。
系统实现
将设计好的控制器应用于实际系统中,并进 行实验验证。
离散控制系统设计的常用方法
离散控制系统的基本原理与应用

离散控制系统的基本原理与应用离散控制系统是一种用于控制连续或离散过程的系统。
它在许多工程领域中得到广泛应用,例如自动化工业生产、交通运输、机械制造等。
本文将介绍离散控制系统的基本原理和应用,探讨其在工程实践中的重要性和实际应用。
一、离散控制系统的基本原理离散控制系统的基本原理包括输入、输出、控制器和执行器等几个关键组成部分。
1. 输入:离散控制系统的输入是指传感器从被控制对象中获取的信息。
传感器将物理量转化为电信号,并通过接口传递给控制器。
2. 控制器:控制器是系统的智能核心,它根据输入信息和事先设定的控制策略来执行控制任务。
常见的控制器包括PID控制器、PLC等。
3. 输出:离散控制系统的输出是指控制器根据输入信息计算得出的控制信号,它会通过执行器对被控制对象进行调节。
4. 执行器:执行器根据控制信号对被控制对象进行操作,使其达到预定的控制目标。
例如,电机、阀门、气缸等都可以作为执行器。
离散控制系统基于这些基本原理,通过对输入信息的处理计算和输出信号的控制,实现对被控制对象的准确控制。
二、离散控制系统的应用离散控制系统在各个领域中都有重要应用,下面我们将针对几个常见的应用示例进行具体介绍。
1. 工业自动化生产离散控制系统在工业自动化生产中起到至关重要的作用。
通过控制器对生产线上的各个设备进行控制和协调,可以实现生产过程的自动化。
例如,在装配线上,离散控制系统可以控制机械臂的运动,完成各种零部件的组装任务。
2. 交通运输系统离散控制系统在交通运输系统中也有广泛应用。
例如,信号灯控制系统可以通过离散控制实现对道路交通的调度和管控,提高交通效率和安全性。
另外,智能交通系统也是离散控制系统的重要应用领域,通过对车辆流量、道路状态等信息的感知和控制,实现对交通系统的智能管理。
3. 机械制造离散控制系统在机械制造中的应用非常广泛。
例如,数控机床可以通过离散控制系统对其进行精密调控,实现高精度加工。
另外,机器人也是离散控制系统在机械制造中的重要应用领域,通过对机器人的运动、姿态等参数进行控制,实现各种复杂的操作任务。
自动控制原理第7章离散控制系统

Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方
式
动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方
法
通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。
01.09离散控制系统

t
e*(t)
t
t
t
t
c(t)
r(t)
+
A/D
计算机
uc*(t)
D/A
uc(t)
控制对象
b(t)
测量元件
负反馈
计算机控制系统框图
离散系统的差分方程描述
差分方程 用差分方程描述离散系统 差分方程的解法
差分方程
差分方程: 用t时刻变量差值来代替微分方程中的变 量微分所得到的方程。 当系统的微分方程为n阶时,则差分方程可 写为一般形式:
应用综合除法得
E( z) 10z 1 30z 2 70z 3
所以
e* (t ) 0 10 (t T ) 30 (t 2T ) 70 (t 3T )
例4-6 已知之变换
3z 2 z E( z) 2 z 2z 1
试利用部分分式法求其z反变换。
k 0
e(kT ) z
k
1 z 1(4-28)
0
(2)单位阶跃信号
设e(t)=1(t),求z变换E(z)。
E( z )
k 0
1(kT ) z 1 z z (4-29)
k 1 2
这是一个公比为 z 的等比级数,当 z 1 即 时,级数收敛,则式(4-29)可写成闭合形式
1
1
z 1
1 z E( z) ( z 1) (4-30) 1 z 1 1 z
(3)单位理想脉冲序列 设 e(t ) (t ) (t kT) ,求z变换E(z)。
T k 0
E( z )
k 0
1(kT ) z 1 z z z
离散控制系统的基本原理和概念

离散控制系统的基本原理和概念离散控制系统是指通过离散的方式对连续的物理过程进行控制的系统。
它通过在不连续的时间间隔内对物理过程的状态进行采样和决策,以实现对系统行为的调节和优化。
离散控制系统在工业生产、交通运输、电力系统等领域都有重要的应用。
本文将介绍离散控制系统的基本原理和概念。
一、离散控制系统的基本原理离散控制系统的基本原理可以概括为以下几点:1. 状态采样:离散控制系统通过在特定的时间间隔内对系统的状态进行采样,获取系统当前的信息。
采样可以通过传感器或者测量设备实现,常用的采样方法有周期性采样和事件驱动采样。
2. 状态量量化:离散控制系统通过量化采样得到的状态量,将连续的物理量转化为离散的数字信号。
量化可以通过模拟-数字转换器(ADC)或者编码器来实现,将模拟信号或者连续的物理量转化为数字信号或者离散的状态。
3. 控制决策:离散控制系统通过对采样得到的状态量进行处理和分析,根据预先设定的控制策略和算法,决策出下一时刻的系统控制指令。
常见的控制策略有比例控制、积分控制、微分控制等。
4. 控制执行:离散控制系统根据决策出的控制指令,通过执行机构对系统进行控制。
执行机构可以是电机、执行器、调节器等,它们根据控制指令调节系统的输入、输出或者参数,使系统达到预期的控制目标。
5. 反馈调节:离散控制系统通常配备反馈机制,通过对系统输出或者状态的反馈信息进行采样和分析,实时调节控制策略和参数。
反馈控制可以提高系统的鲁棒性和稳定性,使系统能够自动适应外部扰动和变化。
二、离散控制系统的概念1. 离散事件:离散控制系统所控制的物理过程通常是由一系列离散事件组成的。
离散事件可以是系统状态变化、信号发生改变、控制指令变化等。
2. 采样周期:采样周期是离散控制系统进行状态采样和控制决策的时间间隔。
采样周期的选择需要考虑到系统的动态特性、采样准确性和计算开销等因素。
3. 控制周期:控制周期是离散控制系统执行控制指令的时间间隔,它决定了系统对外部扰动和变化的响应速度。
6_离散控制系统

[
]
上式可以将E*(s)与离散时域信号e*(kT)联系起来,可以直接看 出e*(t)的时间响应。但是e*(t)仅描述了e(t)在采样时刻的值, 所以E*(s)不可能给出e(t)在两个采样时刻之间的任何信息。 采样周期为T,则采样频率为 但一般简称后者为采样频率。
fs = 1 T
,采样角频率为 s =
25zLeabharlann 换理论e 由于采样信号的拉氏变换是s的超越函数,出现指数 项 ,无法得到象线性连续系统中那样的特征方程为线 性代数方程。
z变换将复平面问题转化为Z平面上的问题:断续信号的拉氏变 ∞ 换为 X * ( s ) = x(kT )e kTs
kTs
∑
k =0
s平面: 引入变量 z = e Ts ,s = 1 ln z ,则得z变换的定义式: T
9
采样信号
2、单位脉冲函数 δ (t ) 为单位脉冲函数,脉冲的宽度为无限 小、幅度为无限大,而面积为1。
δ (t ) =
1 t = 0 0 t ≠ 0
3、单位脉冲序列函数 冲函数的序列。
δ T (t ) =
∞ k = ∞
下式为单位脉冲序列函数,它是单位脉
∑ δ (t kT ) = δ (t ) + δ (t T ) + L + δ (t kT ) + L
22
零阶保持器
2、零阶保持器的频率特征 用 jω 代替式中s的,得零阶保持器的频率特性
e jx e jx sin x = 2j (e
j 1 ωT 2
e 1 e = Gh ( jω ) = jω sin( ω2T ) 1 jωT Gh ( jω ) = T ωT e 2
2
离散控制系统

8.1 离散系统及基本概念
可见,采样控制系统和数字控制系统只是在连续信 号和离散信号的相互转换方式上各有不同 ,二者都可以用 下面的方框图表示。
数字 控制器
采样控制系统和数字控制系统的分析和设计的理论是一 致的。
通常,将采样控制系统、数字控制系统视为离散系统的 同义语。
8.1 离散系统及基本概念
离散控制系统的特点:
1. 控制计算由程序实现,便于修改,容易实现复杂的控制律。 2. 可用一台计算机分时控制若干个系统,提高了设备利用,
经济性好。 3. 离散信号的传递可以有效地抑制噪声,从而提高系统的抗干扰
能力。 4. 在自适应控制系统中,计算机控制的引入便于实现自适应控制。 5. 便于联网,实现生产过程的自动化和宏观管理。
(2)复现过程:经过保持器将离散的模拟信号(即脉冲序列)复
现为连续的模拟信号(即连续信号)。
e*(t)
•••
e*(t)
e*(t)
• 4T 5T
0 T 2T 3T
•
t
•
4T 5T
0 T 2T 3T
t
5T
0 T 2T 3T
t
4T
经过转换后的信号只是一个阶梯信号,但是,当采样频率足 够高时,将趋近于连续信号。
控制系统:
连续控制系统:控制系统中的所有信号都是连续信号。 离散控制系统:控制系统中有一处或几处的信号是离散信号。
离散控制系统:
采样控制系统或脉冲控制系统:系统中的离散信号是脉冲序列形 式。
数字控制系统或计算机控制系统:系统中的离散信号是数字序列 形式。
8.1 离散系统及基本概念
工业炉炉温的连续控制系统:
同时,若认为采样编码的时间可以忽略 ,这时数字信号可以看成脉冲信号 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.10.2020
6 第‹#›页
第8章 离散控制系统
8.1.2 离散控制系统的特点 数字控制系统较相应的连续控制系统具有一系列的特点:
✓ 控制规律易于通过软件编程改变,控制功能强; ✓ 提高了系统的抗干扰能力以及信号传递和转换精度; ✓ 允许采用高灵敏度的控制元件以提高系统的控制精度; ✓ 提高了设备的利用率,经济性好; ✓ 可以引入采样的方式使之稳定。
14.10.2020
7 第‹#›页
第8章 离散控制系统
8.1.3 离散控制系统的研究方法
拉氏变换,传递函数和频率特性等不再适用,研究离 散控制系统的数学基础是z变换,通过z变换这个数学工具, 可以把我们以前学习过的传递函数,频率特性,根轨迹法 等概念应用于离散控制系统。因而z变换具有和拉氏变换同 等的作用,是研究线性离散系统的重要数学工具。
14.10.2020
2 第‹#›页
第8章 离散控制系统
8.1.1 离散控制系统
✓ 1.采样控制系统
一般来讲,把系统中的离散信号是脉冲序列形式的离散 系统,称为采样控制系统或脉冲控制系统。
例:
给定 电位器
e(t)
测温 电阻
θ
被控对象
φ 加热气体
检流计
凸轮 β
电位器
电动机 减速器
e*(t)
放大器
图8-1 工业炉温采样控制系统
14.10.2020
8 第‹#›页
第8章 离散控制系统
➢ 8.2 信号的采样与保持
把连续信号变换为脉冲信号,需要使用采样器;另一 方面,为了控制连续式元部件,又需要使用保持器将脉冲 信号变换成连续信号。因此,为了定量研究离散系统,必 须对信号的采样过程和保持过程用数学的方法加以描述。 在采样的各种方式中,最简单而又最普通的是采样间隔相 等的周期采样。
第8章 离散控制系统
第8章 离散控制系统
主要内容: • 8.1 离散系统的基本概念 • 8.2 信号的采样与保持 • 8.3 z变换理论 • 8.4 离散控制系统的数学模型 • 8.5 离散控制系统的分析 • 8.6 离散控制系统的数字校正 • 8.7 MATLAB分析离散控制系统
14.10.2020
如图8-2所示。
τ
e*(t)
0
14.10.2020
e(t)
e*(t)
t
e*(t)
0 T 2T 3T
T
图8-2 实际采样过程
t
10 第‹#›页
第8章 离散控制系统
在采样开关的作用下,将采样器的输出近似为矩形脉 冲,任意点的采样值表示为
e(n)T 1[1(tn)T 1(tn T)]
则采样信号可表示为
e*(t)n 0e(n)T 1[1(tn)T 1(tnT )]
而e * (t ) 则为加权单位理想脉冲序列。
14.10.2020
12 第‹#›页
第8章 离散控制系统
8.2.2 采样定理 香农采样定理: 要保证采样后的离散信号不失真地恢复原连续信号,或者 说要保证信号经采样后不会导致任何信息丢失,必须满足 两个条件:
1. 信号必须是频谱宽度受限的,即其频谱所含频率成分的最 高频率为 max ;
14.10.2020
5 第‹#›页
第8章 离散控制系统
✓ 2.数字控制系统
数字控制系统就是一种以数字计算机或数字控制器去 控制具有连续工作状态的被控对象的闭环控制系统。因此 数字控制系统包括工作于离散状态下数字计算机和工作于 连续状态下被控对象两大部分。
通常用计算机的内部时钟来设定采样周期,整个系统 的信号传递则要求能在一个采样周期内完成。
2. 采样频率必须至少是信号最高频率的两倍即 s 2max。
14.10.2020
13 第‹#›页
第8章 离散控制系统
8.2.3 信号的复现与零阶保持器
✓ 1.信号的复现 如果不经过滤波器将高频分量滤掉,则相当于给系统加入 噪声。因此在实际应用中,采样开关后面串联一个信号复 现滤波器,通过它使脉冲e * (t ) 复原成连续信号再加到系统 中去。 通常在工程上采用接近理想滤波器性能的保持器来代替。
1 第‹#›页
第8章 离散控制系统
➢ 8.1 离散控制系统的基本概念
在控制系统中,如果所有信号都是时间变量的连续函数, 换句话说,这些信号在全部时间上是已知的,则这样的系统称 为连续系统;如果控制系统中有一处或几处信号是一串脉冲或 数码,即这些信号仅定义在离散时间上,则这样的系统称为离 散系统。
一般来讲,把系统中的离散信号是脉冲序列形式的离散系 统,称为采样控制系统或脉冲控制系统;当离散量为数字序列 形式时,则称为数字控制系统或计算机控制系统。通常将采样 控制系统和数字控制系统,统称离散系统。
当炉温连续变化时,则电位器的输出是一串宽度为τ,
周期为T的离散脉冲电压信号,用 表e * (示t ) 。经过放大器、 电动机、减速器去控制炉门角φ的大小,炉温的给定值, 由给定电位器给出。
14.10.2020
4 第‹#›页ຫໍສະໝຸດ 第8章 离散控制系统给定电位器与电桥输出的误差信号是连续变化的,但 通过指针和旋转凸轮的作用后,电位器的输出却为离散值, 这实际上是该系统借助于指针、凸轮这些元部件对连续误 差信号进行采样,将连续信号转换成了脉冲序列,凸轮就 成了采样器(采样开关)。
14.10.2020
3 第‹#›页
第8章 离散控制系统
上图该系统中工业炉是具有时滞特性的惯性环节。检
流计有电流流过,指针发生偏转,设转角为β。设计一同 步电机通过减速器驱动凸轮旋转,使指针周期性的上下运
动,且每隔T秒与电位器接触一次,每次接触时间为τ。 其中,T 称为采样周期,τ 称为采样持续时间。
14.10.2020
9 第‹#›页
第8章 离散控制系统
8.2.1 采样过程及其数学描述
把连续信号转换成离散信号的过程,叫做采样。实现采 样的装置叫做采样器或采样开关。将连续信号加到采样开关
的输入端,采样开关以周期T秒闭合一次,闭合持续时间为 ,于是采样开关输出端得到周期为T、宽度为的脉冲序列e * (t)
如采样持续时间非常小,就可以用理想单位脉冲函数 来取代采样点处的矩形脉冲,于是就得到连续时间信号的 理想采样表达式为
e*(t) e(nT)(tnT) n0
14.10.2020
11 第‹#›页
第8章 离散控制系统
上式也可写作:
e*(t)e(t)T(t)
式中 T(t)(tnT)(称为单位理想脉冲序列) n0