第2讲偶然误差的统计规律

合集下载

2019分析化学课件第二章误差及分析数据的统计处理

2019分析化学课件第二章误差及分析数据的统计处理

15.9
16.0 16.1
测量值
16.2
16.3
问题: 测量次数趋近于无穷大时的频率分布?
测量次数少时的频率分布?
某段频率分布曲线下的面积具有什么意义?
2021/3/3
2、正态分布:
分析化学中测量数据一般符合正态分布,即高斯分布。
yf(x) 1 e(x22)2
2
x 测量值,μ总体平均值, σ总体标准偏差
定量分析的任务:准确测定组分在试样中的含 量。
实际测定不可能得到绝对准确的结果。
2021/3/3
• 客观上误差是经常存在的,在实验过程中, 必须检查误差产生的原因,采取措施,提 高分析结果的准确度。同时,对分析结果 准确度进行正确表达和评价。
2021/3/3
一、准确度和精密度
(一).准确度和精密度——分析结果的衡量指标。
测量值
2021/3/3
No 分组
1 15.84 2 15.87 3 15.90 4 15.93 5 15.96 6 15.99 7 16.02 8 16.06 9 16.09 10 16.12 11 16.15 12 16.18 201231/3/3 16.21
频数 频率 (ni) (ni/n)
1 0.005 1 0.005 3 0.015 8 0.040 18 0.091 34 0.172 55 0.278 40 0.202 20 0.101 11 0.056 5 0.025 2 0.010 0 0.000
化学课件第二章误差及分析数据的统计处理
基本要点: 1. 了解误差产生的原因及其表示方法; 2. 理解误差的分布及特点; 3. 掌握分析数据的处理方法及分析结果的表示。
2021/3/3

第二章 误差分布与精度指标

第二章  误差分布与精度指标
2 2


DXX E X E( X )X E( X )

T

§2.1

正态分布
正态分布曲线的性质:
1、曲线关于 x=u 对称; 成反比; 2、当x=u时,f(x)具有最大值,且与 3、当X离 u越远,f(x)的值越小; 4、曲线x=u± 处有拐点; 5、 越小,曲线顶点越高,曲线形状越陡峭
§2.4 方差—协方差阵
三、互协方差阵:
Y X 观测值向量 n 关于 的互协方差阵: 1 n1
nm

DXY E X E ( X )Y E (Y ) E X Y
T


T

x1 y 2 x2 y2 xn y 2 x1 y m x2 y m xn ym
逆矩阵的性质:
(1)( AB) B A (2)( A ) A 1 T 1 1 T (3)( I ) I (4)( A ) ( A ) (5)对称矩阵的逆仍为对称矩阵。 (6)对角矩阵的逆仍为对角矩阵且:
1 1 1
1 1
A (diag (a11, a22 , ann )) 1 1 1 diag ( , ) a11 a22 ann



x2
xn

§2.4 方差—协方差阵
观测值向量 X的自协方差阵DXX:
n1
DXX特点: 对称可逆方阵 主对角线上元素为 对应观测值的方差; 非主对角线上元素 为对应两个观测值 的协方差
E (2x1 ) E ( x1 x2 ) E (2x2 ) E ( x2 x1 ) E ( x x ) E ( x x ) n 1 n 2

第二章 误差及分析数据的统计处理

第二章 误差及分析数据的统计处理

第二章误差及分析数据的统计处理§2-1 定量分析中的误差定量分析的任务是准确测定试样中组分的含量。

但是,即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。

这说明客观上存在着难以避免的误差。

因此,我们在进行定量测量时,不仅要得到被测组分的含量,而且还应对分析结果作出评价,判断其准确性(可靠程度),找出产生误差的原因,并采取有效的措施,减少误差。

一、误差的表示:从理论上说,样品中某一组分的含量必有一个客观存在的真实数据,称之为“真值”。

测定值(x)与真实值(T)之差称为误差(绝对误差)。

误差 E = X - T误差的大小反映了测定值与真实值之间的符合程度,也即测定结果的准确度。

测定值> 真实值误差为正测定值< 真实值误差为负分析结果的准确度也常用相对误差表示。

相对误差E r = E / T×100%= (X-T) / T×100%用相对误差表示测定结果的准确度更为确切。

二、误差的分类根据误差的性质与产生原因,可将误差分为:系统误差、随机误差和过失误差三类。

(一)系统误差系统误差也称可定误差、可测误差或恒定误差。

系统误差是由某种固定原因引起的误差。

1、产生的原因(1)方法误差:是由于某一分析方法本身不够完善而造成的。

如滴定分析中所选用的指示剂的变色点与化学计量点不相符;又如分析中干扰离子的影响未消除等,都系统的影响测定结果偏高或偏低。

(2)仪器误差:是由于所用仪器本身不准确而造成的。

如滴定管刻度不准(1ml刻度内只有9个分度值),天平两臂不等长等。

(3)试剂误差:是由于实验时所使用的试剂或蒸馏水不纯造成的。

例如配制标准溶液所用试剂的纯度要求在99.9%;再如:测定水的硬度时,若所用的蒸馏水含Ca2+、Mg2+等离子,将使测定结果系统偏高。

(4)操作误差:是由于操作人员一些主观上的原因而造成的。

比如,某些指示剂的颜色由黄色变到橙色即应停止滴定,而有的人由于视觉原因总是滴到偏红色才停止,从而造成误差。

第二章误差分析讲解

第二章误差分析讲解
22
第三节 有限测量数据的统计处理
一、偶然(随机)误差的正态分布
同一矿石样品的n次测定值:
23
y
测量值的波动符合正态分布
y

1
2
exp
1 2 x源自2


µ -0 +
x(测量值) x-µ(误差)
y 表示概率密度
σ—总体标准偏差,表示数据的离散程度
μ—无限次测量的总体平均值,
即F

s12 s22
s1

s2

P一定时,查 F , f1, f2
注意:f1为大方差的自由度 f2为小方差的自由度
如F F ,则两组数据的精密度不存在显著性差异 ,f1, f2
如F F ,则两组数据的精密度存在显著性差异 ,f1, f2 33
练习
例:在吸光光度分析中,用一台旧仪器测定溶液的
由P 95%, f大 5,f小 3 F表 9.01
F F表 两仪器的精密度不存在显著性差异
34
(二)t检验(准确度显著性检验)
1. x 与µ比较
x
t
n
S
当t≥tα,f 存在显著性差异 当t<tα,f 不存在显著性差异
35
练习
例:采用某种新方法测定基准明矾中铝的百分含量, 得到以下九个分析结果,10.74%,10.77%, 10.77%,10.77%,10.81%,10.82%,10.73%, 10.86%,10.81%。试问采用新方法后,是否 引起系统误差?(P=95%)已知含量为10.77%。
26
2.t一定时,由于f不同, 则曲线形状不同,所包 括的面积不同,其概率 也不同。
27

偶然误差的概念

偶然误差的概念

偶然误差的概念
偶然误差是指偶然的、不可预知的误差,即受观察者本身及观察者所处的环境等客观条件影响的误差,这种误差并不直接反映测量值的真实情况。

偶然误差是由于若干偶然原因所引起的微量变化的综合作用所造成的误差。

这些偶然原因可能与观测设备、方法、外界条件、观测者的感觉等因素有关。

偶然误差对测值个体而言是没有规律的(或者规律还未被人掌握),不可预言和不可控制的,但其总体(大量个体的总和)服从于统计规律,可以从理论上计算它对观测结果的影响。

第2章 误差及分析数据统计处理

第2章 误差及分析数据统计处理

相对标准偏差为: RSD
s 0.13% 100% 0.35% x 37.34%
16
2014-5-11
精密度(precision)是指在确定条件下,平行测定多次,
所得结果之间的一致程度。精密度的大小常用偏差表示。 精密度的高低还常用重复性(repeatability)和再现性 (reproducibility)表示。 重复性(r):同一操作者,在相同条件下,获得一系列结果之间 的一致程度。 再现性(R):不同操作者,在不同条件下,用相同的方法获得 单个结果之间的一致程度。
有较大偏离的数据(离群值或极值)?这些值是否该舍去?处理
的方法有: Q值检验法(Q-test)、Grubbs检验法和四倍法。 这些方法是建立在随机误差服从一定分布规律的基础上。
2014-5-11
20
(一) Q 检验法 于1951年由迪安(Dean)和犾克逊(Dixon)提出。 步骤: (1) 数据排列 X1 X2 …… Xn
Ea xi
Er Ea
(1)
相对误差Er (relative error)

100% 100% (2)

xi

绝对误差和相对误差都有正负,正值表示分析结果偏高,反之负值 偏低。实际工作中,真值并不知道,常把多次测定结果的平均值或标准 物质的理论值看作真值。
准确度(accuracy)是指测定结果的平均值与真值接近程 度,常用误差大小表示。误差小,准确度高。
2014-5-11
17
五、准确度与精密度的关系
如图:
真值37.40
甲 乙 丙

36.00 36.50 37.00 37.50 38.00
准确度好的结果要 求精密度好,精密度 好的结果准确度不一 定好。所以,有好的 精密度才可能有好的 准确度。

偶然误差的特性.

偶然误差的特性.

测量误差
偶然误差的特性
中误差 (数值越小, 精度越高)
测量误差
解决办法
偶然误差的特性
根据偶然误差的特性,它无法用系统误差的解决办法解决,只能用相应的 办法来减弱其对测量成果的影响:
➢改善观测条件,以缩小误差范围; ➢增加观测次数,以减小偶然误差对测量成果的影响; ➢取多次观测值的算术平均值作为观测结果。
地形测量
测绘基准
主讲人:赵柯柯 黄河水利职业技术学院
测量误差
偶然误差的特性
测量误差
偶然误差的特性
测量误差
偶然误差的特性
➢绝对值最大不超过某一限值(1.6秒);
➢绝对值小的误差比绝对值大的误差出现的个数多;
➢绝对值相等的正、实践证明,在其它测量结果中,也都显示出上述同样 的统计规律。
偶然误差的特性
观测成果精度的评定标准
评定精度的标准
中误差 容许误差(极限误差) 相对误差
THANKS 谢谢聆听
主讲人:赵柯柯 黄河水利职业技术学院
测量误差
偶然误差的特性
测量误差
偶然误差的特性
偶然误差的分布规律(特性)
(1)在一定观测条件下,偶然误差的绝对值不会超过一定界限(有界性); (2)绝对值相等的正、负误差出现的概率相等(对称性); (3)绝对值小的误差比绝对值大的误差出现的概率大(聚中性); (4)同一量的等精度观测,其偶然误差的算术平均值,随着观测次数的无限增加 而趋于零(抵偿性)。

第二章 误差及分析数据处理

第二章  误差及分析数据处理
3. 减免方法:增加平行测定次数
4.产生原因: 偶然因素 随机变化因素(环
境温度、湿度和气压 的微小波动)
三、误差的减免
1. 系统误差的减免 与标准试样的标准结果对照
(1) 对照实验: 与标准方法比较 回收实验 “内检”与“外检”
(2) 空白实验 (3) 校准仪器 (4)定期培训
•分析化学常用试验的方法检查系统误差的存在, 并对测定值加以校正,使之更接近真实值。常有 以下试验方法:
二、数字的修约规则 四舍六入五成双
注意: 1、要修约的数值小于等于4则舍;
2、要修约的数值大于等于6则进到前一位
3、要修约的数值为5时:如5后无数或为 零时,5前为奇数则进到前一位; 5前为偶数则 舍弃;但当5后有非零数字时,无论5前为奇数 还是偶数,都要进到前一位;
4、在对数字进行修约时,只能一次修约到 所需的位数,不能分步修约。
2.平均偏差 ( d )
为各次测定值的偏差的绝对值的平均值
特点:简单;
n
Xi X
d i1 n
缺点:大偏差得不到应有反映。
3.相对平均偏差:为平均偏差与平均值之 比,常用百分率表示:
Rd d 100 % X
4.标准偏差(standard deviation; S)
使用标准偏差是为了突出较大偏差的影
解:X =(15.67+15.69+16.03+15.89)/4=15.82
d = Xi-X =15.67-15.82=-0.15
RE% =-0.15/15.82×100%=-0.95%
n
Xi X
d i1
=(0.15+0.13+0.21+0.07)/4=0.14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偶然误差的统计规律
提纲: 一、偶然误差分布的三种描述方法 二、偶然误差的统计规律 三、由偶然误差特性引出的两个测量依据
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
通过前面的学习我们发现,采用一定观测程序或模型改正 的方法可以将系统误差消除或减弱,使偶然误差起主导作 用,而偶然误差没有规律性可言,而且很难采用上述方法 予以减弱。但是研究发现根据统计学的相关理论,偶然误 差有较强的统计规律。
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
1、列表法
误差区间单位 (″)
0.0~0.5 0.5~1.0
为负的真误差 △
个数 μi
相对个数μi/n
123
0.158
99
0.127
为正的真误差 △
个数 μi
相对个数μi/n
116
0.149
98
0.125
1.0~1.5
72
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
为研究其统计规律,假设对n个量进行了观测,观测值为
、 L1、L2、其、相Ln 应的真值分别为 L~1、令L~2、、L~n i L~i Li i 即真误差。由于假定测量平差所处理的观测值只含偶 然误差,所以真误差就是偶然误差。用向量形式表述为:
误差理论与测量平差
测绘工程系
偶然误差的统计规律
三、由偶然误差特性引出的两个测量依据
制定测量限差的依据 (有界性) 判断系统误差(粗差)的依据 (对称性和抵偿性) 偶然误差的数学期望等于真值,若误差的理论平均值不
为0且值较大,可以判断包含系统误差或者粗差。
误差理论与测量平差
测绘工程系
偶然误差的统计规律

L1
L


L2

n1

Ln

L~
n1


L~1 L~2
..L~n

1



2

则有:
L~
L
n1 .
n:在下面的学习过程中若不加说明,即没有下标说明的向量都
是列向量,若表示行向量则加以转置符号表示,如:LT、AT、BT
f (x)
1
( xa)2
e 2 2
2
误差理论与测量平差
0
测绘工程系
偶然误差的统计规律
二、偶然误差的统计规律
通过上述分析可以发现偶然误差有以下4点统计规律: 有界性:在一定条件下,超过一定限值的误差出现的概率
为0 聚中性:绝对值小的误差比绝对值大的误差出现的概率大 对称性:绝对值相等的正负误差出现的概率相等 抵偿性:偶然误差的数学期望等于0
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
在相同的观测条件下,对测区781个三角形的内角进行观 测,并按照下式求出三角形内角和的真误差为:
i 180 (L1 L2 L3)i , (i 1,2,,781)
式中:180°为三角形内角和的真值,三角形内角和的观 测值为L1+L2+L3,角标i表示第i个三角形,假设各个三角 形的偶然误差相互独立(即不存在相关性,大小和符号等 不相互影响)。
谢 谢!
误差理论与测量平差
测绘工程系
0.092
74
0.095
1.5~2.0
51
2.0~2.5
22
2.5~3.0
16
3.0~3.5
10
3.5以上
0

393
0.065 0.028 0.020 0.013
0 0.503
48
0.061
27
0.035
16
0.020
9
0.012
0
0
388
0.497
d△表示误差区间为0.5″,统计各个区间个数μi,及各区间出现的频率μi/n。绝 对值较小的个数多,绝对值相等的正负误差个数接近,误差在3.5″以内
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
3、密度函数法
(1)当样本个数无限增加,区间无限缩小,直方图中折线就 变成光滑曲线,如图所示。该曲线被称为概率密度曲线或者误
差分布密度曲线,它接近于正态分布。
(2)可用如下函数表示,其中 为
f( )
数学期望, 为2 方差。
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
2、绘图法
(1)以误差△的数值为横坐 标,(μ/n)/d△为纵坐标
(2)误差较小的长方形较高 ,面积较大,即出现的相 对个数较多;反之,误差 较大的长方形其面积较小 ,即出现误差的相对个数 较少。正负误差的个数基

本相同。
相关文档
最新文档