随机误差统计规律及单摆设计 (5)
居家物理实验-时间测量中随机误差的分布规律

实验项目名称:时间测量中随机误差的分布规律
实验目的:
手动测量节拍器的周期,研究测量值的统计分布规律
实验原理和实验内容:
随机误差的定义:
在实际测量条件下,多次测量同一量时,误差的绝对值符号的变化,时大时小、时正时负,以不可预定方式变化着的误差叫做随机误差,有时也叫偶然误差。
随机误差的出现就某一测量值来说是没有规律的,其大小和方向都是不可预知的,但对一个量进行足够多次测量,则发现它们的随机误差是按一定的统计规律分布的,即正态分布(Gauss分布)规律。
居家物理实验4报告(过程部分)
仪器设备的记录:
电子节拍器,秒表
实验内容及数据记录:(可使用EXCEl数据导入,注意有效数字,标明单位)
开启电子节拍器,调节其周期为3-5s,用秒表测量其周期,重复侧200次,求出周期的平均值和标准差σ,并以相对频数ni/N为纵坐标,时间t为横坐标,绘制其统计直方图(建议K取11-15之间的奇数值)
验数据的处理:(给出不确定度的计算结果及实验结果的表达式,必须有计算过程,注意有效位数保留和单位,画图可使用电脑绘图。
)
处理:
最大值Tmax=4.15s,Tmin=3.75s
平均值:3.99415s
标准差σ:0.084873
R=4.15-3.75=0.4
取K=11,则∆t=R/K=0.03637
实验结果的误差分析与问题讨论:(这是培养分析能力的重要环节,一定认真完成)
1.测量次数为有限次,不可能为无穷大,结果会偏离正态分布
2.由于用的为线上节拍器,和手机秒表,结果不能十分精确
3.测量200次,手按秒表会有疲倦感,超前或延后,导致测量结果偏离。
高中物理实验中的随机误差

高中物理实验中的随机误差物理实验在高中教育中扮演着重要的角色,不仅能够帮助学生巩固所学的理论知识,还能培养他们的实践能力和科学思维。
然而,在实验中常常会遇到一些无法避免的误差,其中最常见的一种误差便是随机误差。
本文将探讨高中物理实验中的随机误差及其对实验结果的影响。
一、随机误差的定义与特点随机误差(random error)是指在一系列实验中,由于实验条件、仪器精度、操作人员技术差异等随机因素引起的实测数值的波动。
随机误差的特点是不可避免且无规律可循,它既有正误差也有负误差,有时会相互抵消,但通常对实验结果产生平均偏离的影响。
二、随机误差的产生原因1. 人为因素:不同的操作人员在实验过程中可能会有不同的技术水平和操作习惯,导致实验结果的差异。
2. 仪器精度:实验中使用的仪器并非完全精确,仪器的一些随机变化会对实验结果造成影响。
3. 环境因素:实验环境的温度、湿度等因素会对实验结果产生微小的影响。
4. 被测对象:被测对象的特性和变化也是产生随机误差的原因之一,例如温度的微小波动等。
三、随机误差的测量与处理在物理实验中,我们常常需要对多个实验数据进行测量和处理,以便得到更加准确的结果。
对于随机误差的测量,可以采用以下方法:1. 重复测量法:多次进行实验,取平均值或计算测量结果的标准差来评估随机误差的大小。
2. 多次测量法:使用多个不同的仪器进行测量,比较测量结果的差异。
3. 运用统计学方法:通过概率论和统计学的知识,对实验结果进行数学分析,得出随机误差的大小与分布规律。
对于已经获得的实验数据,我们可以采用以下方式来处理随机误差:1. 去极值法:去掉明显偏离的数据,以减小随机误差对结果的影响。
2. 数据拟合法:通过对实验数据进行拟合,找到最佳曲线或直线,进行实验结果的分析和判断。
3. 误差传递法:对于利用测量结果计算的实验量,可以利用误差传递法来评估其误差范围。
四、影响随机误差的因素随机误差的大小和影响主要取决于以下几个因素:1. 实验设计:合理的实验设计可以减小随机误差的产生,例如增加测量次数、选择适当的仪器等。
单摆及随机误差正态分布

由传递公式求出
(T ± U )。
T
切勿先求出 5 个 Ti, 并求出相 应的 ST 及 UT。
∑ (t
tp
i
−t)
2
n −1 n
= 0.00626(s )
⋅ S t = 1.2 × S t = 0.00751(s )
U tB = 0.005(s )
2 2 U t = U tA + U tB = 0.0090(s )
Ug
2
2
2
2
批注 [BG9]: 不确定度的传递 中,必须写出相应的表达式注 [BG10]: 作为该实验的 最终结果,g 必须写为 (g
(
)
g = 9.781(1 ± 0.18% ) m ⋅ s −2
(
)
± U g )的形式。 上述 d、 l、
L、 t 由于是中间过程, 是否表
批注 [BG5]: 表述有何要求? 平均值及不确定度如何取 位?
(3)单摆摆长 L
L =l + d = 50.5200 + 1.9036 = 51.4718(cm) 2
2
U U L = U + d = 0.0910(cm) 2
2 l
批注 [BG6]: L 为间接量, 故L 的不确定度由传递公式给出。
⋅ S D = 1.2 × S D = 0.00201(cm )
U DB = 0.002(cm)
2 2 U D = U DA + U DB = 0.00283(cm )
D = (1.9036 ± 0.0028)(cm )
(2)摆线长 l
1 3 l = × ∑ l i = 50.5200(cm ) 3 i =1 Sl =
随机误差的统计规律

随机误差的统计规律实验目的(1) 通过一些简单测量,加深对随机误差统计规律的认识 (2) 学习正确估算随机误差、正确表达直接测量结果的一般方法 (3) 了解运用统计方法研究物理现象的简单过程实验方法原理对某一物理量在相同条件下进行n 次重复测量(n>100),得到n 个结果,,,,21n x x x 先找出它的最小值和最大值,然后确定一个区间[]x x ''',,使这个区间包含了全部测量数据。
将区间[]x x ''',分成若干个小区间,比如K个,则每个小区间的间隔∆为 Kx x '-''=∆,统计测量结果出现在各个小区间的次数M (称为频数)。
以测量数据为横坐标,只需标明各区间的中点值,以频数M 为纵坐标,画出各小区间及其对应的频数高度,则可得到一组矩形图,这就是统计直方图。
直方图的包络表示频数的分布,它反映了测量数据的分布规律,也即随机误差的分布规律。
实验步骤(1) 用钢卷尺测量摆线长。
(2) 用游标卡尺测量摆球直径。
(3) 当摆长不变,摆角(小于5o)保持一定时,摆动的周期是一个恒量,用数字秒表测量单摆的周期至少100次,计算测量结果的平均值T 和算术平均值的标准差)(x S 。
(4) 保持摆长不变,一次测量20个以上全振动的时间间隔,算出振动周期。
数据处理990.0=l m 03364.0=d m 00682.12=+=dl L m2044.40='T s051.21001001==∑=i ixT s0067240110012.)()()(=--=∑=n n x xx S i is)01.005.2()(2±=±=x S T T s022.22044.40=='T s 222/2910.94s m L T g T ==π222/5594.94s m L T g T ='='π20/80891.9s m g =%28.5%1000=⨯-=g g g E T T%54.2%1000=⨯-='g g g E T T思考1. 什么是统计直方图? 什么是正态分布曲线?两者有何关系与区别?答:对某一物理量在相同条件下做n 次重复测量,得到一系列测量值,找出它的最大值和最小值,然后确定一个区间,使其包含全部测量数据,将区间分成若干小区间,统计测量结果出现在各小区间的频数M ,以测量数据为横坐标,以频数M 为纵坐标,划出各小区间及其对应的频数高度,则可得到一个矩形图,即统计直方图。
随机误差的分布规律

当u=±1,即X= μ ±σ区间测定值出现 的概率为68.3%, 当u=±2,即X= μ ± 2σ区间测定值出 现的概率为95.5% 当u=±3,即X= μ ± 3σ区间测定值出 现的概率为99.7%。
即以标准偏差σ为单位来表示X与μ 的偏差。用u作为横坐标,概率密度Y
为纵坐标作图,就得到标准正态分布 曲线。
标准正态分布的均数为0, 标准偏差 为1,可用N(0,1)表示。用积分方法可以 计算出不同μ取值范围时曲线所包含的 面积,其面积相应于在此值范围内测定 值出现的概率。由于所有测定值出现 的总概率P=100%,所以标准正态分布曲 线与横坐标间包含的总面积等于1。由 计算结果可制成概率积分表查用。从 表中可查到:
第三节 随机误差的分布规律 一. 频率分布 例如,有一试样在相同条件下用分光光 度法测定其铁含量。20次重复测定结 果ω(Fe)×100%如下: 3.45, 3.28, 3.30, 3.20, 3.22, 3.17 3.06, 3.26, 3.14, 3.31, 3.18, 3.23 3.21, 3.23, 3.38, 3.33, 3.25, 3.12 3.26, 3.24。
首先将测定值依大小次序排列,算出 极差。极差为最大值与最小值之差。 将测定值分为8组, 组距为极差与组数 之商。每组中测定值出现的次数称为 频数。频数与测定总次数之比称为相 对频数,又称频率。编制频数、频率分 布表。以测定值为横坐标,频率为纵坐 标绘出频率分布直方图。
二. 正态分布 正态分布,又称高斯分布。其曲线 为对称钟形,两头小,中间大, 分布曲 线有最高点,如下图所示。
正态分布曲线的数学表达式为
1 2 2 Y e 2 μ和σ是正态分布两个基本参数, μ
X 2
和σ确定了,正态分布曲线也就确定
单摆实验与随机误差的正态分布

普通物理实验报告一、实验目的1. 熟悉使用J-T25周期测定仪2. 通过对单摆周期多次重复地测量,加深对随机误差的统计规律的理解3. 熟悉列表和作图的方法 二、实验原理 1.单摆库摆测重力加速度 当单摆的摆角很小(小于5°),其运动可看成简谐振动,单摆的周期近似为:故只要测出摆长L 和周期T,即可算出重力常数g 。
许多物理定律从本质上说,都是具有统计性质的。
测量的目的是为了求得尽可能接近真值的数值,以达此目的,一方面须设法排除系统误差,另一方面还要通过一系列测量取得足够多的数据,进统计处理,从而推断得到最接近真值的读数值并且推断得到该读数接近真值的程度(即误差)。
统计直方图是通过实验粗略地研究某一物理现象统计分规律趋势的一种方法。
对某一物理量在相同条件下做n次重复测量,得到一系列测量值,X1,X2,…Xn根据测量值中的最大值和最小值确定一个区间[x,x"]将区间分成若干小区间,比如K 个,则每个小区间的间隔为统计测量结果出现在各个小区间内的次数(频数),以测量数据为横坐标,以频数或相对频数为纵坐标,画出出各小区间及其对应的频数或相对频数的高度,则可得到一个矩形图,这就是统计直装订处方图。
根据分布情况画成光滑曲线,这就是随机误差的分布规律(概率密度分布曲线)。
三、实验过程与数据处理1. 用三足铁架和钢球等材料组成单摆2. 立柱铅直。
以摆球为重锤调节底座的水平螺丝,使摆线与立柱平行。
3. 测量单摆周期。
(1)用钢卷尺测量摆线长l,用螺旋测微器测量小球直径D,分别测量三次,则摆长为L=l+D/2。
(2)使摆球停止摆动,静止于平衡位置上,然后用箭头符号或其他标记标出平衡位置,作为计时参考点。
(3)移动小球,是小球在竖直平面内来回摆动,注意摆角要小于5°。
当单摆来回摆动达到平衡位置时开始计时。
为了减少误差,每次至少测10个周期,重复测量100次,表格自拟。
不需要每测一次就使单摆起摆一次,只要单摆的摆幅足够,就可以继续再测。
时间测量中随机误差的分布规律

核科学技术学院 2010 级 学号 PB10214023 姓名 张浩然 日期 2011-3-24时间测量中的随机误差分布规律PB10214023 张浩然一、实验题目:时间测量中的随机误差分布规律二、实验目的:同常规仪器测量时间间隔,通过对时间和频率测量的随机误差分布,学习用统计方法研究物理现象的过程和研究随机误差分布的规律。
三、实验仪器:电子秒表、机械节拍器四、实验原理:1、仪器原理机械节拍器能按一定频率发出有规律的声响,前者利用齿轮带动摆作周期运动,后者利用石英晶体的振荡完成周期运动;电子秒表用石英晶体振荡器作时标测时,精度可达0.01s ; 2、统计分布规律原理在近似消除了系统误差的前提下,对时间t 进行N 次等精度测量,当N 趋于无穷大时,各测量值出现的概率密度分布可用正态分布的概率密度函数表示:222)(21)(σπσx x ex f --=其中n x x ni i∑==1,为测量的算术平均值,1)(12--=∑n x xniσ,为测量列的标准差,有 ⎰-=aa dxx f a P )()(,σσσ3,2,=a利用统计直方图表示测量列的分布规律,简便易行、直观明了。
在本实验中利用f(x)得到概率密度分布曲线,并将其与统计直方图进行比较,在一定误差范围内认为是拟合的,可认为概率密度分布基本符合正态分布,其中的误差是由于环境、仪器、人的判断误差、N 的非无穷大等所决定的。
五、实验步骤:1、检查实验仪器是否能正常工作,秒表归零;2、将机械节拍器上好发条使其摆动,用秒表测量节拍器四个周期所用时间,在核科学技术学院2010 级学号PB10214023 姓名张浩然日期2011-3-24等精度条件下重复测量约200次(本实验中实际测量224次),记录每次的测量结果;3、对数据进行处理(计算平均值、标准差、作出相应图表、误差分析等);六、数据处理:1.实验数据如下:(单位:s)初步分析得2.由公式(2)(3)计算得: (单位:s)x=平均值 2.415σ=标准差0.1198473.机械节拍器的频数和频率密度分布:令K=16核科学技术学院 2010 级 学号 PB10214023 姓名 张浩然 日期 2011-3-24有 0max min ()/0.04625x x x K ∆=-= (单位:s ) 取max min ()/0.05x x x K ∆=-=(单位:s )有测量数据的频数和频率密度分布表如下: 小区域/s 小区域中点值/s 频数i n /s 相对频数(/)/%i n N累计频数(/)/%i n N ∑1.95-2.20 1.975 1 0.446428571 0.446428571 2.20-2.05 2.025 1 0.446428571 0.892857143 2.05-2.10 2.075 1 0.446428571 1.339285714 2.10-2.15 2.125 3 1.339285714 2.678571429 2.15-2.20 2.175 2 0.8928571433.571428571 2.20-2.25 2.225 7 3.1256.696428571 2.25-2.30 2.275 177.589285714 14.28571429 2.30-2.35 2.325 31 13.83928571 28.125 2.35-2.40 2.375 28 12.540.6252.40-2.45 2.425 44 19.64285714 60.26785714 2.45-2.50 2.475 26 11.60714286 71.875 2.50-2.55 2.525 35 15.625 87.5 2.55-2.60 2.575 14 6.2593.752.60-2.65 2.625 10 4.464285714 98.21428571 2.65-2.70 2.675 3 1.339285714 99.55357143 2.70-2.752.72510.4464285711004.统计直方图和概率密度分布曲线图像:核科学技术学院 2010 级 学号 PB10214023 姓名 张浩然 日期 2011-3-245.不确定度分析:0.950.015694973s A U t n==对于电子秒表,人的反应时间为0.2s ,远大于0.01s ,则取B ∆=∆估;对于秒表,取C=3。
随机误差的统计分布实验报告

随机误差的统计分布实验报告随机误差的统计分布实验报告引言:在科学研究和实验中,我们经常会遇到各种误差。
其中,随机误差是不可避免的,它是由于实验条件的不完美、测量仪器的误差以及实验者的技术水平等因素引起的。
为了更好地理解随机误差的特性和分布规律,我们进行了一系列的实验。
实验目的:本次实验的主要目的是通过对一组数据的收集和分析,探究随机误差的统计分布规律,并验证中心极限定理的适用性。
实验步骤:1. 实验器材准备:我们准备了一台精密天平,用于测量实验中所需的物品的质量。
2. 实验样本选择:我们随机选择了50个物品作为实验样本,这些物品的质量在一定范围内波动。
3. 实验数据收集:我们使用天平测量了每个样本的质量,并记录下来。
4. 数据处理与分析:在收集完实验数据后,我们进行了一系列的数据处理和分析,以探究随机误差的统计分布规律。
实验结果:通过对实验数据的分析,我们得到了以下结果:1. 随机误差的分布呈现正态分布的趋势:我们将实验数据绘制成直方图,发现其呈现出典型的钟形曲线,符合正态分布的特征。
这表明随机误差在一定程度上服从正态分布。
2. 中心极限定理的适用性:我们对实验数据进行了多次抽样,并计算了每次抽样的均值。
结果显示,随着抽样次数的增加,抽样均值的分布逐渐接近正态分布。
这验证了中心极限定理的适用性,即当样本容量足够大时,样本均值的分布趋近于正态分布。
3. 随机误差的大小与分布:通过对实验数据的统计分析,我们发现随机误差的大小与分布与所测量的物理量有关。
在某些情况下,随机误差的大小与物理量的大小成正比,而在其他情况下,则呈现出不同的关系。
这表明随机误差的大小和分布是一个复杂的问题,需要进一步研究和探索。
结论:通过本次实验,我们得出了以下结论:1. 随机误差在一定程度上服从正态分布。
2. 中心极限定理适用于随机误差的分布,当样本容量足够大时,样本均值的分布趋近于正态分布。
3. 随机误差的大小和分布与所测量的物理量有关,需要进行更深入的研究和探索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实 验 报 告
5-
25系05级
鄂雁祺
日期:06年3月25日
学号:
PB05025003
实验一:
实验题目:单摆的设计与研究——测量重力加速度。
实验目的:利用经典单摆公式,给出的器材和对重力加速度的精度要求设计实验,学
习应用误差均分原理,选用适当仪器,学习累积放大法的原理运用。
实验原理:
1.由一级单摆近似周期公式:g
L
T π2=得2
24T L g π=,通过测量单摆周期T,摆长L ,求出重力加速度g 的大小。
2.根据2
24T
L g π=,根据最大不确定度计算,有T T L L g g ∆+∆=∆2 所以:
%5.0≤∆L L ,即%5.05.05.0≤+∆+∆d
l d
l ,有 Δl ≤0.5%×l =0.35cm Δd ≤0.5%×2×d=0.002mm
所以:
%25.0≤∆T
T
,有ΔT ≤0.25%×T=0.00425 由此可知:l 应用米尺测量,d 用游标卡尺测量即可,
5000425
.02
.0T
≈=
∆∆人,所以单摆周期应该一组测量50个。
实验器材:
米尺,电子秒表,游标卡尺,支架、细线(尼龙绳)、钢球、摆幅测量标尺。
实验步骤:
1.用米尺测量摆线长6次;
2.用游标卡尺测量小球直径6次;
3.利用电子秒表测量单摆50个周期的时间,共6组;
4.记录并分析处理数据,计算重力加速度g 。
数据处理:
由L=l+0.5d,T=t/50,根据公式224T L g π=
,得到合肥地区重力加速度为:2/801.9s m g =
1.对摆线长l (6组数据)的处理:
米尺误差分布为正态分布
95.0t =2.57 仪∆=0.1cm
c=3
005.0))1(/()(6
1
=--=
∑=-
i i
Al n n l l
u
由不确定度合成公式得
0.0112()2
2
95095.0=∆+=)(仪。
c
k
u t U Al l
则 cm )011.0(65.608l ±= P=0.95
2.对摆球半径(6组数据)的处理:
游标卡尺误差分布为均匀分布
95.0t =2.57
仪∆=0.002cm c =3
0001.0))1(/()(6
1
=--=
∑=-
i i Ar n n r r u
由不确定度合成公式得
0.0001()2
2
95095.0=∆+=)(仪。
c
k
u t U Ar r
则 cm )0001.0(1.0451r ±=
P=0.95
综上所述,由L =l +r ,得
11.0()2
95.0295.095.0=+=)(r l L U U U
所以,
0.011)cm 66.653(r l L ±=+=
3.电子秒表误差分布为正态分布
95.0t =2.57 仪∆=0.1s
c=3
0.074))1(/()(3
1
=--=
∑=-
i i
At n n t t
u
由不确定度合成公式得
0.019()2
2
95095.0=∆+=)(仪。
c
k
u t U AT T
因此
0.019)s (1.312T ±= P=0.95
总上所述:
由2
24T L g π=,有
040.0(2)2
95.02295.095.0=+=)(r L g
U U g
U
所以,
2/)040.0801.9(s m g ±=
P=0.95
缺少验证过程
误差分析:
由上述计算值,结果偏大。
其产生原因可能有:
1. 测量绳长时拉伸过紧,而时摆长偏大;
2. 由于人的反应时间问题,可能开表停表时间有所偏差而影响结果
实验报告
25系05级鄂雁祺日期:06年3月25日学号:
PB05025003 实验二:
实验题目:时间测量中随机误差的分布规律
实验目的:用常规仪器测量时间间隔,通过对时间和频率测量的随机误差分布,学习用统计的方法研究物理现象的过程和研究随机误差分布的规律.
实验原理:
用电子秒表测量节拍器发声的时间间隔,机械节拍器按一定的频率发出有
规律的声响;电子秒表用石英晶体振荡器作时标,一般用六位液晶数字显示,
其连续积累时间为59min59.99s,分辨率为0.01s,平均日差0.5s
实验器材:
机械节拍器,电子秒表。
实验步骤:
1.测量机械节拍器摆动三个周期所用的时间间隔,共计200组。
2.记录实验数据,找出最大最小值,设定合理的间隔并进行分组处理。
3.做出直方图,并用计算机软件进行拟合。
数据处理:
①根据原始数据处理得表格如下:
②统计直方图和概率密度分布曲线如下:
05
10
15
20
n i /N (%)
x(s)
③ 根据原始数据(即原始测量列)可算得测量结果的平均值为s t 161.3=
根据原始数据(即原始测量列)可算得测量结果的标准差为s 14246.0=σ 根据算术平均值s t 161.3=,可算得算术平均值的标准差01007.0=At u ④ ⎰-==
±σ
σσ565.0)()(x F P
⎰-==±σσσ22845.0)()2(x F P ⎰
-==±σ
σ
σ33945.0)()3(x F P
⑤ 对200组时间数据的处理
考虑置信概率P=0.95的情况, 电子秒表误差分布为正态分布,可取
95.0t =1 仪∆=0.01s c=3
B 类不确定度在0.95的置信概率下置信因子为k=1.96 由不确定度合成公式得
2
2
95095.0())
(仪。
c
k
u t U At ∆+==0.02 所以,
s t )02.016.3(±= P=0.95
误差分析:
由所绘制的统计直方图和概率密度分布曲线可以看出测量结果基本符合正态分布。
存在部分误差,可能原因是:
1.测量为有限次测量,结果必定会偏离正态分布;
2.外界影响因素较多,会影响实验者的测量,难以保证完全等精度;
3.本实验在测量过程中由搭配双方各测量了100个数据,结果也不是绝对的等精度测量结果。