药动学与药效学理论简介

合集下载

药物在体内药动学和药效学模型构建与应用

药物在体内药动学和药效学模型构建与应用

药物在体内药动学和药效学模型构建与应用药物在体内的药动学和药效学模型构建与应用药物作为一种治疗疾病的手段,在人类历史上已有数千年的应用。

药物的有效性和安全性是治疗疾病的关键因素之一。

药物在体内的作用和运转过程,是药物设计和临床应用的重要考量因素。

药物的药动学和药效学模型的构建和应用,可以帮助人们更好地了解药物在体内的运转过程和规律,从而提高药物的疗效和安全性。

一、药物的药动学药物的药动学是研究药物在体内吸收、分布、代谢和排泄动力学过程的科学。

药物在体内的药动学参数包括最大浓度、最小浓度、时间、半衰期等。

药物的药动学过程受到多方面因素的影响,包括药物的性质、个体差异、肝功能、肾功能等。

药物的吸收过程是指药物从给药途径进入体内的过程。

药物吸收的速度和程度受多种因素影响,如药物性质、药物形式、给药方式等。

药物在胃部和小肠部分别可能发生两种不同的吸收过程:passive diffusion和carrier-mediated transport。

药物被呈现在血浆中的最大浓度称作Cmax,Cmax越高,颠峰时间越短,说明药物的吸收速度越快。

药物的分布过程是指药物在体内组织和器官间扩散的过程。

药物的分布过程同样受多种因素影响,如药物性质、靶组织可及性、血浆蛋白结合率等。

药物的分布过程最终会形成药物浓度平衡,在药物的分布范围内,组织和器官的药物浓度基本相同。

药物的代谢过程是指药物在体内代谢成代谢产物的过程。

药物代谢的主要场所在肝脏,也可在肾脏、肠道等地发生。

药物代谢的目的是加速药物的排泄,以便维持药物的稳态血药浓度。

药物代谢可以分为两个阶段,第一阶段药物经过氧化、还原和水解等反应,第二阶段则是各种代谢产物的结合、脱离和排泄。

药物的排泄过程是指药物从体内排出的过程。

药物的排泄可以经过尿液、汗液、呼吸等多种排泄方式。

其中,药物在肾脏中的排泄是最为重要的排泄途径。

药物的半衰期是药物排泄过程中最为重要的药动学参数,半衰期越短,说明药物排泄的速度越快。

药动学、药效学

药动学、药效学
2.稳态浓度的波动幅度与给药的间隔成正比
※剂量不变,加快给药的频率体内药物总量增加峰谷浓度差缩小
※延长给药间隔体内药物总量减少,峰谷浓度差加大
3.达稳态浓度的时间与t1/2成正比
28
第3章 药物效应动力学 Pharmacodynamics
◆药物的基本作用
◆药物剂量与效应的关系
◆药物与受体
成都医学院药学院药理教研室 29
药动学、药效学
梯形面积法 求AUC0t
2
时量曲线
时量关系:血药浓度随时间推移而发生变化的规律
药时曲线:以血药浓度为纵坐标,时间为横坐标作图
时效关系:药物效应随时间变化的规律

最小中毒浓度


高峰浓度 高峰 安全

浓度 范围
最小有效浓度
Tmax
潜伏期 持续期 残留期
时间
非静脉给药的时量曲线
3
时量曲线的意义
7
◎药物动力学的基本模型
一室模型
一室模型:体内药物瞬时在各部位达到平 衡,即给药后血液中依度和全身各组织器 官部位浓度迅即达到平衡
二室模型
二室模型:药物在某些部位的药物浓度和血液 中的浓度迅速达平衡,而在另一些部位中的转 运有一速率过程,但彼此近似,前者被归并为 中央室,后者则归并成为外周室
8
药物转运的速度方程
特异性
药物的辩证法
M-R
选择性
Glands ●Eye Smooth muscle Heart ●血管 CNS
原因:药物作用选择性低
特点: ○一般不太严重 可以减轻或避免 ○可以预知
○相对性(根据用药目的不同而转化)
37
2.毒性反应
用量过大或用药时间过长对机体功能、形态产生损害

药动学与药效学理论的简介

药动学与药效学理论的简介

5.351±0.533 1.084±0.177 65.18±4.96
6.12

20.73
12.1±4.1
1.3±0.71

9
喹诺酮类抗生素的给药方案
❖ PK/PD疗效预测指标 ▪ Cmax/MIC >8 ▪ AUC0-24/MIC
AUC0-24/MIC
革兰氏阴性菌 革兰氏阳性菌 >125~250 >30~175
不同给药间隔对不同细菌的T>MIC %
750mg/Q8h
1125mg/Q12h
71.6%
55%
60.5%
40.3%
52.7%
35.2%
2250mg/Qd
33.8% 20.1% 17.6%
17
头孢呋辛的给药方案
❖ 头孢呋辛的两种不同给药方案
以1500mg·d-1持续静脉滴注给药与750mg/Tid静脉注射相比,两种给药方案获 得的稳态血药浓度相似,总体治愈率相同,但日均费用有明显差异。 β-内酰胺类抗生素的持续静脉滴注更能体现用药的经济学原则。
5
依据PK/PD理论制定给药方案
浓度依赖性抗生素——氨基糖苷类给药方案的制定 合适的给药剂量 恰当的给药间隔 耳、肾毒性
6
庆大霉素的给药方案
❖ 一日一次大剂量给药
氨基糖苷类临床有效率由Cmax/MIC 决定,当Cmax/MIC>8~12时,临床 有效率>90%
❖ 间隔24h给药,减少细菌耐 药性
MIC(mg/L)
0.25 1 1
MPC(mg/L)
达稳后Cmax mg/L
达稳后Cmin mg/L
1
5.351±0.533 1.084±0.177

抗菌药物的药动学和药效学参数对临床用药的指导作用

抗菌药物的药动学和药效学参数对临床用药的指导作用

国际医药卫生导报 2007年 第13卷 第10期(半月刊)药物与临床药动学(Pharmacokinetics,PK)和药效学(Pharmacodynamics,PD)是药理学重要组成部分。

抗菌药物的药物代谢动力学亦称药动学,指用动力学(kinetics)的原理与数学模式,定量描述抗菌药物进入体内的吸收(Absorption)、分布(Distribution)、代谢(Metabolism)和排泄(Elimination) 过程中血药浓度随时间动态变化的规律 。

抗菌药物的效应动力学,简称药效学,是研究抗菌药物浓度和抗微生物效果之间的关系。

1 常用的药动学和药效学参数1.1 生物利用度(bioavailability):系指药物吸收进入全身血循环的速度和程度。

1.2 半减期(half-life,T1/2):即指血药浓度下降一半所需要的时间。

1.3 MIC:(minimum inhibitoryconcentration):最低抑菌浓度,抑制细菌生长的最低的抗菌药物浓度。

1.4 MIC90:能抑制90%以上细菌生长的抗菌药物浓度。

1.5 AUC:24h内稳态血药浓度时间曲线下的面积。

即24hAUC或AUC0-24,或AUC24。

1.6 AUC/MIC:即24hAUC和MIC的比值。

1.7 Peak或Cmax:血药峰浓度,给药后达到的最高血药浓度。

1.8 Peak/MIC(Cmax/MIC):抗菌药物峰浓度和MIC的比值。

1.9 PAE(post antibiotic effect):抗生素后效应,即在去除抗菌药物后,细菌生长仍然被抑制的时间。

1.10 sub MIC effect:亚抑菌浓度作用,即在抗菌药物浓度小于MIC时,抗菌药物对细菌的抑制作用。

2 抗菌药物根据PK/PD分类抗菌药物可分为浓度依赖性抗菌药物和时间依赖抗菌药物。

2.1 浓度依赖性抗菌药物的抗菌作用决定于药物的峰浓度,峰浓度和MIC比值越大,抗菌作用越强,AUC/MIC和Cmax/MIC是主要指标,该类抗菌药物主要是氟喹诺酮类和氨基糖苷类。

临床药物代谢动力学与药效学

临床药物代谢动力学与药效学
3
药物的体内过程
药物的体内过程包括药物的吸收、分布、 生物转化和排泄。
一、吸收:指药物未经化学变化而进入血液 的过程。吸收部位有消化道、肌肉和皮下注 射部位、皮肤、粘膜、肺 等。 1、 消化道吸收主要有口腔、胃、小肠、 直肠。影响消化道吸收的主要因素有药物、 剂型、食物、消化道的功能状态、首过效应、 药物相互作用等。
4
药物的体内过程
2、从肌肉和皮下注射部位吸收:药物吸收 速率与药物的水溶性和注射部位的局部血 流量有关。与口服给药相比,肌注吸收较 慢而完全,皮下注射的吸收均匀而缓慢。
3、从皮肤吸收:除小分子外,药物透皮吸 收速率主要决定于脂/水分配系数。皮肤 用药主要是发挥局部作用。
4、从肺吸收:吸入给药主要用于挥发性气 体麻醉药。
t1/2=0.693/K 反映药物从体内消除快慢的指标,
是制定给药方案的重要依据。一次给药 后经过3.32个t1/2体内剩10%,经过6.64 t1/2各体内剩1%。
11
药代动力学基本概念
3、生物利用度(F):药物吸收进入体内的速度与程度。 F = AUCiv×100% 影响F的因素: 1) 吸收前的药物降解; 2) 吸收后的首过
临床药物代谢动力学与 药效学
1
药代动力学概述
药物代谢动力学一般简称为药代动力学 (pharmacokinetics,PK),是将动力学原理应用 于药物的一门科学,主要是研究体内药物及其 代谢物随时间动态量变规律,即研究体内药物 的存在位置、数量与时间之间的关系,研究这 些动态行为如何影响药效,其本身又如何受药 物输入方式(剂型、剂量、给药途径等)以及 机体条件(种族、性别、年龄、疾病状况)的 影响。药代动力学原理对涉及药物的实验设计 及数据处理、对新药研制、药物制剂的体内质 量控制,特别是临床合理用药具有重要的实用 价值。

药效学与药动学(clinical pharmacology)

药效学与药动学(clinical pharmacology)

2006.2
制药专业
10
特定位点(或概念) 特定位点(或概念) 极量 最小有效浓度 常用量范围 效能: 效能:药物产生最 大效应的能力Emax Emax: 大效应的能力Emax: 强度:产生50% 50%效 强度:产生50%效 应时所用药物的剂量
阈 剂 量
常 用 量
最 大 有 效 量
最 小 中 毒 量
2006.2 制药专业 14
二,受体机制 第四节 药物与受体 一,受体的由来 1878年Langley提出,1955年证实 提出,1955 1878年Langley提出,1955年证实 二,受体的概念和特性 定义:是一类介导细胞信号转导的功能蛋白质, 定义:是一类介导细胞信号转导的功能蛋白质, 能识别生物活性物,并与之结合, 能识别生物活性物,并与之结合,产生特定效应 配体: 配体:能与受体特异结合的物质 内源性配体(第一信使):递质, ):递质 内源性配体(第一信使):递质,激素 外源性…… 药物, 外源性 药物,毒物 受点: 受点:受体中与药物结合的部位
PH= Pka [HA]=[A-] 当PH= Pka [B]=[BH+] Pka;该药物在溶液中50%溶解时的PH 50%溶解时的PH值 Pka;该药物在溶液中50%溶解时的PH值 非离子型易穿透膜,离子型则不易透过膜, 非离子型易穿透膜,离子型则不易透过膜,称离 子障. 丙磺舒Pka=3.4 Pka=3.4, 子障.例;丙磺舒Pka=3.4,口服后在体液中的分 布情况 胃PH=1.4 血PH=7.4 尿PH=6.4 1 1 1 未解离 0.01
2006.2
制药专业
8
第二节 构效关系和量效关系 一,构效关系 药物化学结构与药物作用间的关系 结构相似,作用相似, 结构相似,作用相似,强弱不同 比如AD NA; AD和 比如AD和NA;乙酰雌酚和雌二醇 结构相似,光学活性不同, 结构相似,光学活性不同,作用不同 比如氯霉素和合霉素

药效学 药动学

药效学 药动学
最小中毒量 minimal toxic dose
致死量
lethal dose
作 用
常用量
0
无 效 量
最 小 有 效 量
极 量
最 小 中 毒 量
最 小 致 死 量
剂量
剂量与药物作用的关系示意图
举例
• 治疗感冒发烧口服百服宁片和VC银翘片, 可造成共有成分对乙酰氨基酚超出安全剂 量,引发肝脏受损。
作用强度 无 效
是哪种不良反应?
化疗严 重脱发
治疗量下出现的与用药不 相关的反应
是哪种不良反应?
剂量过大,用药时 间长——耳聋
真痛苦,我 听不到!!!
1990年我国有耳聋儿童 180余万人,其中60%为药 物性.
药物剂量与效应关系
量效关系(dose-response relationshi) 药理效应与剂量在一定范围内成比例
舌下含化、口服(per os, po)、直肠给药
口腔
胃 肠 直肠
首关消除
肝脏
消化道
血液循环
首过消除
(First pass eliminaiton)
上腔静脉 药物经肝静脉 入全身循环
药物在通过肠 粘膜和肝脏时,因 经过灭活代谢而进
入体循环的药量减
药物经肝门静 脉入肝脏
少现象。
小肠吸收药物
(二)分布 (Distribution)
影响因素
1、蛋白结合率 2、体内屏障 (1)血脑屏障 (2)胎盘屏障 (3)血眼屏障 3、其他
血浆蛋白
药物与血浆蛋白结合可发生置换现象
华法林
华法林
华法林
华法林
保泰松 保泰松
华法林
华法林
华法林
保泰松 华法林 保泰松

以药动学、药效学指导心血管药物的使用

以药动学、药效学指导心血管药物的使用

药物动力学是应用化学动力学的原理研究药物体内过程的科学,是研究各种体液、组织和排泄物中药物和代谢物水平的时间过程。

药物的体内过程主要包括药物的吸收absorption 、分布 distribution 、代谢 metabolism 和排泄 excretion 四个过程。

药物效应动力学是研究药物对机体的作用、作用规律及作用机制的科学。

药物效应受到药物与机体两方面的影响。

因此,凡是影响药动学和药效学的因素,如药物的性质、剂量、剂型、给药途径、人的年龄、性别、遗传因素、疾病因素、合用的药物等均可影响到药物疗效的发挥。

在心血管药物的使用中,要充分考虑药动学和药效学的影响因素。

一、药物剂型的选择剂型是药物应用的形式,对药效的发挥极为重要。

同一药物的不同剂型,药物的起效时间、效应强度、持续时间可以不同,这可能与药物吸收速率和分布的范围有关。

肠溶片或胶囊可减少药物对胃的刺激,缓释制剂可使药物缓慢释出,而控释制剂可使药物以近似恒速释放,不仅延长药物作用时间,而且减少血药浓度的波动。

如:硝苯地平普通片口服后吸收迅速、完全, 15 分钟起效, 1-2 小时作用达高峰,作用持续 4-8 小时,一般用量为 10-20mg , tid ;硝苯地平缓释片(伲福达)口服后可在体内持续释药 6-8 小时,常用量为 20mg ,一日 1-2 次;硝苯地平控释片(拜新同)在 24小时内近似恒速释放硝苯地平,通过膜调控的推拉渗透泵原理,使药物以零级速率释放。

不受胃肠道蠕动和 PH 的影响,常规用量 30mg , qd 。

高血压治疗的最终目标是减轻或逆转病人的终末器官损伤,研究证实高血压所引起的心、脑、肾等靶器官的损伤与 24 小时平均动态血压及 24 小时的血压波动有关,持续 24 小时的稳定降压对减少靶器官的损害具有重要意义。

在降压治疗中保持血压平稳,变异度小,可减少心血管事件的发生。

因此,临床中应尽可能使用其控缓释剂型。

二、考虑药物的首关效应首关效应是指某些药物首次通过肠壁或经门静脉进入肝脏时被其中的酶所代谢致使进入体循环药量减少的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

×
×
V·MIC
ln2
DI
MIC=4 MIC=6 MIC=8
不同给药间隔对不同细菌的T>MIC %
750mg/Q8h
1125mg/Q12h
71.6%
55%
60.5%
40.3%
52.7%
35.2%
2250mg/Qd
33.8% 20.1% 17.6%
17
头孢呋辛的给药方案
❖ 头孢呋辛的两种不同给药方案
以1500mg·d-1持续静脉滴注给药及750mg/Tid静脉注射相比,两种给药方案 获得的稳态血药浓度相似,总体治愈率相同,但日均费用有明显差异。 β-内酰胺类抗生素的持续静脉滴注更能体现用药的经济学原则。
达稳后Cmax mg/L
达稳后Cmin mg/L
达稳后AUC0~24 mg·h/L
5.351±0.533 1.084±0.177 65.18±4.96
6.12

20.73
12.1±4.1
1.3±0.71

9
喹诺酮类抗生素的给药方案
❖ PK/PD疗效预测指标 ▪ Cmax/MIC >8 ▪ AUC0-24/MIC
1
达稳后Cmax mg/L
5.351±0.53 3
达稳后Cmin mg/L
1.084±0.17 7
8
6.12

8
12.1±4.1 1.3±0.71
12
喹诺酮类抗生素的给药方案 ❖ 不良反应
▪ 喹诺酮类药物对中枢的不良反应是浓度依赖性的 ▪ 每日一次给药毒性>一日多次给药
13
依据PK/PD理论制定给药方案
药动学与药效学理论简介
基本概念
❖ PK/PD概念
PK即为药代动力学(pharmacokinetics),PD为药效 学(pharmacodynamics),PK研究药物浓度在体内随 时间改变发生的变化,以及药物分布的特点,PD研究药 物的作用机制及效能。为了更有效的进行抗感染治疗, 将药物的体内过程与抗菌药物药效结合起来制定治疗方 案便是PK/PD参数的概念和意义。
时间依赖性抗生素——β-内酰胺类给药方案的制定 合适的给药剂量 恰当的给药间隔 用药的经济性原则
14
头孢呋辛的给药方案
❖ 给药浓度
β-内酰胺类抗生素具有时间依赖性特征,Cmax/MIC>2~5及杀菌作用关系密 切。
Bacteriologic Cure (%)
❖ 给药间隔
100
Байду номын сангаас
80
选择适当给药间隔使
2
基本概念
❖ 时间依赖性及浓度依赖性
根据不同药物浓度与该种药物杀菌作用的关系的不同,而将抗生素分 为时间依赖性与浓度依赖性两大类,浓度依赖性抗生素的杀菌作用随药物 浓度的增高而加大,而时间依赖性药物的杀菌作用与药物浓度关系并不密 切
3
基本概念
❖ 重要的PK/PD参数
Cmax
T>MIC
4
MIC
抗生素的PK/PD分类
260 20.7 —
10
喹诺酮类抗生素的给药方案
❖ 喹诺酮类抗生素诱发耐药的MPC和MSW ▪ MPC是指防止耐药突变菌株被选择性富集扩增所需的最低抗 菌药物浓度。 ▪ 以MPC为上界,以MIC为下界的浓度范围为耐药选择窗MSW。
11
喹诺酮类抗生素的给药方案
❖ 基于MIC控制感染,根据MPC和MSW阻断第一步耐药突变。
60
T>MIC >40%
40
以取得理想的细菌清除率
20
头孢菌素 青霉素
0 0
20 40 60 80 100 Time above MIC (%)
15
β-内酰胺类给药方案的制定
❖ 给药间隔
当T>MIC >40%后,动物 死亡率不再降低
Mortality after 4 days of therapy (%)
100 80 60 40 20 0 0
头孢菌素 青霉素
20 40 60 80 100 Time above MIC (%)
16
β-内酰胺类给药方案的制定
❖ 以头孢呋辛不同给药方案为例计算 T>MIC
头孢呋辛 T1/2=1.5h Vd=0.19L·kg-1
T>MIC = ln Dose
T1/2
100
单次注射(单室模型) Vd=0.31L·Kg-1; 每日给予7mg·Kg-1 ; MIC=2
CmaxX022.5mg/L V
Cmax/MIC>10
7
庆大霉素的给药方案
❖ 耳、肾毒性
实验证明,氨基糖 苷类药物对耳、肾的 毒性不取决于耳、肾 细胞周围药物浓度的 最高值,而在于其周 围药物浓度超过中毒 浓度的时间。Qd给 药比一日多次给药相 比更有利于药物清除, 减少了不良反应。
以单室多次给药模型计算
C SS min
=
V(1
X0 -e
-kτ
× )
e
-kτ
C SS =
X0
max V(1 - e-kτ)
相同日剂量不同给药时间体内药物浓度的变化
8
喹诺酮类抗生素的给药方案 ❖ 我院两种常用的喹诺酮药物的用法及PK值
莫西沙星 400mg/Qd 左氧氟沙星 300mg/Bid 左氧氟沙星 750mg/Qd
时间依赖性
(PAE短或无)
T>MIC
• β内酰胺类 • 大环内酯类(不含阿奇霉素) • 克林霉素 • SMZ/TMP
Cmax/MIC;AUC0-24/MIC • 氨基糖苷类 • 喹诺酮类 • 甲硝唑
部分抗菌药物 的PK/PD特性
及评价参数
浓度依赖性
时间依赖性
(长PAE)
AUC0-24/MIC • 阿奇霉素 • 万古霉素 • 四环素 • 替考拉宁
5
依据PK/PD理论制定给药方案
浓度依赖性抗生素——氨基糖苷类给药方案的制定 合适的给药剂量 恰当的给药间隔 耳、肾毒性
6
庆大霉素的给药方案
❖ 一日一次大剂量给药
氨基糖苷类临床有效率由Cmax/MIC 决有定效,率>当9C0%max/MIC>8~12时,临床
❖ 间隔24h给药,减少细菌耐 药性
细菌曝露于氨基糖苷2h后出现适应 性耐药,24h后敏感性逐步恢复,一 日多次给药,不能起到杀菌作用, 却使细菌耐药性增强。
▪ 通过使血浆药物浓度迅速达峰,减少在MSW中的时间,并使 其余治疗时间血药浓度在MPC之上。
▪ 选择MSW较窄的药物。
对肺炎链球菌两种喹诺酮不同用法下的PK/PD
莫西沙星 400mg/Qd 左氧氟沙星 300mg/Bid 左氧氟沙星 750mg/Qd
MIC(mg/L)
0.25 1 1
MPC(mg/L)
AUC0-24/MIC
革兰氏阴性菌 革兰氏阳性菌 >125~250 >30~175
对肺炎链球菌两种喹诺酮不同用法下的PK/PD
莫西沙星 400mg/Qd
左氧氟沙星 300mg/Bid 左氧氟沙星 750mg/Qd
MIC(mg/L)
0.25 1 1
Cmax/MIC
21.2 6.1 12.1
AUC0-24/MIC
相关文档
最新文档