传热学第2章
《传热学》第二章 稳态导热

断面周长: 断面面积:
进行负内热源处理后等截面直肋导热微分方程组如下:
(假定肋端绝热)
定义: 令:
—— 过余温度
使导热微分方程齐次化:
并解出其通解为:
代入边界条件求出c1和c2,并代入通解,得出特解:
等截面直肋的温度分布:
肋端过余温度:
肋片散热量:
当考虑肋端散热时,计算肋片散热量时可采用假想肋高
n层圆筒壁的单位管长热流量:
二、第三类边界条件
常物性时导热微分方程组如下:
根据第一类边界条件时的结果: (此时壁温tw1和tw2为未知) 与以上两个边界条件共三式变形后 相加,可消去tw1和tw2,得:
单层圆筒壁的单位管长热流量:
三、临界热绝缘直径
有绝缘层时的管道总热阻:
当dx增大时: 增 大 减 小
代入肋片效率定义,得到:
肋片效率计算式:
m和l对肋片效率的影响分析:
a. m一定时,l越大,Φ越大,但ηf越低
采用长肋可以提高散热量,但却使肋片散热有效性降低
b. l一定时,m越大,ηf越低
可采用变截面肋片设法降低m
根据肋片效率计算散热量的方法(查线图法):
矩形及三角形直肋的肋片效率
环肋的肋片效率
h较小时
应用实例:细管,电线 电线的绝缘层外直径小于临界热绝缘直径时, 可起到散热作用
第四节 具有内热源的平壁导热
应用领域:混凝土墙壁凝固
研究对象:厚度为2δ的墙壁,内热源强度为qv, 两边为第三类边界,中间为绝热边界, 取墙壁的一半为研究对象建立导热微分方程 常物性时导热微分方程组如下:
积分两次,得:
《传热学》
第二章 稳态导热
导热微分方程:
稳态时满足:
《传热学》第二章热传导

第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
6.稳态导热:物体中各点温度不随时间而改变的导热过程。
7.非稳态导热:物体中各点温度随时间而改变的导热过程。
8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
10.肋效率:肋片实际散热量与肋片最大可能散热量之比。
11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。
二、填空题1.导热基本定律是_____定律,可表述为。
(傅立叶,)2.非稳态导热时,物体内的_____场和热流量随_____而变化。
(温度,时间)3.导温系数的表达式为_____,单位是_____,其物理意义为_____。
(a=λ/cρ,m2/s,材料传播温度变化能力的指标)4.肋效率的定义为_______。
(肋片实际散热量与肋片最大可能散热量之比。
)5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。
(气)6.一般,材料的导热系数与_____和_____有关。
(种类,温度)7.保温材料是指_____的材料.(λ≤0.12 W/(m·K)(平均温度不高于350℃时))8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。
传热学课件第 二 章 稳 态 热传导

d2t d x2
m 2 t t f
1
通过肋壁的导热
一、等截面直肋的导热
4.求解:
4>.引入过余温度:<1>式变为 <4> 5>.解微分方程得温度场 <4>式为一个二阶线性齐次常微分方程,它的通解为: =C1emx+C2e-mx <5> 将边界条件<2>、<3>代入<5>即得肋片沿H方向的温度分布:
通过圆筒壁的导热
一、已知第一类边界条件
据傳里叶定律并整理后可得热流量的表达式: 1 ln d2 2l d1 式中的分母即为长度为l的圆筒壁的导热热阻。 单位为:℃/W 实际工程多采用单位管长的热流量ql来计算热流量:
t w1 t w 2
ql
Q l
t w1 t w 2
d ln d2 2 1 1
通过平壁的导热
二、已知第三类边界条件:
q
q
t f 1 t f 2
1 1 h1 h2
也可写作:q=k(tf1-tf2) (请牢记K的物理意义!) 对于冷热流体通过多层平壁的导热,可写作:
t f 1 t f 2
1 h1
i 1
n
i 1 i h2
若已知传热面积A,则热流量为:
e m x H e m x H 0 e mH e mH
d 2 m 2 d x2
or :
0
或写作:
0
ch mx H ch mH
expmx H exp mx H expmH exp mH
1
h21d x 0
传热学 第2章 稳态导热

t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d
传热学第二章稳态热传导

h h
t f t f ( )
五、 热扩散系数 (thermal diffusivity)
a
物体导热能力 c 物体蓄热能力
从导热方程看:
a
t
温度变化快 扯平能力强
故,a 是评价温度变化速度的一个指标
2.3 通过平壁及圆筒壁的一维稳态导热
一、通过单层平壁的导热
0 , 则 2. Φ
t a 2 t
2
3. 稳态:
Φ a t 0 c
,则
0 4. 稳态且 Φ
t 0
2
三、其它正交坐标
1、柱坐标: (cylinder coordinate)
x r cos ; y r sin ; z z
2 t 1 t 1 2 t 2 t t a 2 2 2 2 r r r z c r
p
各类物质导热系数的范围
导热机理
气体:分子热运动 t
金属 非金属
固体:自由电子和晶格振动
t 晶格振动 阻碍自由电子运动
液体的导热机理不清
固体> 液体 > 气 ; 取决于物质的种类和温度
热绝缘(保温)材料 insulation material:<0.2W/(mK) (50
(2)固体的热导率
(a) 金属的热导率
金属 12~418W (m K)
纯金属的导热:依靠自由电子的迁移和晶格振动; 金属导热与导电机理一致,良导体也是良导热体。
银 铜 金 铝
T
10K:Cu 12000 W (m K) 15K : Cu 7000 W (m K)
《传热学讲义—第二章》

第二章稳态导热本章重点:具备利用导热微分方程式建立不同边界条件下稳态导热问题的数学模型的能力第一节 通过平壁的导热1-1第一类边界条件研究的问题:(D 几何条件:设有一单层平■壁,厚度为a,其宽度、高度远大丁其厚度(宽度、高度 是厚度的10倍以上)。
这时可认为沿高度与宽度两个方向的温度变化率很小,温度只沿厚度 方向发生变化。
(届一维导热问题)(2) 物理条件:无内热源,材料的导热系数入为常数。
(3) 边界条件:假设平壁两侧表面分别保持均匀稳定的温度t wi 和t w2 , t wi t w2。
(为第一类边界条件,同时说明过程是稳态的)求:平■壁的温度分布及通过平■壁的热流密度值。
方法1导热微分方程:采用直角坐标系,这是一个常物性、无内热源、一维稳态导热 问题(温度只在x 方向变化)。
导热微分方程式为: 史 0 (2-1) dx 2边界条件为:t x0 t w 1 , t x t w 2(2-2)对式(2-1)连续积分两次,得其通解:t c 1x c 2t w 2 t w 1这里C 1、C 2为常数,由边界条件确定,解得:C1C 2 t w 1最后得单层平壁内的温度分布为:t t w 1 %」曳x由丁 a 、t w 1、t w 2均为定值。
所以温度分布成线性关系,即温度分布曲线的斜率是常数(温度梯度),虫―宜const(2-6)dx0—1I~Dfl ——单屋平惬(2-3)(2-4)(2-5)热流密度为:q 史—(t W l t w2) W /m2(2-7)dx若表面积为A,在此条件下,通过平壁的导热热流量则为:qA A— t W考虑导热系数随温度变化的情况:通过平壁的导热热流密度为:dt dtq 0(1 bt) —dx dx竺一1 ]bt t 0 1 2 b t W1 t W21式中,0 1 2bt W1 t W21 22 m则q —(t W1 t W2)从上式可以看出,如果以平壁的平均温度t m虹上来计算导热系数,则平壁的热流密2度仍可用导热系数为常数时的热流密度计算式:(2-8)对丁导热系数随温度线形变化,即0(1 bt),此时导热微分方程为: d dt °0 dx dx解这个方程,最后得:t2bt2bt 2 Wi W2t W2)t W1(t W it、W 一t W2说明:壁内温度不再是直线规律, 而是按曲线变化。
传热学课件第二章导热基础理论

也称导温系数,
单位为m2/s。
其大小反映物体被瞬态加热或冷却时温度变化的快慢。
导热微分方程式的简化
(1) 物体无内热源:V = 0 t a2t
(2) 稳态导热: t 0 a2t V 0 c
(3)稳态导热、无内热源:
2t 2t 2t 2t = 0,即 x2 y2 z2 0
(4)热流密度
q d
dA
nt dA
热流密度的大小和方向可 以用热流密度矢量q 表示
q
d
q d n
dA
热流密度矢量的方向指向温度降低的方向。
在直角坐标系中,热流密度矢量可表示为
q qxi qy j qzk
qx、qy、qz分别表示q在三个坐标方向的分量的大小。
2. 2 导热的基本定律—傅里叶定律
第二章 导热基础理论
例内重基 题容点本 赏精难要 析粹点求
基本要求
1. 理解温度场、等温面(线)、温度梯 度、热流密度等概念。
2. 掌握傅立叶定律及其应用。 3. 掌握热导率和热扩散率的定义、意
义、影响因素和确定方法。 4. 能写出典型简单几何形状物体导热问
题的数学描述表达式。
重点与难点
重点: 1. 傅里叶定律与热导率。 2. 导热微分方程及单值性条件。 难点: 1. 傅里叶定律的矢量表达式。 2. 导热微分方程及单值性条件。
标量形式的付里叶定律表达式为
q t
n
对于各向同性材料, 各方向上的导热系数相等,
q qxi qy j qzk
gradt t i t j t k x y z
q
t x
传热学第二章

习题平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。
假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。
水垢的导热系数取为1W/(m.K)。
解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。
冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。
为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。
解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。
为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。
已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。
解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ 2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。
已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据第一类边界条件时的结果:
dt tw1 tw2 1
(此时壁温tw1和tw2为未知)
dr
ln r1 r
r2
与以上两个边界条件共三式变形后
相加,可消去tw1和tw2,得:
单层圆筒壁的单位管长热流量:
ql
tf1 tf2 1 1 ln r2 1
tf1 tf 2
1 1 ln d 2 1
h1 2r1 2 r1 h2 2r2 h1d1 2 d1 h2d 2
x h2 t x t f 2
根据第一类边界条件时的结果: (此时壁温tw1和tw2为未知)
q dt tw1 tw2 dx
与以上两个边界条件共三式变形后 相加,可消去tw1和tw2,得:
单层平壁的热流密度:
q
tf1 tf2
1 1
k tf1 tf2
h1 h2
多层平壁的热流密度:
接触热阻的定义:
Rc
tc
接触热阻的影响因素: 粗糙度
挤压压力 硬度匹配情形 空隙中介质的性质
减小接触热阻的措施: 表面尽量平整 增加挤压压力
两表面一软一硬 涂导热姆
第七节 二维稳态导热
应用领域:房间墙角,地下埋管,矩形保温层,短肋片
二维稳态导热微分方程:
2t x2
2t y 2
0
解析法
二维稳态导热问题的研究手段:
几种导热过程的形状因子
第二章重点:
1.各种稳态导热问题的数学模型 和求解方法
2.临界热绝缘直径问题
3.肋片性能分析
请同学们思考一个问题:
肋高越大,肋的散热面积越大,因而采用 增加肋高的方法可以增加肋的散热量。这 种方法在实际换热器设计中是否可行?若 可行,是否会有某些局限性?
二、肋片效率 提出此概念的目的——衡量肋片散热的有效程f hUl t0 t f
肋片表面平均温度tm下的实际散热量 假定肋片表面全部处在t0时的理想散热量
c2
代入边界条件解出C1和C2,并代入导热微分方程,得到:
三类边界时具有内热源平壁的温度分布:
t qv 2
2 x2
qv h
tf
上式对x求导,得到:
三类边界时具有内热源平壁的热流密度:
q
x
dt dx
qv x
当h趋于无限大时,得到:
一类边界时具有内热源平壁的温度分布:
t
qv 2
2 x2
dr
得到:
2l tw1 tw2
ln r2
r1
单层圆筒壁的热流量:
tw1 tw2 1 ln r2
tw1 tw2 1 ln d2
2l r1 2l d1
长度为l的圆筒壁的热阻:
1 ln d2
2l d1
单位管长单层圆筒壁的热流量:
ql l
tw1 tw2 1 ln d2
2 d1
2.多层圆筒壁——可看作数个单层圆筒壁相互串连
等截面直肋的温度分布:
0
expml x exp ml expml exp ml
x
0
chml x chml
肋端过余温度:
l
0
1
chml
肋片散热量:
AL
d
dx
x0
hUAL 0 thml
当考虑肋端散热时,计算肋片散热量时可采用假想肋高
l
2
代替实际肋高 l
一维温度场假定的检验: Bi h 0.05
数值法
形状因子法
地源热泵地下埋管
矩形风管保温层
形状因子S的定义—— 将有关涉及物体几何形状和尺寸的因素归纳为一起, 使两个恒定温度边界之间的导热热流量具有一个统一的计算公式
St1 t2
一维无限大平壁的形状因子:
S
A
一维无限长圆筒壁的形状因子:S 2l
ln d 2 d1
其他常见二维稳态导热情况的形状因子——查教材表2-3
两种处理方法结果并不完全相同,但均为合理结果 原因:将二维导热问题简化为一维导热问题,无论采取简化方法, 都必然会产生一定误差
复合平壁导热问题的注意点:
1.区域划分一定要合理,保证每个区域形状完全相同 2.每个单元的热阻必须使用总热阻,不能使用单位面积热阻 3.对于各部分导热系数相差较大的情况,总热阻必须用二维 热流影响的修正系数(教材表2-1)加以修正
将c1和c2代入导热微分方程,得到:
单层圆筒壁的温度分布:
r
ln
t tw1
tw1 tw2
r1 ln r2
r1
通常更多情况下用直径代替半径:
ln d
t tw1 tw1 tw2
d1 ln d2
d1
将第一次积分的结果:
dt tw1 tw2 1
dr
ln r1 r
r2
代入傅立叶定律: dt 2rl
三、临界热绝缘直径
有绝缘层时的管道总热阻:
Rl
1
h1d1
1
2 1
ln
d2 d1
1
2 ins
ln
dx d2
1
h2d x
当dx增大时:
增
减
大
小
可能增大 亦可能减小, 应具体分析
必须通过对函数求极值来判断 总热阻的变化规律
对dx求导并令其为0:
1
d x
1
2ins
1 h2d x
0
从而得出:d c
2ins
dx
2.多层平壁——可看作数个单层平壁相互串连
n层平壁的热流密度:
q
tw1
tw,n1
n i
i1 i
第i层与第i+1层之间接触面的温度:
t w,i 1
tw1
q
1 1
2 2
i i
二、第三类边界条件
常物性时导热微分方程组如下:
dt
dx dt
dx
d 2t 0 dx 2 x0 h1 t f 1 t x0
应用领域:混凝土墙壁凝固
研究对象:厚度为2δ的墙壁,内热源强度为qv, 两边为第三类边界,中间为绝热边界,
取墙壁的一半为研究对象建立导热微分方程
常物性时导热微分方程组如下:
d 2t qv 0 dx2
dt dx x0 0
dt dx
x h t
x
t
f
积分两次,得:
t
qv
2
x2
c1 x
其中肋片表面平均温度:
tm t f
m
1 l
l
0 dx
1 l
l
0 0
chcmhlmlxdx
0
ml
thml
代入肋片效率定义,得到:
肋片效率计算式: f
thml
ml
m和l对肋片效率的影响分析:
a. m一定时,l越大,Φ越大,但ηf越低
采用长肋可以提高散热量,但却使肋片散热有效性降低
b. l一定时,m越大,ηf越低
n层圆筒壁的单位管长热流量:
ql
tw1 tw,n1 n 1 ln di1
i1 2 i di
二、第三类边界条件
常物性时导热微分方程组如下:
d r dt 0 dr dr
dt dr
r r1 h1 t f 1 t r r1
dt dr
r r 2 h2 t r r 2 t f 2
q
tf1 tf 2
1 n i
1
h1 i1 i h2
第二节 通过复合平壁的导热
应用领域:空心砖,空斗墙
请同学们动脑筋思考: 空斗墙和空心砖内均存在导热系数很小的 空气孔隙,因而保温性能一定会很好吗? 为什么?
一维简化的假设条件: 组成复合平壁的各种不同材料的导热系数相差不是很大
近似计算式:
可采用变截面肋片设法降低m
m hU AL
根据肋片效率计算散热量的方法(查线图法):
矩形及三角形直肋的肋片效率
从线图查出肋片效率ηf
环肋的肋片效率
f 0
第六节 通过接触面的导热
接触热阻的例子—— 镶配式肋片,缠绕式肋片
接触热阻的形成原因—— 固体表面并非理想平整
接触热阻的概念—— 接触面孔隙间气体导致 两接触面之间存在温差
第二章 稳态导热
导热微分方程:t
c
2t x2
2t y 2
2t z 2
qV
c
a2t
qV
c
稳态时满足: t 0
常物性、稳态导热微分方程: 2t qV 0
无内热源时常物性、稳态导热微分方程: 2t 0
第一节 通过平壁的导热
应用领域:墙壁、锅炉壁面
一、第一类边界条件
1.单层平壁:
一维简化的假设条件:高度、宽度远大于厚度 常物性时导热微分方程组如下:
t
d 2t dx 2
x0
t
0
w1
t x t w2
积分两次,得: t c1x c2
代入边界条件解出C1和C2:
c1
t w1
tw2
c2 tw1
将C1和C2代入导热微分方程,得到:
单层平壁的温度分布:t
t w1
t w1
tw2
x
上式对x求导,得到:
dt tw1 tw2 dx
单层平壁的热流密度: q dt tw1 tw2
第三节 通过圆筒壁的导热
应用领域:管道
蒸汽管 热水管(95 ℃ ~70 ℃ ,60 ℃ ~45 ℃ ) 冷冻水管(7 ℃ ~12 ℃ )
蒸汽管道保温层
请同学们动脑筋思考:
管道保温层越厚,保温效果一定越好吗?
一、第一类边界条件 1.单层圆筒壁:
一维简化的假设条件—— 长度远大于壁厚,温度场轴对称