8字型比例线段的证明过程
谈谈比例线段证明的方法

谈谈比例线段证明的方法比例线段证明是一种常用的数学证明方法,它可以用来证明两条线段之间的比例关系。
比例线段证明的基本思想是:如果两条线段的长度之比等于两个数之比,则这两条线段之间存在比例关系。
比例线段证明的步骤如下:首先,在平面直角坐标系中绘制两条线段,其中一条线段的长度为a,另一条线段的长度为b。
然后,在两条线段之间绘制一条新的线段,其长度为c,使得a:b=c:d,其中d为新线段的长度。
最后,证明a:b=c:d,即证明两条线段之间存在比例关系。
比例线段证明的关键在于证明a:b=c:d,即证明两条线段之间存在比例关系。
可以使用数学归纳法来证明,即从一般情况出发,逐步推导出特殊情况,最终证明a:b=c:d。
比例线段证明是一种简单而有效的数学证明方法,它可以用来证明两条线段之间的比例关系。
它的基本思想是:如果两条线段的长度之比等于两个数之比,则这两条线段之间存在比例关系。
比例线段证明的关键在于证明a:b=c:d,即证明两条线段之间存在比例关系。
可以使用数学归纳法来证明,即从一般情况出发,逐步推导出特殊情况,最终证明a:b=c:d。
比例线段证明是一种简单而有效的数学证明方法,它可以用来证明两条线段之间的比例关系。
它的优点在于,可以通过简单的图形操作来证明两条线段之间的比例关系,而不需要复杂的数学推理。
此外,比例线段证明也可以用来证明其他几何图形之间的比例关系,比如三角形、圆形等。
总之,比例线段证明是一种简单而有效的数学证明方法,它可以用来证明两条线段之间的比例关系,也可以用来证明其他几何图形之间的比例关系。
它的基本思想是:如果两条线段的长度之比等于两个数之比,则这两条线段之间存在比例关系。
比例线段证明的关键在于证明a:b=c:d,。
8字模型例题

8字模型例题
8字模型是一种数学模型,通常用于描述物理系统中的对称性或周期性。
以下是一个简单的8字模型例题:
题目:一个圆在平面内旋转一圈,经过的时间为T。
在这个圆上任取一点P,当圆旋转一圈时,点P在圆上移动的路径是一个8字形。
求这个8字形的
长度。
答案:8字形的长度等于圆的周长,即2πr,其中r是圆的半径。
解释:当圆旋转一圈时,点P在圆上移动的路径是一个8字形。
由于点P
在圆上任意取,因此这个8字形实际上是由无数个点P的轨迹组成的。
每个点P的轨迹都是一个圆周长,因此这个8字形的长度等于圆的周长,即2πr。
中考专题6,A字型,8字型相似教师版

似,那么 BF 的长度是
.
【分析】①由折叠可知 BF=B’F;②文字相似要分类讨论
【答案】:
①当 B' FC∽ ABC 时,有 B ' F = CF AB BC
∵
AB
=
AC
=
3, BC
=
4, BF
=
B'F
,∴
BF 3
=
4 − BF 4
,解得
BF
=
12 7
②当 B 'CF∽ BCA 时, B = C = CB ' F ,∴ B ' F = FC
2. 如图 OA =12,OB = 6 ,点 P 从点 O 开始沿 OA 边向 A 匀速移动,点 Q 从点 B 开始沿 OB 边向 O 匀速移动,它们的速度都是每秒 1 个单位,如果 P,Q 同时出发,用 t (秒)表示移
动的时间 (0 t 6) , t 为何值时,以 P、Q、O 三点为顶点的三角形与 AOB 相似?
【答案】: t = 4 或 2 3. 如右图,作 DH / /BF 交 AC 于 H , ∵AD 是的中线,FH = HC
DH / /BF, AF : FH = AE : DE = 1: 3, AF : FC = 1: 6
【答案】:D
10
【B 组】
1. (1) EF / /BC ,AEF∽ABC , AG = EF ,即 AG = x ,
∴ CDF∽ CFA , CF = CD ,即 5 = CD ,
CA CF
85
CD = 25 8
【总结】 ①折叠性质:折痕垂直平分对应点连线; ②反 A 字型,选择对应边成比例关系时,选择有公共边的比例.
7
证明线段比例式或等积式的方法

证明线段比例式或等积式的方法(一)比例的性质定理:(二)平行线中的比例线段:①平行线分线段成比例定理:三条平行线截两条直线所得对应线段成比例(图1、2)。
②平行于三角形的一边的直线截其他两边(或两边的延长线)所得的对应线段成比例(图3、4)。
③平行于三角形的一边,且与其他两边(或两边的延长线)相交的直线所截得的三角形的三边与原三角形的三边对应成比例(图3、4)。
(三)三角形中比例线段:①相似三角形中一切对应线段(对应边、对应高、对应中线、对应角平分线、对应周长…)的比都相等,等于相似比。
②相似三角形中一切对应面积的比都相等,等于相似比的平方。
③勾股定理:直角三角形斜边的平方等于两直角边的平方和(图5)。
④射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项(图5)。
直角三角形上任一直角边是它在斜边上的射影与斜边的比例中项(图5)。
⑤正弦定理:三角形中,每一边与对角的正弦的比相等(图6)。
即/sinA=b/sinB=c/sinC⑥余弦定理:三角形中,任一边的平方等于另两边的平方和减去这两边及其夹角余弦乘积的二倍(图6)。
如a2 = b2+c2 - 2 b·c·cosA(四)圆中的比例线段:圆幂定理:①相交弦定理圆内的两条相交弦,被交点分成的两条线段的积相等(图7)。
(推论:若弦与直径垂直相交,则弦的一半为它分直径所成两线段的比例中项。
图8)②切割线定理从圆外一点引圆的切线和割线,切线长为这点到割线与圆交点的两线段长的比例中项(图9)。
③割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两线段长的积相等(图10)。
(五)比例线段的运算:①借助等比或等线段代换。
②运用比例的性质定理推导。
③用代数或三角方法进行计算。
平行线分线段成比例定理

5
17
2 1
)
)
(3) S△AGE=( 2
4
课堂小结
作业 4
已知AD // ED // BC,AD=15,BC=21,2AE = EB,求EF的长
A D E
H
F
解法(一)
作AG // CD交EF于H AD // EF // BC AD=15, BC=21
B
G
C
AD = HF = GC =15 ,BG = 6 EH AE = BG AB 2AE = EB
A
3k 3m 2m
E
D
2k
G
4m 2a
F
a
B
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
3k 3m
E
6m
H
2m
D
2k
F
a
B
3a
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
y
D
x
x
E C
B
5
应用4 — 建立函数关系式
2. 已知:如图,BC = 4, AC = 2 3 ∠C=60°,P为BC上 一点,DP//AB,设BP = x,S△APD= y.
(1)求y关于x的函数关系式; (2)若S△APD =
2 S△APB,求:BP的长. 3
A
D
H
B
平行线分线段成比例8

答案(2)
DB/AD=EC/FE (下/上=下/上) AB/AD=FC/FE (全/上=全/上) AB/DB=FC/EC (全/下=全/下)
A D F E L1 L2
B L4 图1
C L3 L5
教学设计(1)
1.观察图2、图3,说出它们分别是由图1怎样变化得 到的?且写出图2、图3中有关的比例式?
C
B 图4
(1)三条平行线剩下两条,且变 为三角形的一边和截三角形另两 E 边或两边延长线的线段。其中图4 中DE∥BC,图5中AF∥BC (2)结论没变,所得的对应线段 C 成比例。
部分线擦去, 取一部分 F
D(E) 一般到特殊 B C B
(3)推论:平行于三角形一边的 直线截其他两边(或两边的延长 D (E) 线),所得的对应线段成比例。 A C
字母
X型
能力目标小结
1、平行线分线段成比例定理是研究相似形 最重要、最基本的理论基础,而字母A型、字 母X型又是解决相似三角形一章有关计算和证 明的模具,可构造或寻找字母A型、字母X型 解决问题,把它称为三角形相似问题“奠基 法” 。 2、学会用“动态”的观点去解决研究问 题。 3、欣赏模型“字母A型、字母X型”的理 性美、结构美,诱发学习数学的激情,感受数 学的美学文化,培养学生“自主实践、自主探 索、大胆猜想、归纳创新”的数学理念。
1.定理名称: 2.文字语言: 3.图形语言:
D B
平行线分线段成比例定理的推论或三角形 一边平行线的性质定理 平行于三角形一边的直线截其它两边(或 两边的延长线),所得的对应线段成比例。
A E C 图4 B F D C A
图5
4.符号语言:
5.模型语言:
若DE∥BC 则:
相似三角形几何模型-X型图(知识讲解)九年级数学上册基础知识讲与练(北师大版)

专题4.34 相似三角形几何模型-X 型图(知识讲解) 0//A AOBO AB A B DC B CO DO CD ∆⇔==模型一:平行X 字型如图一,在中,D 、C 分别是AO 、BO 延长线上的点,AO BO AB AOB A D DO CO DC∆∠=∠⇔==模型二:非平行X 字型(也称为反X 字型)如图二,在中,DC 分别为AOBO 延长线上的点,AE BF ED FC ⇔=模型三:双(多)X 字型如图三,AD//BC ,AB 、CD 相交于点O ,过点O 的线段EF 交AD 、BC 于E 、F图一 图二 图三类型一、平行X 字型(也称为8字型)1.如图,在ABC 中,点D ,E 分别在边AB 、AC 上,DC 与BE 相交于点O ,且2DO =,6BO DC ==,3OE =.求证:DOE COB △∽△.【分析】利用比例线段来证明相似三角形即可.解:2DO =,6DC =,624OC CD DO ∴=-=-=,2142OD OC ∴==,3162OE OB ==, OD OE OC OB∴=, DOE BOC ∠=∠,DOE COB ∴∆∆∽.【点拨】本题主要考查三角形相似的判定,掌握三角形相似的判定定理是解题的关键.举一反三【变式1】如图,∠1=∠2=∠3,试找出图中两对相似三角形,并说明为什么?【答案】∠AFD∠∠EFB,∠ABC∠∠ADE;理由见分析.【分析】根据两个三角形的两组角对应相等,那么这两个三角形互为相似三角形证明即可.解:∠AFD∠∠EFB,∠ABC∠∠ADE.理由如下:∠∠2=∠3,∠AFD=∠EFB∠∠AFD∠∠EFB,∠∠B=∠D.∠∠1=∠2,∠12=,∠+∠∠+∠EAF EAF∠∠BAC=∠DAE,∠∠ABC∠∠ADE.【点拨】本题考查相似三角形的判定定理,熟记判定定理,本题用到了两组角对应相等的两个三角形互为相似三角形.【变式2】如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接M,N,∠1=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a,b分别交于点D、E,设∠NPE=α.(1)证明∠MPD∠∠NPE.(2)当∠MPD与∠NPE全等时,直接写出点P的位置.(3)当∠NPE是等腰三角形时,求α的值.【答案】(1)见分析;(2)点P是MN的中点;(3)40° 或70° 或55°【分析】(1)利用相似三角形的判定定理证明即可;(2)根据全等三角形对应边相等得到MP =NP ,即点P 是MN 的中点;(3)需要分类讨论:PN =PE 、PE =NE 、PN =NE ,再根据三角形内角和计算即可.(1)证明:∠a∥b ,∠∠MPD ∠∠NPE .(2)∠a∥b ,∠∠MDP =∠NEP ,∠当∠MPD 与∠NPE 全等时, MP =NP ,即点P 是MN 的中点;(3)∠a∥b ,∠∠1=∠PNE =70°,∠若PN =PE 时,∠∠PNE =∠PEN =70°.∠a =180°﹣∠PNE ﹣∠PEN =180°﹣70°﹣70°=40°.∠∠a =40°;∠若EP =EN 时,则a =∠PNE =70°;∠若NP =NE 时,则∠PEN =α,此时2α=180°﹣∠PNE =110°,∠α=∠PEN ═55°;综上所述,α的值是40° 或70° 或55°.【点拨】本题考查了相似三角形的判定、全等三角形的性质、等腰三角形的性质,解题关键是熟知相关性质,会根据等腰三角形底边不同进行分类讨论.类型二、非平行X 字型(也称为反8字型)2.在∠DP PB CP PA ⋅=⋅,∠BAP CDP ∠=∠,∠DP AB CD PB ⋅=⋅这三个条件中选择其中一个,补充在下面的问题中,使命题正确,并证明.问题:如图,四边形ABCD 的两条对角线交于P 点,若 (填序号)求证:ABP DCP △△.【答案】∠,证明见分析或∠,证明见分析.【分析】若选择条件∠,可利用两边成比例且夹角相等的两个三角形相似;若选择条件∠,可利用两角相等的两个三角形相似.解:选择条件∠的证明为:∠DP PB CP PA ⋅=⋅, ∠=PA PB DP CP, 又∠APB DPC ∠=∠,∠ABP DCP ∽△△;选择条件∠的证明为:∠APB DPC ∠=∠,BAP CDP ∠=∠∠ABP DCP ∽△△.【点拨】本题考查相似三角形的判定定理,能熟记相似三角形的判定定理,并正确识图是解题关键.举一反三【变式1】如图,在ABC 中,90ACB ∠=︒,CD 是边AB 上的中线,EF 垂直平分CD ,分别交AC ,BC 于E ,F ,连接DE ,DF .(1)求证:OCE OFD ∽△△.(2)当7AE =,24BF =时,求线段EF 的长.【答案】(1)见分析 (2)25EF =【分析】(1)如图(见分析),先根据线段垂直平分线的性质可得90EOC DOF ∠=∠=︒,ED EC =,FD FC =,再根据三角形全等的判定定理证出EDF ECF ≅,根据全等三角形的性质可得12∠=∠,从而可得421∠=∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),延长FD 至G ,使DG DF =,连接AG ,EG ,先根据线段垂直平分线的判定与性质可得EG EF =,再根据三角形全等的判定定理证出ADG BDF ≅△△,根据全等三角形的性质可得24AG BF ==,7B ∠=∠,然后根据平行线的判定与性质可得90EAG ∠=︒,最后在Rt AEG △中,利用勾股定理即可得.(1)证明:∠EF 垂直平分CD ,∠90EOC DOF ∠=∠=︒,ED EC =,FD FC =,在EDF 和ECF △中,ED EC FD FC EF EF =⎧⎪=⎨⎪=⎩,∠()EDF ECF SSS ≅,∠12∠=∠,∠90ACB ∠=︒,90EOC ∠=︒,∠233490∠+∠=∠+∠=︒,∠421∠=∠=∠,在OCE △和OFD △中,9014EOC DOF ∠=∠=︒⎧⎨∠=∠⎩, ∠OCE OFD .(2)解:如图,延长FD 至G ,使DG DF =,连接AG ,EG .则ED 垂直平分FG ,EG EF ∴=, CD 是边AB 上的中线,∠AD BD =,在ADG 和BDF 中,65DG DF AD BD =⎧⎪∠=∠⎨⎪=⎩,∠()ADG BDF SAS ≅△△,∠24AG BF ==,7B ∠=∠,∠AG BC ,∠18090EAG ACB ∠=︒-∠=︒,∠25EG =,∠25EF =.【点拨】本题考查了相似三角形的判定、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,较难的是题(2),构造全等三角形和直角三角形是解题关键.【变式2】如图,AC ,BD 相交于的点O ,且∠ABO =∠C .求证:∠AOB ∠∠DOC .【分析】利用对顶角相等得到∠AOB =∠COD ,再结合已知条件及相似三角形的判定定理即可求解.证明:∠AC ,BD 相交于的点O ,∠∠AOB =∠DOC ,又∠∠ABO =∠C ,∠∠AOB ∠∠DOC .【点拨】本题考查了相似三角形的判定定理:若一对三角形的两组对应角相等,则这两个三角形相似,由此即可求解.类型三、A、X字型综合3.如图,在∠ABCD中,AC,BD交于点O,点M是AD的中点,连接MC交BD 于点N,ON=1.(1)求证:∠DMN∠∠BCN;(2)求BD的长;(3)若∠DCN的面积为2,直接写出四边形ABNM的面积.【答案】(1)见分析(2) 6 (3) 5【分析】(1)根据平行四边形的性质可得AD∥BC,从而证明8字模型相似三角形△DMN∠∠BCN;(2)由△DMN∠∠BCN,可得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(3)根据△MND∠∠CNB且相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD-S△MND求解.(1)证明:∠四边形ABCD是平行四边形,∠AD∥BC,∠∠DMN=∠BCN,∠MDN=∠NBC,∠∠DMN∠∠BCN;(2)解:∠四边形ABCD是平行四边形,∠AD=BC,OB=OD=12BD,∠∠DMN∠∠BCN,∠DM DN BC BN,∠M为AD中点,∠AD=2DM,∠BC=2DM,∠BN=2DN,设OB=OD=x,∠BD=2x,∠BN=OB+ON=x+1,DN=OD-ON=x-1,∠x+1=2(x-1),解得:x=3,∠BD=2x=6,∠BD的长为6;(3)解:∠∠MND∠∠CNB,∠DM:BC=MN:CN=DN:BN=1:2,∠∠DCN的面积为2,∠S∠MND=12S∠CND=1,S∠BNC=2S∠CND=4,∠S∠ABD=S∠BCD=S∠BCN+S∠CND=4+2=6,∠S四边形ABNM=S∠ABD-S∠MND=6-1=5,∠四边形ABNM的面积为5.【点拨】本题考查了相似三角形的判定与性质,平行四边形的性质,熟练掌握相似三角形的面积比等于相似比的平方,等高三角形面积的比等于其对应底的比是解题的关键.举一反三【变式1】如图,在矩形ABCD中,E为AD的中点,EF∠EC交AB于F,延长FE与直线CD相交于点G,连接FC(AB>AE).(1)求证:∠AEF∠∠DCE;(2)∠AEF与∠ECF是否相似?若相似,证明你的结论;若不相似,请说明理由;(3)设ABkBC=,是否存在这样的k值,使得∠AEF与∠BFC相似?若存在,证明你的结论并求出k的值;若不存在,请说明理由.【答案】(1)见分析(2)相似,证明见分析(3)存在,k【分析】(1)由题意可得∠AEF+∠DEC=90°,又由∠AEF+∠AFE=90°,可得∠DEC=∠AFE,据此证得结论;(2)根据题意可证得Rt∠AEF∠Rt∠DEG(ASA),可得EF=EG,∠AFE=∠EGC,可得CE 垂直平分FG,∠CGF是等腰三角形,据此即可证得∠AEF与∠ECF相似;(3)假设∠AEF与∠BFC相似,存在两种情况:∠当∠AFE=∠BCF,可得∠EFC=90°,根据题意可知此种情况不成立;∠当∠AFE=∠BFC,使得∠AEF与∠BFC相似,设BC=a,则AB=ka,可得AF=13ka,BF=23ka,再由∠AEF∠∠DCE,即可求得k值.(1)证明:∠EF∠EC,∠∠FEC=90°,∠∠AEF+∠DEC=90°,∠∠AEF+∠AFE=90°,∠∠DEC=∠AFE,又∠∠A=∠EDC=90°,∠∠AEF∠∠DCE;(2)解:∠AEF∠∠ECF.理由:∠E为AD的中点,∠AE=DE,∠∠AEF=∠DEG,∠A=∠EDG,∠∠AEF∠∠DEG(ASA),∠EF=EG,∠AFE=∠EGC.又∠EF∠CE,∠CE垂直平分FG,∠∠CGF是等腰三角形.∠∠AFE=∠EGC=∠EFC.又∠∠A=∠FEC=90°,∠∠AEF∠∠ECF;(3)解:存在k∠AEF与∠BFC相似.理由:假设∠AEF与∠BFC相似,存在两种情况:∠当∠AFE=∠BCF,则有∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况不成立;∠当∠AFE=∠BFC,使得∠AEF与∠BFC相似,设BC=a,则AB =ka,∠∠AEF∠∠BCF,∠12AFAE BF BC , ∠AF =13ka ,BF =23ka , ∠∠AEF ∠∠DCE , ∠AE AF DC DE =,即113212ka a ka a =,解得,k =.∠存在k 使得∠AEF 与∠BFC 相似. 【点拨】本题考查了矩形的性质,相似三角形的判定及性质,全等三角形的判定与及性质,等腰三角形的判定及性质,采用分类讨论的思想是解决本题的关键.【变式2】如图,四边形ABCD 为正方形,且E 是边BC 延长线上一点,过点B 作BF ∠DE 于F 点,交AC 于H 点,交CD 于G 点.(1)求证:∠BGC ∠∠DGF ;(2)求证:GD AB DF BG ⋅=⋅;(3)若点G 是DC 中点,求GF CE的值.【答案】(1) 见分析 (2) 见分析(3)GF CE =【分析】 (1)由正方形性质和题干已知垂直条件得直角相等,后由对顶角相等,进而得到∠BGC ∠∠DCF .(2)由第一问的结论可得到相似比,既有DG BC DF BG ⋅=⋅,然后因为正方形四边相等,进行等量代换即可求出证明出结论.(3)通过ASA 判定出∠BGC ∠∠DEC ,进而根据第一问结论可得∠BGC ∠∠DGF ,然后通过相似比设未知数,赋值CG x =,即可求出GF CE的值. (1)证明:∠四边形ABCD 是正方形∠90BCD ADC ∠=∠=︒∠BF DE ⊥∠90GFD ∠=︒∠BCD GFD ∠=∠,又∠BGC DGF ∠=∠,∠∠BGC∠∠DCF .(2)证明:由(1)知∠BGC ∠∠DGF , ∠BG BC DG DF=, ∠DG BC DF BG ⋅=⋅∠四边形ABCD 是正方形,∠AB BC =∠DG AB DF BG ⋅=⋅.(3)解:由(1)知∠BCC ∠∠DGF ,∠FDG CBG ∠=∠,在∠BGC 与∠DEC 中,,{,=,CBG CDE BCG DCE BC CD ∠=∠∠=∠∠∠BGC∠∠DEC (ASA )∠CG EC =∠G 是CD 中点∠CG DG =∠::GF CE CF DC =∠∠BGC∠∠DGF∠::GF DG CG BG =在Rt∠BGC 中,设CG x =,则2BC x =,BC =∠CG BG =∠GF CE =【点拨】本题主要考查了正方形的性质,全等三角形判定和性质,相似三角形判定和性质等知识点,熟练运用相似三角形判定和性质是解题的关键.【变式3】已知:如图,两个DAB 和EBC 中,DA DB =,EB EC =,ADB BEC ∠=∠,且点A 、B 、C 在一条直线上.联结AE 、ED ,AE 与BD 交于点F .(1) 求证:DF AB BF BC=; (2) 如果2BE BF BD =⋅,求证:DF BE =.【分析】(1)利用等腰三角形的性质,证DAB DBA EBC ECB ∠=∠=∠=∠,从而证得AD BE ,BD CE ∥,再利用平行线分线段成比例即可得出结论.(2)证明EBF DBE △△∽,得DEB BFE ∠=∠,继而利用DAF BDE ≌△△,即可得出结论.(1)证明:DA DB =,EB EC =,DAB DBA ∴∠=∠,EBC ECB ∠=∠,ADB BEC ∠=∠,DAB DBA EBC ECB ∴∠=∠=∠=∠,AD BE ∴∥,BD CE ∥,DF AF BF EF ∴=,AF AB EF BC =, DF AB BF BC∴=. (2)证明:2BE BF BD =⋅,BE BD BF BE∴=, EBF DBE ∠=∠,EBF DBE ∴△△∽,DEB BFE ∴∠=∠,AFD BFE ∠=∠,AFD DEB ∴∠=∠,AD BE ,ADF DBE ∴∠=∠又AD BD =,DAF BDE ∴≌△△,DF BE ∴=.【点拨】本题考查等腰三角形的性质,三角形相似的判定与性质,全等三角形的判定与性质,平行线分线段成比例,熟练掌握三角形相似的判定与性质、全等三角形的判定与性质、等腰三角形的性质是解题的关键.。
浙教版数学九年级上册4.1《比例线段》说课稿4

浙教版数学九年级上册4.1《比例线段》说课稿4一. 教材分析《比例线段》是浙教版数学九年级上册4.1的内容,本节课的主要目标是让学生理解比例线段的定义,掌握比例线段的性质和应用。
在教材中,通过引入实际问题,引导学生探究比例线段的关系,从而让学生体会数学与实际生活的联系。
教材内容由浅入深,逐步引导学生掌握比例线段的知识,为后续学习相似三角形打下基础。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对图形的认识有一定的基础。
但是,对于比例线段这一概念,学生可能较为陌生,需要通过具体的实例和引导,让学生逐步理解和掌握。
此外,学生可能对实际问题中的比例关系有一定的了解,但如何将实际问题转化为数学问题,运用比例线段解决问题,还需要在本节课中进行引导和培养。
三. 说教学目标1.知识与技能目标:让学生理解比例线段的定义,掌握比例线段的性质,能运用比例线段解决实际问题。
2.过程与方法目标:通过观察、操作、猜想、验证等数学活动,培养学生的动手能力、观察能力和推理能力。
3.情感态度与价值观目标:让学生感受数学与实际生活的联系,激发学生学习数学的兴趣,培养学生的合作意识。
四. 说教学重难点1.教学重点:比例线段的定义及其性质。
2.教学难点:比例线段在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与,积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示实际问题,引导学生关注比例线段的概念,激发学生的学习兴趣。
2.探究新知:引导学生通过观察、操作、猜想、验证等过程,发现并总结比例线段的性质。
3.应用拓展:让学生运用比例线段解决实际问题,巩固所学知识,提高解决问题的能力。
4.课堂小结:总结本节课的主要内容,强调比例线段的概念和性质。
5.布置作业:设计具有针对性的练习题,让学生巩固所学知识,提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8字型比例线段的证明过程
一、引言
比例线段是数学中常见的概念,它描述了两个线段之间的比例关系。
而8字型比例线段是一种特殊的比例线段,它具有特殊的几何性质。
本文将从基本概念出发,逐步证明8字型比例线段的性质。
二、基本概念
我们需要明确比例线段的定义。
在数学中,如果两个线段AB和CD 的比值等于线段EF和GH的比值,即AB/CD=EF/GH,那么我们称线段AB和CD与线段EF和GH成比例。
三、证明过程
1. 假设有两个线段AB和CD,它们与线段EF和GH成比例。
2. 过点A和C分别作线段EF和GH的平行线,分别与线段CD和AB相交于点I和J。
3. 根据平行线的性质,我们可以得知线段AI与线段CJ成比例,即AI/CJ=EF/GH。
4. 同样地,过点B和D分别作线段EF和GH的平行线,分别与线段CD和AB相交于点K和L。
5. 根据平行线的性质,我们可以得知线段BK与线段DL成比例,即BK/DL=EF/GH。
6. 由于线段AB和CD与线段EF和GH成比例,可以得知
AI/CJ=BK/DL。
7. 根据等比例关系,我们可以得知AI·DL=BJ·CK。
8. 由于四边形AIJK是一个平行四边形,所以AI=JK,BJ=IK,CK=KJ,DL=LI。
9. 结合以上等式,我们可以得知AI·DL=BJ·CK可以转化为JK·LI=IK·KJ。
10. 根据平行四边形的性质,我们可以得知IK·KJ=JK·LI。
11. 由于等式JK·LI=IK·KJ成立,可以得知四边形IKJL是一个平行四边形。
12. 根据平行四边形的性质,我们可以得知线段IJ平分线段KL。
13. 由于线段IJ平分线段KL,我们可以得知线段IJ与线段KL成比例,即IJ/KL=1/1。
14. 综上所述,线段AB和CD与线段EF和GH成比例的条件下,线段IJ与线段KL成比例,比例为1:1。
四、结论
通过以上证明过程,我们可以得出结论:在线段AB和CD与线段EF和GH成比例的条件下,线段IJ与线段KL成比例,比例为1:1。
这就是8字型比例线段的性质。
五、应用
8字型比例线段的性质在实际问题中有广泛的应用。
例如,在工程设计中,我们可以利用8字型比例线段的性质来确定建筑物的尺寸
比例,使其更加协调美观。
在地图绘制中,我们可以利用8字型比例线段的性质来放大或缩小地图的比例尺。
总之,掌握8字型比例线段的性质对于解决实际问题具有重要意义。
六、总结
通过本文的证明过程,我们深入了解了8字型比例线段的性质。
通过合理运用这一性质,我们可以解决实际问题,提高解决问题的效率。
同时,本文也展示了证明过程的逻辑性和严谨性,希望读者通过本文的阅读,对8字型比例线段有更深入的理解。