极限与连续 基础练习题含解答

合集下载

高等数学函数极限与连续习题及答案

高等数学函数极限与连续习题及答案

1、函数()12++=x xx f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大.错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()n n a 1-=,1)1(lim =-∞→n n ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小).正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim =αβ,是∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<x e (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sin lim ∞→=( x ).∵x x nx n xn n x n x n n n n =⋅==∞→∞→∞→sinlim 1sinlimsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x b ax x x b ax x x x +++-+++---+-=+∞→111lim 222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()xx f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim ( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→x x x 101lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( k e ). ∵0sin 1lim sin lim =⋅=∞→∞→x x xx x x 111sinlim1sin lim ==∞→∞→xx x x x x 14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列 2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa3、当0→x 时,1-x e 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x根据极限存在定理知:()x f x 0lim →不存在。

极限与连续练习题计算函数的极限与判断连续性

极限与连续练习题计算函数的极限与判断连续性

极限与连续练习题计算函数的极限与判断连续性极限与连续练习题:计算函数的极限与判断连续性在微积分中,极限和连续是重要的概念,它们在函数的研究和应用中起着关键作用。

本文将通过一些练习题来讨论如何计算函数的极限以及如何判断函数的连续性。

1. 计算极限:例题1:求函数f(x) = 2x + 3在x趋于2时的极限。

解:当x趋于2时,我们可以通过直接代入或者利用极限的性质来计算。

直接代入得:lim(x→2) 2x + 3 = 2(2) + 3 = 7极限的性质告诉我们,如果函数在某点附近都有定义且趋近于该点,那么该函数在该点处的极限即为函数在该点处的值。

所以根据上述性质,我们可以得到同样的结果。

例题2:求函数g(x) = (x^2 - 4) / (x - 2)在x趋于2时的极限。

解:当直接代入得:lim(x→2) (x^2 - 4) / (x - 2) = 0/0,这是一个不确定型。

我们可以对该式进行化简:(x^2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2再次利用极限的性质:lim(x→2) (x + 2) = 2 + 2 = 4,得到函数在x=2处的极限为4。

2. 判断连续性:例题3:判断函数h(x) = √(3x - 2)在定义域内的连续性。

解:首先,函数h(x)在非负实数范围内都有定义,即 h(x)在[2/3, +∞)上有定义。

我们知道,函数在某点处连续的必要条件是该点左侧和右侧的极限存在且相等。

对于h(x)来说,我们来计算x=2/3处的左侧极限和右侧极限。

左侧极限:lim(x→2/3-) √(3x - 2) = √(3(2/3) - 2) = 0右侧极限:lim(x→2/3+) √(3x - 2) = √(3(2/3) - 2) = 0由于左侧和右侧的极限都存在且相等于0,所以函数h(x)在x=2/3处连续。

综上所述,函数h(x)在定义域内是连续的。

函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案第一篇:函数、极限与连续测试卷带答案上海民航学院函数、极限与连续测试卷总分100分命题人:叶茂莹一、填空题(每空2分,共20分)1、函数y=3-2x|-4的定义域是;解:|3-2x|-4≥0,3-2x≥4,或3-2x≤-4 ∴-2x≥1,或-2x≤-717∴x≤-,或x≥ 2217∴x∈(-∞,-]⋃[,+∞)222、把复合函数y=earctan(1+x)分解成简单的函数________________________;解:y=eu,u=arctanv,v=1+x23、函数y=arcsin2x的反函数是_____________________;1⎡ππ⎤解:y=sinx,x∈⎢-,⎥ 2⎣22⎦⎛1+x⎫4、lim ⎪; x→∞⎝x⎭2x2⎛1+x⎫解:lim ⎪x→∞⎝x⎭2x⎡⎛1⎫x⎤=lim⎢1+⎪⎥=e2 x→∞⎝x⎭⎦⎢⎥⎣2(2x-1)15(3x+1)30=;5、limx→∞(3x-2)45(2x-1)15(3x+1)30215⨯330⎛2⎫==⎪解:lim4545x→∞(3x-2)3⎝3⎭x2-3x+26、lim2;x→2x+4x-12(x-1)(x-2)=lim(x-1)=1x2-3x+2lim解:lim2 x→2x+6x→2x+4x-12x→2x+6x-28157、x→1=;2解:lim=x→1x→x-12x→12=x→1 =x→13x-1==34x+2的连续区间为(x+1)(x-4)解:x+2≥0,且(x+1)(x-4)≠08、函数f(x)=∴x≥-2,x≠-1,x≠4,∴x∈[-2,-1)⋃(-1,4)⋃(4,+∞)ax2+bx-19、已知a,b为常数,lim=2,则a=,b=.x→∞2x+1ax2+bx-1解:因为x的最高次为2,lim=2 x→∞2x+1所以a=0,b=2,即b=42x≠0在点x=0处连续,则a=x=0x1-⎤⎡=lim⎢(1-x)x⎥x→0⎣⎦-22⎧x⎪10、已知f(x)=⎨(1-x)⎪a⎩解:limf(x)=lim(1-x)x→0x→0=e-2因为f(x)在点x=0处连续,f(0)=a=limf(x)=e-2,所以a=e-2。

第二章_极限与连续_习题解答

第二章_极限与连续_习题解答

1习题2-11. 观察下列数列的变化趋势,讨论有界性和单调性。

如果有极限请写出极限值:(1)13nn x ⎛⎫=- ⎪⎝⎭;解:{}n x 的前五项为:11111,,,,392781243⎧⎫---⎨⎬⎩⎭,从趋势可知,{}n x 不单调;11()33n -≤ ,故{}n x 有界。

{}n x 有极限值0。

(2)1n nx n =+; 解: {}01nx <<,所以有界。

111021(1)(2)n n n n xx n n n n ++-=-=>++++,所以单调递增, {}n x 有极限值1 (3)()10.1nn x =-; 解:{}01nx <<,所以有界。

()0.1n随着n 值的增大而减小,所以相应的n x 的值增大,所以为单调递增。

{}n x 的极限值为1 (4)cos2n n x n π=; 解:分别取)(2+∈=N k k n 和)(12+∈+=N k k n ,显然cos2n n x n π=是无界不单调的,故没有极限值。

(5)1n x n =-。

解:是无界的,且单调递减。

不存在极限2. 用极限定义证明::对于任意的正数2,即(3)3limn +3. 对下面情况进行讨论,对得到的结论作出论证:(1) 数列{}n x 和{}n y 都发散,{}n n x y ±和{}n n x y 的收敛性如何?解:{}n n x y ±,{}n n x y 可能收敛,可能发散。

如sin ,n n x n y n ==,n n n n x y n n x y n n ±±⋅⋅=s i n 、=s i n 均发散的。

又如1,n n x n y n ==,1n n x y n n±±=是发散的,n n x y ⋅=1是收敛的。

({}n n x y ±收敛需要再举个例子) (2) 数列{}n x 、{}n y 中有一个收敛,另一个发散,{}n n x y ±、{}n n x y 的收敛性如何? 解:{}n n x y ±一定发散,而{}n n x y 可能收敛可能发散。

极限与连续练习题及解析

极限与连续练习题及解析

极限与连续练习题及解析在数学课上,我们经常会遇到一些有关于极限与连续的练习题。

这些题目不仅能够帮助我们巩固对极限与连续的理解,还能提高我们解决问题的能力。

在本文中,我将为大家分享一些关于极限与连续的练习题及解析。

题目一:计算极限求解以下极限:1. $$\lim_{x\to 2}\frac{x^2-4}{x-2}$$解析:将被除数进行因式分解得:$$\lim_{x\to 2}\frac{(x+2) \cdot (x-2)}{x-2}$$最后得到:$$\lim_{x\to 2}(x+2)$$代入极限的定义,得到结果为:$$4$$题目二:证明函数连续证明下列函数在指定区间上连续:1. 函数$f(x)=\sqrt{x}$在区间$[0, +\infty)$上连续。

首先,我们需要证明$f(x)=\sqrt{x}$在$[0, +\infty)$上存在。

由于$x \geq 0$,所以$\sqrt{x}$是有定义的。

接下来,我们需要证明对于任意给定的$\varepsilon > 0$,存在一个$\delta > 0$,使得当$0 < |x-a| <\delta$时,$|\sqrt{x}-\sqrt{a}|<\varepsilon$。

根据不等式$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}+\sqrt{a}|$,可以得到$$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}-\sqrt{a}|\cdot\frac{|\sqrt{x}+\sqrt{a}|}{|\sqrt{x}-\sqrt{a}|}$$进一步化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|\sqrt{x}^2-\sqrt{a}^2|}{|\sqrt{x}-\sqrt{a}|}$$继续化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|x-a|}{|\sqrt{x}+\sqrt{a}|}$$由于$\sqrt{x}+\sqrt{a}$在$x$趋于$a$时不等于0,所以存在一个正数$M$,使得$|\sqrt{x}-\sqrt{a}|<M|x-a|$。

高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。

因此,f(x)在区间[1, 5]上连续。

b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。

在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。

c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。

在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。

题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。

b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。

c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。

第二章-极限与连续--基础练习题(含解答)

第二章-极限与连续--基础练习题(含解答)

第二章 极限与连续 基础练习题(作业)§2.1 数列的极限一、观察并写出下列数列的极限:1.4682,,,357极限为1 2.11111,,,,,2345--极限为03.212212⎧-⎪⎪=⎨+⎪⎪⎩n nn nnn a n 为奇数为偶数极限为1§2.2 函数的极限一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞xx e极限为零 2.2lim tan x x π→无极限3.lim arctan →-∞x x极限为2π-4.0lim ln x x +→ 无极限,趋于-∞二、设2221,1()3,121,2x x f x x x x x x +⎧⎪=-+<⎨⎪->⎩,问当1x →,2x →时,()f x 的极限是否存在?211lim ()lim(3)3x x f x x x ++→→=-+=;11lim ()lim(21)3x x f x x --→→=+= 1lim () 3.x f x →∴=222lim ()lim(1)3x x f x x ++→→=-=;222lim ()lim(3)53x x f x x x --→→=-+=≠ 2lim ()x f x →∴不存在。

三、设()111xf x e=+,求 0x →时的左、右极限,并说明0x →时极限是否存在.()101lim lim 01x x xf x e ++→→==+()11lim lim 11x x x f x e--→→==+lim ()x f x →∴不存在。

四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在§2.3 无穷小量与无穷大量一、判断对错并说明理由: 1.1sinx x是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。

函数极限与连续习题(含答案)汇编

函数极限与连续习题(含答案)汇编

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。

函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。

其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C )A 、)(x f 在0x x =处有意义B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→=C 、初等函数在其定义区间上是连续的D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x -5、下列式子中,正确的是( B )A 、1lim 0=→x xx B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim3--→x x f x x 的值是( C )A 、4-B 、0C 、8D 、不存在8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 极限与连续 基础练习题(作业)§ 数列的极限一、观察并写出下列数列的极限:1.4682,,,357L 极限为1 2.11111,,,,,2345--L 极限为0 3.212212⎧-⎪⎪=⎨+⎪⎪⎩n n n n nn a n 为奇数为偶数极限为1 § 函数的极限一、画出函数图形,并根据函数图形写出下列函数极限:1.lim →-∞x x e 极限为零2.2lim tan x x π→无极限3.lim arctan →-∞x x 极限为2π-4.0lim ln x x +→ 无极限,趋于-∞二、设2221,1()3,121,2x x f x x x x x x +⎧⎪=-+<⎨⎪->⎩……,问当1x →,2x →时,()f x 的极限是否存在?211lim ()lim(3)3x x f x x x ++→→=-+=Q ;11lim ()lim(21)3x x f x x --→→=+= 222lim ()lim(1)3x x f x x ++→→=-=Q ;222lim ()lim(3)53x x f x x x --→→=-+=≠ 2lim ()x f x →∴不存在。

三、设()111x f x e =+,求 0x →时的左、右极限,并说明0x →时极限是否存在.lim ()x f x →∴不存在。

四、试讨论下列函数在0x →时极限是否存在.1.绝对值函数()||=f x x ,存在极限为零2.取整函数()[]=f x x 不存在3.符号函数()sgn =f x x 不存在§ 无穷小量与无穷大量一、判断对错并说明理由:1.1sin x x是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。

当0x →时,1sin 0x x →;当1x →时,1sin sin1x x→不是无穷小量。

2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量.对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。

3.无穷大量一定是无界变量,而无界变量未必是无穷大量.对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。

二、下列变量在哪些极限过程中是无穷大量,在哪些极限过程中是无穷小量:1.221x x +-, 2x →-时,或x →∞时,为无穷小量;1x →时,或1x →-时,为无穷大量。

2.1ln tan x , k Z ∈ ()2x k ππ-→+时,tan x →+∞,则ln tan x →+∞,从而+10ln tan x→为无穷小量; x k π+→时,tan 0x +→,则ln tan x →-∞,从而10ln tan x-→为无穷小量; 4x k ππ→+时,tan 1x →,则ln tan 0x →,从而1ln tan x→∞为无穷大量;三、当0+→x 时,2x 之间最高阶和最低阶的无穷小量分别是谁?200lim lim 0x x ++→→==Q ,所以当0+→x 时,2x 是2200lim lim 01x x x ++→→==Q ,所以当0+→x 时,2x 的高阶无穷小量。

00lim lim 01x x ++→→==Q ,所以当0+→x 时,的高阶无穷小量。

通过比较可知,当0+→x 时,2x ,2x 是的高阶无穷小量,因此2x 是三者中最高阶的无穷小量。

2x 的高阶无穷小量,因此是三者中最低阶的无穷小量。

四、利用无穷小量与极限的关系证明:000lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→=. 证明:设0lim ()x x f x A →=,0lim ()x x g x B →=,则由无穷小量与极限的关系,()f x A α=+,()g x B β=+,其中,αβ为0x x →时的无穷小量。

则0lim ()()x x f x g x →=00lim()()lim()x x x x A B AB B A αβαβαβ→→++=+++AB = § 极限的性质与运算法则一、如果0lim ()0→=>x x f x A ,则存在0x 的空心邻域,使得(1)(2)(4)成立. (1)()f x 有界;(2)()f x 非负;(3)()f x 落入其中;(4)|()|ε-<f x A ,>0ε∀.二、求下列函数的极限1.113(2)lim 3(2)n nn n n ++→∞+-+- 2.()⎥⎦⎤⎢⎣⎡++⋯+⋅+⋅∞→11321211lim n n n 3.2134lim 1x x x x →+-- 4.3113lim 11x x x →-⎛⎫- ⎪++⎝⎭5.)lim 2x x x →+∞ 6.(lim x x →∞ 原式lim x →∞= 原式x =三、求,a b ,使得21lim 0.1x x ax b x →∞⎛⎫+--= ⎪+⎝⎭必有1()a =→∞否则原式;同时有0(0)a b +=→否则原式; 四、若3214lim 1x x ax x b x →---+=+为有限值,求,.a b § 极限存在性定理与两个重要极限一、判断题:1.1sin lim 1x x x→=错 2.1sin(1)lim11x x x →-=-对 3.sin lim 1x x x→∞=错 4.1lim sin 1x x x→∞=对 5.01lim sin 1x x x →=错6.01lim(1)x x e x→+=对 7.当0x →时,sin ,arcsin ,tan ,arctan ,ln(1),1x x x x x x e +-都是x 的等价无穷小.对二、求下列函数极限:1.0sin 2lim tan 3x x x → 2.22sin(4)lim 2x x x →--3.0lim arctan x x x → 4.1lim 1x x x x →∞+⎛⎫ ⎪-⎝⎭5.111lim x x x -→111lim(11)x x x -→=+- 6.22lim 1x x x x →∞⎛⎫ ⎪-⎝⎭lim 11x xx x x x x →∞⎛⎫⎛⎫= ⎪ ⎪-+⎝⎭⎝⎭ 7.2301lim ln(1)x x x x x→+++ 8. 0sin(sin )lim ln(1)x x x →+ 三、求极限22212lim()12n n n n n n n n n→∞+++++++++L . 由两面夹法则 四、设222111123n u n =+++⋅⋅⋅+,证明数列{}n u 的极限存在. 由单调有界定理,数列{}n u 的极限存在.五、设0>a ,10>x ,且有11()2+=+n n na x x x ,(1,2,)=L n ,证明数列{}n x 的极限存在,并求极限.由单调有界定理,数列{}n x 的极限存在§ 函数的连续性一、填空题1.设函数()()xx x f -=1ln ,若补充()=0f -1 可使()x f 在0=x 处连续. 2.1=x 是函数23122+--=x x x y 的第 1 类间断点,且为 可去 间断点. 3.0=x 是函数tan =x y x的第 1 类间断点,且为 可去 间断点. ()⋯±±==2,1k k x π是函数tan =x y x 的第 2 类间断点,且为 无穷 间断点.()⋯±±=+=2,12k k x ππ是函数tan =x y x的第 1 类间断点,且为 可去 间断点.4.a x =是函数a x ax y --=的第 1 类间断点,且为 跳跃 间断点.5.0=x 是函数xy 1cos 2=的第 2 类间断点. 二、研究下列各函数的连续性,找出其间断点,并判断其类型:1.221cos ,0()1,0x x f x x x x -⎧<⎪=⎨⎪+≥⎩22001cos 1lim lim(1)12x x x x x -+→→-=+=Q ;,0x ∴=为第一类跳跃间断点。

2.1()x f x e =1100lim 0lim x x x x e e -+→→==+∞Q ;,0x ∴=为第二类无穷间断点。

3. 22()||(1)x x f x x x -=-(1)||(1)(1)x x x x x -=-+ 0x ∴=为第一类跳跃间断点。

1x ∴=为第一类可去间断点。

1x ∴=-为第二类无穷间断点 四、sin ,0(),01sin ,0x x x f x a x b x x x ⎧<⎪⎪==⎨⎪⎪+>⎩,确定,a b 使 1.()f x 在0x =处有极限00sin 1lim lim(sin )x x x b x x x -+→→⇔=+, 1.b ∴= 2.()f x 在0x =处连续00sin 1lim lim(sin )x x x b x a x x-+→→⇔=+=. 1.a ∴= 五、()()(1)-=--x e b f x x a x ,确定,a b 使同时满足 (1)0x =是()f x 的无穷间断点,即001lim ()lim ,0.()(1)x x x e b b f x a x a x a→→--==→∞∴=--(2)1=x 是()f x 的可去间断点,即11lim ()lim =0.x x x f x e b b e →→-∴=存在,则必有, 六、设()f x 在[,]a b 上连续,且()≤f a a ,()≥f b b ,证明在区间[,]a b 上至少存在一点ξ,使得()ξξ=f .证明:设()()F x f x x =-,则()F x 也在[,]a b 上连续。

且有()()0;()()0.F a f a a F b f b b =-≤=-≥即()()0F a F b ≤。

若()()0F a F b <,由零点定理,在开区间(,)a b 内至少存在一点ξ,使得()ξξ=f . 若()()0F a F b =,则()0()0F a F b ==或,此时区间端点是函数()F x 的零点。

综上,在区间[,]a b 上至少存在一点ξ,使得()ξξ=f .。

相关文档
最新文档