塔机附着计算书实例

合集下载

塔机附着验算计算书

塔机附着验算计算书

塔机附着验算计算书塔机附着验算计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数塔机型号QTZ40(浙江建机)塔身桁架结构类型型钢塔机计算高度H(m) 30 塔身宽度B(m) 1.6 起重臂长度l1(m) 57 平衡臂长度l2(m) 12.9 起重臂与平衡臂截面计算高度h(m) 1.06 工作状态时回转惯性力产生的扭矩标准值T k1(kN·m)60工作状态倾覆力矩标准值M k(kN·m) 60 非工作状态倾覆力矩标准值M k'(kN*m)60附着杆数四杆附着附墙杆类型Ⅰ类附墙杆截面类型格构柱塔身锚固环边长C(m) 1.8附着次数N 4附着点1到塔机的横向距离a1(m) 9.5 点1到塔机的竖向距离b1(m) 9.5 附着点2到塔机的横向距离a2(m) 5.7 点2到塔机的竖向距离b2(m) 5.7 附着点3到塔机的横向距离a3(m) 5.7 点3到塔机的竖向距离b3(m) 5.7 附着点4到塔机的横向距离a4(m) 9.5 点4到塔机的竖向距离b4(m) 9.5 工作状态基本风压ω0(kN/m2) 0.2 非工作状态基本风压ω0'(kN/m2) 1塔身前后片桁架的平均充实率α00.35第N次附着附着点高度h1(m)附着点净高h01(m)风压等效高度变化系数μz工作状态风荷载体型系数μs非工作状态风荷载体型系数μs'工作状态风振系数βz非工作状态风振系数βz'工作状态风压等效均布线荷载标准值q sk非工作状态风压等效均布线荷载标准值q sk'第1次附着9 9 0.65 1.95 1.95 1.977 1.977 0.269 1.347第2次附着15 6 0.734 1.95 1.95 1.901 1.963 0.293 1.51第3次附着20 5 0.738 1.95 1.95 1.825 1.934 0.282 1.496第4次附25 5 0.751 1.95 1.95 1.798 1.944 0.283 1.53 着悬臂端30 5 0.774 1.95 1.95 1.79 1.945 0.29 1.578 Array塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.79×0.774×1.95×0.2×0.35×1.06=0.16kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.16×572-1/2×0.16×12.92=246.607kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(60+246.607)=275.946kN·m3、附着支座反力计算计算简图塔身上部第一附着点(塔身悬臂支承端)的支承反力最大,应取该反力值作为附着装置及建筑物支承装置的计算载荷。

(整理)塔机附着验算计算书

(整理)塔机附着验算计算书

塔机附着验算计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数第N次附着附着点高度h1(m)附着点净高h01(m)风压等效高度变化系数μz工作状态风荷载体型系数μs非工作状态风荷载体型系数μs'工作状态风振系数βz非工作状态风振系数βz'工作状态风压等效均布线荷载标准值q sk非工作状态风压等效均布线荷载标准值q sk'第1次附着9 9 0.65 1.95 1.95 1.977 1.977 0.269 1.347 第2次附着15 6 0.734 1.95 1.95 1.901 1.963 0.293 1.51 第3次附着20 5 0.738 1.95 1.95 1.825 1.934 0.282 1.496 第4次附着25 5 0.751 1.95 1.95 1.798 1.944 0.283 1.53悬臂端30 5 0.774 1.95 1.95 1.79 1.945 0.291.578附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.79×0.774×1.95×0.2×0.35×1.06=0.16kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.16×572-1/2×0.16×12.92=246.607kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(60+246.607)=275.946kN·m3、附着支座反力计算计算简图塔身上部第一附着点(塔身悬臂支承端)的支承反力最大,应取该反力值作为附着装置及建筑物支承装置的计算载荷。

塔吊附着计算书

塔吊附着计算书

塔吊附着计算书1、附着装置布置方案根据塔机生产厂家提供的标准,附着距离一般为3~5 m,附着点跨距为7~8 m[1,2],塔机附着装置由附着框架和附着杆组成,附着框架多用钢板组焊成箱型结构,附着杆常采用角钢或无缝钢管组焊成格构式桁架结构,受力不大的附着杆也可用型钢或钢管制成。

根据施工现场提供的楼面顶板标高,按照QTZ63 系列5013 型塔式起重机的技术要求,需设4道附着装置,以满足工程建设最大高度100 m 的要求。

附着装置布置方案如图2 所示。

图1塔吊简图与计算简图塔吊基本参数附着类型类型1 最大扭矩270.00 kN·m最大倾覆力矩1350.00 kN·m 附着表面特征槽钢塔吊高度110 m 槽钢型号18A塔身宽度1645*1645*2800 mm风荷载设计值(福州地区)0.41附着框宽度 3.00 m 尺寸参数附着节点数 4 附着点1到塔吊的竖向距离 3.00 m第I层附着附着高度附着点1到塔吊的横向距离 3.00 m第8层23.45 m 附着点1到附着点2的距离9.00 m第16层46.65 m 独立起升高度40 m第24层70.85 m 附着起升高度151.2 m第31层95.95 m图2塔吊附着简图三、第一道附着计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。

第一道附着的装置的负荷以第四道附着杆的负荷作为设计或校核附着杆截面计算,第一道附着高度计划在第8层楼层标高为23.45米。

(一)、支座力计算附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载取值:Q = 0.41kN;塔吊的最大倾覆力矩:M = 1668.00kN;弯矩图变形图剪力图计算结果: N w = 105.3733kN ;(二)、附着杆内力计算计算简图:计算单元的平衡方程:其中:2.1 第一种工况的计算:塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩合风荷载扭矩。

塔机附着验算计算书

塔机附着验算计算书

塔机附着验算计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.68×1.291×1.95×0.2×0.35×1.06=0.251kN/m 2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.251×562-1/2×0.251×12.92=372.684kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(276.9+372.684)=584.626kN·m3、附着支座反力计算计算简图塔身上部第一附着点(塔身悬臂支承端)的支承反力最大,应取该反力值作为附着装置及建筑物支承装置的计算载荷。

剪力图得:R E=120.106kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座7处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。

4、附墙杆内力计算支座7处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座7处的附墙杆承担),水平内力N w=20.5R E=169.856kN。

计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=79.765°α2=arctan(b2/a2)=75.12°α3=arctan(b3/a3)=69.753°β1=arctan((b1+c/2)/(a1+c/2))=74.805°β2=arctan((b2+c/2)/(a2-c/2))=87.728°β3=arctan((b3+c/2)/(a3+c/2))=65.772°各杆件轴力计算:ΣM O=0T1×sin(α1-β1)×(b1+c/2)/sinβ1+T2×sin(α2-β2)×(b2+c/2)/sinβ2-T3×sin(α3-β3)×(b3+c/2)/sinβ3-T k=0ΣM h=0-T2×sinα2×c-T3×sinα3×c+N w×cosθ×c/2-N w×sinθ×c/2-T k=0ΣM g=0T1×sinα1×c+N w×sinθ×c/2+N w×cosθ×c/2-T k=0(1)θ由0~360°循环,当T k按图上方向设置时求解各杆最大轴拉力和轴压力:最大轴压力T1=452.184kN,T2=0kN,T3=260.043kN最大轴拉力T1=0kN,T2=495.56kN,T3=347.043kN(2)θ由0~360°循环,当T k按图上反方向设置时求解各杆最大轴拉力和轴压力:最大轴压力T1=0kN,T2=495.561kN,T3=347.042kN最大轴拉力T1=452.184kN,T2=0kN,T3=260.044kN四、非工作状态下附墙杆内力计算此工况下塔机回转机构的制动器完全松开,起重臂能随风转动,故不计风荷载产生的扭转力矩。

塔吊附墙验算计算书

塔吊附墙验算计算书

塔吊附墙验算计算书塔机附着验算计算书本文的计算依据为《塔式起重机混凝土基础工程技术标准》/T187-2019和《钢结构设计标准》GB-2017.一、塔机附着杆参数塔机型号为QTZ63(TC5610)-中塔身桁架结构类型,计算高度为98m,起重臂长度为56m,起重臂与平衡臂截面计算高度为1.06m。

塔身宽度为1.6m,平衡臂长度为12.9m。

工作状态时扭矩标准值Tk1为269.3kN·m,包含风荷载。

非工作状态下不平衡自重引起的倾覆力矩标准值Mk'为1940kN·m(反向),工作状态下不平衡自重引起的倾覆力矩标准值Mk为1720kN·m。

附着杆数为四杆附着,附墙杆截面类型为格构柱,附墙杆类型为Ⅰ类,塔身锚固环边长为1.8m。

二、风荷载及附着参数附着次数为2,附着点1到塔机的横向距离为5m,附着点2到塔机的横向距离为2.2m,附着点3到塔机的横向距离为2.2m,附着点4到塔机的横向距离为2.2m。

工作状态基本风压ω为0.2kN/m,塔身前后片桁架的平均充实率α为0.35.点1到塔机的竖向距离为2m,点2到塔机的竖向距离为4.8m,点3到塔机的竖向距离为3.2m,点4到塔机的竖向距离为3.2m。

非工作状态基本风压ω'为0.35kN/m。

工作状态和非工作状态的风压等效高、工作状态和非工作状态的附着点高度、附着点净高、工作状态风压等效均布荷载等参数均有具体数值,这里不再赘述。

285.472kN时,支座6处附墙杆内力计算如下:考虑塔机产生的扭矩由支座6处的附墙杆承担,因此需要计算支座6处锚固环的截面扭矩T。

根据扭矩组合标准值T kTk1269.3kN·m,可得到T的值。

同时考虑塔身承受双向的风荷载和倾覆力矩及扭矩,需要将水平内力Nw计算出来。

根据计算简图和塔机附着示意图、平面图,可以得到α和β的值,并用力法计算各杆件轴力。

最终得到支座6处附墙杆的水平内力Nw20.5RE285.472kN。

塔机附着计算书实例

塔机附着计算书实例

塔机附着计算书实例-CAL-FENGHAI.-(YICAI)-Company One1H5810塔式起重机非标附着计算书一、设计依据GB/T 13752-92《塔式起重机设计规范》二、设计说明1、本方案仅适用于我公司QTZ80(H5810)塔机在以下附着示意图方式的使用;2、任何力学或几何方式的改变均不再适用于本方案。

三、QTZ80(H5810)塔机附着平面内的最大载荷见下表:工作状态非工作状态水平力F(KN)0~360°扭矩Mk水平力F(KN)0~360°扭矩Mk125±2202300四、附着示意图各附着杆长度(表二)五、附着杆受力及附着点反力工作状态各附着杆最大受力(表三)非工作状态各附着杆最大受力(表四)通过以上分析,选取以下各附着杆的最大受力工况进行校核:工作状态各附着点最大受力(表五)非工作状态各附着点最大受力(表六)通过以上分析,附着点最大反力见下表:(表七)六、附着杆校核附着杆截面示意图以下仅对附着杆1~4进行分析计算;附着杆主肢:∠50×50×5,Q235,截面积A1=480mm2;附着杆缀条:∠30×30×3,Q235,截面积A2=175mm2;附着杆截面边长a1=(mm)附着杆截面边长a2=(mm)附着杆1重量:G1=210(kg)附着杆2重量:G2=175(kg)附着杆3重量:G2=170(kg)附着杆4重量:G2=206(kg)附着杆最大截面主肢X轴总惯性矩:Imax=(mm^4)附着杆最小截面主肢X轴总惯性矩:Imin=(mm^4)主弦单肢弱轴惯性矩:I1=46400(mm^4) 缀条弱轴惯性矩:Iz=6100(mm^4) 缀条跨距L1=(mm ) 材料安全系数:k=整体惯性半径:r =(mm )主弦单肢惯性半径:1r =mm )缀条惯性半径:r z =(mm ) r= r1= rz= 根据minmaxI I 和附着杆变截面型式确定计算长度系数μ μ= ;附着杆主肢结构长细比:r L μλ= 附着杆主弦单肢长细比:111r L λ=附着杆缀条长细比:z zλ=附着杆换算长细比:λ=换140.69λ=61.07z λ=167.74λ=换;253.02λ=换; 50.31λ=换3;64.96λ=换4附着杆长细比<120,整体刚度满足要求!附着杆主弦单肢长细比≤倍整体长细比,主弦单肢刚度满足要求! 附着杆缀条长细比<120,缀条刚度满足要求! 附着杆1~4整体刚度满足要求! 附着杆1~4主弦单肢刚度满足要求! 附着杆1~4缀条刚度满足要求!查表得附着杆整体受压稳定系数:10.765ψ=;20.842ψ=; 30.855ψ=;20.780ψ=查表得附着杆主弦单肢受压稳定系数:ψ1= 查表得附着杆缀条受压稳定系数:ψz= 附着杆自重产生的弯矩108GLM =(); M1=2083725() M2=() M3=1226975() M4=()附着杆截面远点至弱轴距离h=150(mm ) 附着杆抗弯模量hI W =(mm^3) W=(mm^3)欧拉临界载荷22E EAF πλ=换(N)1850285.16E F N =;21387770.08E F N =; 31541425.93E F N =;4924732.91E F N =1、附着杆整体稳定性验算:1+1-0.9EF M FA W F σϕ⎛⎫⎪⎪= ⎪ ⎪⎝⎭188.55MPa σ=;2139.69MPa σ=; 3141.31MPa σ=;490.29MPa σ=σ<235/=175附着杆1~4整体稳定性满足要求! 2、附着杆主弦单肢稳定性验算:d 1F A σϕ=d166.80MPa σ=;d2124.88MPa σ=; d3128.95MPa σ=;d470.28MPa σ=σd <235/=175附着杆1~4主弦单肢稳定性满足要求! 3、附着杆缀条稳定性校核附着杆侧向力:c F =缀条轴力:z F =zZ z zF A σϕ=18.57Z MPa σ=;213.52Z MPa σ=; 313.68Z MPa σ=;28.74Z MPa σ=σz <235/=175附着杆1~4缀条满足要求!综述:各附着杆经过校核均满足使用要求!。

塔吊附着计算书

塔吊附着计算书

风压等效高 工作状态风 非工作状态
附着点高度 附着点净高
工作状态风 非工作状态 压等效均布 风压等效均
第N次附着 h1(m)
h01(m)
度变化系数 荷载体型系 风荷载体型
μz
数μs
系数μs'
振系数βz
风振系数βz' 线荷载标准 布线荷载标
Байду номын сангаас
值qsk
准值qsk'
第1次附着 22.15
22.15
0.734
2、扭矩组合标准值Tk 由风荷载产生的扭矩标准值Tk2 Tk2=1/2qkl12-1/2qkl22=1/2×0.164×562-1/2×0.164×11.52=246.308kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9) Tk=0.9(Tk1+ Tk2)=0.9×(35+246.308)=253.177kN·m
附墙杆3长细比: λ3=L0/i=(a32+b32)0.5/i=(22052+37372)0.5/44.9=96.638≤[λ]=150,查规范表得: φ3=0.577 满足要求!
附墙杆1轴心受压稳定系数:
σ1=N1/(φ1A)=249608/(0.546×3364.25)=135.887N/mm2≤[f]=205N/mm2 满足要求! 附墙杆2轴心受压稳定系数: σ2=N2/(φ2A)=187217/(0.415×3364.25)=134.094N/mm2≤[f]=205N/mm2 满足要求! 附墙杆3轴心受压稳定系数: σ3=N3/(φ3A)=133727/(0.577×3364.25)=68.89N/mm2≤[f]=205N/mm2 满足要求!
1.76

塔机附着验算计算书_20200527_074243304

塔机附着验算计算书_20200527_074243304

塔机附着验算计算书计算依据:1、《塔式起重机混凝土基础工程技术标准》JGJ/T187-20192、《钢结构设计标准》GB50017-2017一、塔机附着杆参数塔机附着立面图三、工作状态下附墙杆内力计算1、扭矩组合标准值T k回转惯性力及风荷载产出的扭矩标准值:T k=T k1=234kN·m2、附着支座反力计算计算简图剪力图得:R E=38.033kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座4处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。

3、附墙杆内力计算支座4处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座4处的附墙杆承担),水平内力N w=20.5R E=53.787kN。

计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=62.526°α2=arctan(b2/a2)=50.906°α3=arctan(b3/a3)=50.906°α4=arctan(b4/a4)=62.526°β1=arctan((b1-c/2)/(a1+c/2))=49.514°β2=arctan((b2+c/2)/(a2+c/2))=49.514°β3=arctan((b3+c/2)/(a3+c/2))=49.514°β4=arctan((b4-c/2)/(a4+c/2))=49.514°四杆附着属于一次超静定结构,用力法计算,切断T4杆并代以相应多余未知力X1= 1。

δ11× X1+Δ1p=0X1=1时,各杆件轴力计算:T11×sin(α1-β1)×(b1-c/2)/sinβ1+T21×sin(α2-β2)×(b2+c/2)/sinβ2-T31×sin(α3-β3)×(b3+c/2)/sinβ-1×sin(α4-β4)×(b4-c/2)/sinβ4=03T11×cosα1×c-T31×sinα3×c-1×cosα4×c-1×sinα4×c=0T21×cosα2×c+T31×sinα3×c-T31×cosα3×c+1×sinα4×c=0当N w、T k同时存在时,θ由0~360°循环,各杆件轴力计算:T1p×sin(α1-β1)×(b1-c/2)/sinβ1+T2p×sin(α2-β2)×(b2+c/2)/sinβ2-T3p×sin(α3-β3)×(b3+c/2)/sinβ-T k=03T1p×cosα1×c-T3p×sinα3×c-N w×sinθ×c/2+N w×cosθ×c/2-T k=0T2p×cosα2×c-T3p×sinα3×c+T3p×cosα3×c-N w×sinθ×c/2-N w×cosθ×c/2-T k=0δ11=Σ(T12L/(EA))=T112(a1/cosα1)/(EA)+T212(a2/cosα2)/(EA)+T312(a3/cosα3)/(EA)+12(a4/co sα4)/(EA)Δ1p=Σ(T1×T p L/(EA))=T11×T1p(a1/cosα1)/(EA)+T21×T2p(a2/cosα2)/(EA)+T31×T3p(a3/cosα3) /(EA)X1= -Δ1p/δ11各杆轴力计算公式如下:T1= T11×X1+ T1p,T2= T21×X1+T2p,T3=T31×X1+T3p,T4=X1(1)θ由0~360°循环,当T k按图上方向设置时求解各杆最大轴拉力和轴压力:最大轴压力T1=118.751kN,T2=0kN,T3=126.716kN,T4=0kN最大轴拉力T1=0kN,T2=126.801kN,T3=0kN,T4=118.844kN(2)θ由0~360°循环,当T k按图上反方向设置时求解各杆最大轴拉力和轴压力:最大轴压力T1=0kN,T2=126.801kN,T3=0kN,T4=118.844kN最大轴拉力T1=118.751kN,T2=0kN,T3=126.716kN,T4=0kN四、非工作状态下附墙杆内力计算此工况下塔机回转机构的制动器完全松开,起重臂能随风转动,故不计风荷载产生的扭转力矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔机附着计算书实例 The pony was revised in January 2021
H5810塔式起重机非标附着计算书
一、设计依据
GB/T 13752-92《塔式起重机设计规范》
二、设计说明
1、本方案仅适用于我公司QTZ80(H5810)塔机在以下附着示意图方式的使用;
2、任何力学或几何方式的改变均不再适用于本方案。

三、QTZ80(H5810)塔机附着平面内的最大载荷见下表:
(表一)
四、附着示意图
各附着杆长度(表二)
五、附着杆受力及附着点反力
工作状态各附着杆最大受力(表三)
非工作状态各附着杆最大受力(表四)
通过以上分析,选取以下各附着杆的最大受力工况进行校核:
工作状态各附着点最大受力(表五)
非工作状态各附着点最大受力(表六)
通过以上分析,附着点最大反力见下表:
(表七)
六、附着杆校核
附着杆截面示意图
以下仅对附着杆1~4进行分析计算;
附着杆主肢:∠50×50×5,Q235,截面积A1=480mm2;
附着杆缀条:∠30×30×3,Q235,截面积A2=175mm2;附着杆截面边长a1=(mm)
附着杆截面边长a2=(mm)
附着杆1重量:G1=210(kg)
附着杆2重量:G2=175(kg)
附着杆3重量:G2=170(kg)
附着杆4重量:G2=206(kg)
附着杆最大截面主肢X轴总惯性矩:Imax=(mm^4)
附着杆最小截面主肢X轴总惯性矩:Imin=(mm^4)
主弦单肢弱轴惯性矩:I1=46400(mm^4)
缀条弱轴惯性矩:Iz=6100(mm^4)
缀条跨距L1=(mm)
材料安全系数:k=
整体惯性半径:r=(mm)
r=mm)
主弦单肢惯性半径:
1
缀条惯性半径:r z =(mm ) r=
r1=
rz= 根据min max
I I 和附着杆变截面型式确定计算长度系数μ μ= ; 附着杆主肢结构长细比:r
L μλ= 附着杆主弦单肢长细比:111
r L λ=
附着杆缀条长细比:z z
λ=
附着杆换算长细比:λ=换167.74λ=换;253.02λ=换; 50.31λ=换3;64.96λ=换4
附着杆长细比<120,整体刚度满足要求!
附着杆主弦单肢长细比≤倍整体长细比,主弦单肢刚度满足要求! 附着杆缀条长细比<120,缀条刚度满足要求!
附着杆1~4整体刚度满足要求!
附着杆1~4主弦单肢刚度满足要求!
附着杆1~4缀条刚度满足要求!
查表得附着杆整体受压稳定系数:
10.765ψ=;20.842ψ=; 30.855ψ=;20.780ψ=
查表得附着杆主弦单肢受压稳定系数:ψ1=
查表得附着杆缀条受压稳定系数:ψz= 附着杆自重产生的弯矩108GL M =
(); M1=2083725()
M2=()
M3=1226975()
M4=()
附着杆截面远点至弱轴距离h=150(mm ) 附着杆抗弯模量h I W =
(mm^3) W=(mm^3)
欧拉临界载荷22
E EA
F πλ=换(N) 1850285.16E F N =;21387770.08E F N =; 31541425.93E F N =;4924732.91E F N =
1、附着杆整体稳定性验算:
188.55MPa σ=;2139.69MPa σ=; 3141.31MPa σ=;490.29MPa σ= σ<235/=175
附着杆1~4整体稳定性满足要求!
2、附着杆主弦单肢稳定性验算:
d166.80MPa σ=;d2124.88MPa σ=; d3128.95MPa σ=;d470.28MPa σ= σd <235/=175
附着杆1~4主弦单肢稳定性满足要求!
3、附着杆缀条稳定性校核
附着杆侧向力:c F =缀条轴力:
z F =18.57Z MPa σ=;213.52Z MPa σ=; 313.68Z MPa σ=;28.74Z MPa σ=
σ
<235/=175
z
附着杆1~4缀条满足要求!
综述:各附着杆经过校核均满足使用要求!。

相关文档
最新文档