概率论与数理统计---第七章参数估计}第三节:区间估计

合集下载

区间估计

区间估计

常见形式
间估计的区间上、下界通常形式为:“点估计±误差” “总体均值”的区间估计
总体均值:μ 总体方差:σ 样本均值:x =(1/n)×Σ(Xi) 样本方差:s =(1/(n-1))×Σ(Xi-x)^2 符号假设置信水平:1-α 显著水平:α
已知n个样本数据Xi (i=1,2,...,n),如何估计总体的均值? 首先,引入记号: 区间估计σ'=σ/sqrt(n) s'=s/sqrt(n) 然后,分情况讨论: 情况1 小样本(n<30),σ已知,此时区间位于 x ± z(α/2)×σ' 情况2 小样本(n<30),σ未知,此时区间位于 x ± t(α/2)×s' 区间估计情况3 大样本(n≥30),σ已知,此时区间位于 x ± z(α/2)×σ' 情况4 大样本(n≥30),σ未知,此时区间位于 x ± z(α/2)×s' 其中, z(α/2)表示:正态分布的水平α的分位数 t(α/2)表示:T分布的水平α的分位数
置信区间
区间估计有时,对所考虑的置信区间(或上、下限)加上某种一般性限制,在这个前提下寻找最优者。无偏 性是经常用的限制之一,如果一个置信区间(上、下限)包含真值θ的概率,总不小于包含任何假值θ┡的概率, 则称该置信区间(上、下限)是无偏的。同变性(见统计决策理论)也是一个常用的限制。
求置信区间的方法 最常用的求置信区间及置信上、下限的方法有以下几种。

费希尔把这个等式解释为:在抽样以前,对于θ落在区间内的可能性本来一无所知,通过抽样,获得了上述 数值,它表达了统计工作者对这个区间的"信任程度",若取b)=-α=uα/2,则得到区间,其信任程度为 1-α。即 当用上述区间作为θ的区间估计时,对于“它能包含被估计的θ”这一点可给予信任的程度为1-α。

概率论与数理统计第7章

概率论与数理统计第7章

x 0 , x 0 ,x 1 ,x 2 ,
,x n 为 总 体 X
的 一 个 样 本 ,则 未 知 参 数 的 矩 估 计 ˆ _ _ _ _ _ _ _ _ _ _ _ .
这个例子所作的推断已经体现了极大似然法 的基本思想 .
最大似然估计原理:
设X1,X2,…Xn是取自总体X的一个样本,样 本的联合密度(连续型)或联合分布律 (离散型)为
f (x1,x2,… ,xn ; ) .
当给定样本X1,X2,…Xn时,定义似然函数为:
L() f (x1, x2 ,…, xn; )

pˆ1Βιβλιοθήκη nn i 1xix
即为 p 的最大似然估计值 .
从而 p 的最大似然估计量为
p ˆ(X1,
1n ,Xn)ni1Xi X
求最大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合分布率(或联 合密度);
(2) 把样本联合分布率 ( 或联合密度 ) 中自变
量看成已知常数,而把参数 看作自变量,得到似然 函数L();
要求:领会
2.2 估计量的有效性、相合性, 要求:领会
3.区间估计
3.1 置信区间的概念,
要求:领会
3.2 求单个正态总体均值和方差的置信区间,要求:简单应用
参数估计
现在我们来介绍一类重要的统计推断问题
参数估计问题是利用从总体抽样得到的信息来估计总体 的某些参数或者参数的某些函数.
估计新生儿的体重
1 p
n
pxi (1p)1xi
i1
n
n
xi
n xi
pi1 (1p) i1
n
n
xi
n xi
L(p)pi1 (1p) i1

概率论与数理统计复习7章

概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

概率论 第七章 参数估计

概率论  第七章 参数估计

L( ) max L( )
称^为
的极大似然估计(MLE).
求极大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合概率分布 (或联合密度);
(2) 把样本联合概率分布(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( );
(3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE;
1. 将待估参数表示为总体矩的连续函数 2. 用样本矩替代总体矩,从而得到待估参
数的估计量。
四. 最大似然估计(极大似然法)
在总体分布类型已知条件下使用的一种 参数估计方法 .
首先由德国数学家高斯在1821年提出。 英国统计学家费歇1922年重新发现此
方法,并首先研究了此方法的一些性质 .
例:某位同学与一位猎人一起外出打猎.一只 野兔从前方窜过 . 一声枪响,野兔应声倒下 .
p值 P(Y=0) P(Y=1) P( Y=2) P(Y=3) 0.7 0.027 0.189 0.441 0.343 0.3 0.343 0.441 0.189 0.027
应如何估计p?
若:只知0<p<1, 实测记录是 Y=k
(0 ≤ k≤ n), 如何估计p 呢?
注意到
P(Y k) Cnk pk (1 p)nk = f (p)
第七章 参数估计
参数估计是利用从总体抽样得到的信息 估计总体的某些参数或参数的某些函数.
仅估 计一 个或 几个 参数.
估计新生儿的体重
估计废品率
估计降雨量
估计湖中鱼数


参数估计问题的一般提法:
设总体的分布函数为 F(x, ),其中为未 知参数 (可以是向量).从该总体抽样,得样本

概率第7章 参数估计

概率第7章   参数估计
然而,这个方法常归功于 英国统 计学家费歇 . 费歇在1922年重新发现了 这一方 法,并首先研究了这 种方法的一些质 .
Gauss
Fisher
基本思想
甲.乙两人比较射击技术,分别射击目标一次,甲中而乙未中, 可以认为:甲射击技术优于乙射击技术. 事件A发生的概率为0.1或0.9,观察一次,事件A发生了, 可以认为:事件A发生的概率为0.9. 实际问题(医生看病、公安人员破案、技术人员进行质量 检验等)尽管千差万别,但他们具有一个共同的规律,即在 获得了观察资料之后,给参数选取一个数值,使得前面的观 察结果出现的可能性最大. 最大似然估计就是通过样本值 x1 , , x n 等数求得总体的 分布参数,使得 X1 ,, X n 取值为 x1 , , x n 的概率最大.
i
L( ) L( x1 , , x n ; ) f ( x i ; ),
i 1
n
的最大值,这里 ( )称为样本的似然函数 L .
ˆ 若 L( x 1 , , x n ; ) max L( x 1 , , x n ; )

ˆ 则称 ( x1 , , xn )为 的极大似然估计值 .
i
xi
在得到观测值 x1 , x 2 , , x n 的前提下,自然 应当选取使得 n
f ( x ; )dx
i i 1
i
达到最大的 值作为未知参数 的估计值.
因为当未知参数 等于这个值时,出现给 定的那个 样本观测值的可能性最 大.
但 dxi 不随 而变,故只需考虑:
3.期望和方差的点估计 在实际中,常常以样本均值作为总体均值的 点估计,以样本方差作为总体方差的点估计. 期望的点估计: (1)无偏性 1 n 选择估计量 X X i n i 1 (2)样本容量越大,估计值 越有效 方差的点估计:

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

《概率论与数理统计》7

《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a a a
f (u)
0.95
b
0.95
b
0.95
0b
我们总是希望置信区间尽可能短.
u
在概率密度为单峰且对称的情形,
u 当a=-b时求得的置信区间的长度为最短.
u a =-b
即使在概率密度不对称的情形,如 χ2分布,F分布, 习惯上仍取对称的分位点来计算未知参数的置信区间.
f (x)
X ~ 2 (n)
若我们能给出一个区间, 在此区间内我们合理地相信 N 的真值位于其中. 这样对鱼数的估计就有把握多了.
也就是说, 我们希望确定一个区间, 使我们能以比较高的可靠程度相信它包含真参数值.
湖中鱼数的真值
数理统计
[• ]
这里的“可靠程度”是用概率来度量的, 称为置信度或置信水平. 习惯上把置信水平记作 1- α, 这里 α是一个很小的正数.
使:P
X
n
u
2
1
从中解得:
P
X
n u 2
X
n
u
2
1
于是所求 μ的置信区间为:
X
n u 2 ,
X
n
u
2
也可简记为:
X
n
u
2
数理统计
2. 我们归纳出求置信区间的一般步骤如下:
数理统计
1) 明确问题, 是求什么参数的置信区间? 置信水平1-α是多少? 2) 寻找参数 θ的一个良好的点估计: f(X1,X2,…Xn); 3) 寻找一个待估参数θ和估计量 f的函数 G(f, θ), 且其分布为已知; 4) 对于给定的置信水平1-α, 根据G(f, θ)的分布, 确定常数a, b, 使:
数理统计
2 1
2 (n)
2 2 (n)
x
二、估计方法:
在求置信区间时, 要查表求分位点.
数理统计
1. 定义: 设 0<α<1 , 对随机变量X, 称满足:
P( X xα ) α P( X xα ) 1 α
的点 xα 为X的概率分布的上α分位点.
P(a X b) 1 α
c
P(X b) P(X a) 1 α
P(X b) 1 α 2 ,
F~ F(n1, n2)
P{F Fα (n1, n2 )} α
例1: 设 X1,…Xn是取自N(
解:选μ的点估计为 X,
寻找未知参数的
取:U X N (0,1) n
一个良好估计.
对给定的置信水平: 1-α, 查正态分布表得: uα/2,
第三节 区间估计
区间估计问题 估计方法
数理统计
一、区间估计(interval estimation)问题
数理统计
参数点估计是用样本算得的一个值去估计未知参数.
但是, 点估计值仅仅是未知参数的一个近似值,
它没有反映出这个近似值的误差范围, 使用起来把握不大.
区间估计正好弥补了点估计的这个缺陷 .
譬如, 在估计湖中鱼数的问题中, 若我们根据一个实际样本, 得到鱼数 N 的极大似然估计为1000条. 实际上, N的真值可能大于1000条, 也可能小于1000条.
置信水平的大小是根据实际需要选定的. 例如, 通常可取置信水平 1- α=0.95 或 0.9 等.
根据一个实际样本, 由给定的置信水平(degree of confidence), 我们求出一个尽可能小的区间 (θ, θ),—使:

P{θ < θ < θ}=1-α

称区间(θ, θ) 为 θ的置信水平为 1- α的置信区间(confidence interval).
P(a <G(f, θ)<b)=1-α; 5) 对“a<G(f, θ)<b” 作等价变形, 得到如下形式: θ< θ< θ,—
即: P{θ< θ< θ}=—1-α 于是(θ, θ)—就是 θ的100(1- α)%的置信区间.
可见, 关键的是寻找一个待估参数 θ和估计量 f 的函数 G(f, θ), 且 G(f, θ)的分布为已知, 不依赖于任何未知参数, 而这与总体分布有关,
P(X
a)
α 2
P( X b) 1 α 3 , P( X a) 2α 3
若 X为连续型随机变量, 则有:
a x1α 2 ,b xα 2
所求置信区间为: ( x1α 2 , xα 2 )
a x12α 3 ,b xα 3
所求置信区间为: ( x12α 3 , xα 3 )
数理统计
U
标准正态分布 的上α分位点 uα
U~N(0, 1)
P(U uα ) α
数理统计
自由度为n的χ2分布
的上α分位数
2
(n)
χ2~ χ2(n)
P( χ 2 χα2(n)) α
数理统计
T~t(n)
t分布的上α分位点 tα
T~t(n)
P{T tα (n)} α
数理统计
自由度为 n1, n2的F分布
的上α分位数 F (n1, n2 )
1.定义: 设 θ是 一个待估参数, 给定α>0,
数理统计
若由样本 X1, X2, … Xn确定的两个统计量:
θ=θ(X1, X2, … Xn)
——

θ=θ(X1, X2, … Xn) (θ<θ)

满足: P{θ< θ< θ}=1-α

则称区间 (θ, θ)是 θ的置信水平(置信度 )为1-α的置信区间.
θ和 θ分— 别称为置信下限和置信上限.
2. 这里有两个要求:
1) 要求 θ以很大的可能被包含在区间 (θ, θ)内—, 就是说, 概率 P{θ< θ <θ} 要— 尽可能大, 即要求估计尽量可靠.
2)
估计的精度要尽可能的高,
如要求区间长度

θ-
θ尽可能短,
或能体现该要求的其它准则.
可靠度与精度是一对矛盾, 一般是在保证可靠度的条件下尽可能提高精度.
所以, 总体分布的形式是否已知, 是怎样的类型, 至关重要.
由: P(-1.75 ≤ U ≤ 2.33)=0.95
f (u)
数理统计
1.75
2.33 u
我们得到均值 μ的置信水平为1- α=0.95的置信区间为:
X 1.75 n , X 2.33 n 这个区间比前面一个要长一些.
类似地,我们可得到若干个不同的置信区间:
相关文档
最新文档