高等几何试题及答案

合集下载

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是欧几里得几何的公理?A. 两点之间线段最短B. 过直线外一点有且只有一条直线与已知直线平行C. 任意两条直线都相交D. 圆的周长与直径的比值是一个常数答案:B2. 球面上的最短路径是:A. 直线B. 曲线C. 大圆D. 任意路径答案:C3. 以下哪个定理是球面几何中的定理?A. 勾股定理B. 泰勒斯定理C. 球面三角形的内角和大于180度D. 三角形内角和等于180度答案:C4. 以下哪个选项是双曲几何的特征?A. 过直线外一点有且只有一条直线与已知直线平行B. 过直线外一点有无数条直线与已知直线平行C. 过直线外一点没有直线与已知直线平行D. 过直线外一点有一条直线与已知直线平行答案:B二、填空题(每题5分,共20分)1. 在欧几里得几何中,一个平面上任意两个点确定一条________。

答案:直线2. 球面几何中,球面上的两点之间的最短路径称为________。

答案:大圆3. 在双曲几何中,过直线外一点可以画出________条直线与已知直线平行。

答案:无数4. 根据球面几何的性质,球面上的三角形内角和________180度。

答案:大于三、解答题(每题15分,共30分)1. 证明:在球面几何中,任意两个大圆的交点最多有两个。

证明:假设球面上有两个大圆A和B,它们相交于点P和Q。

如果存在第三个交点R,则R必须位于大圆A和B上。

由于大圆A和B是球面上的最短路径,它们在球面上的交点必须是球面上的最短路径的端点,因此R不可能存在。

因此,任意两个大圆的交点最多有两个。

答案:证明完毕。

2. 已知球面上的三角形ABC,其内角分别为α、β、γ,且α+β+γ=180°+ε,其中ε为正数。

求证:三角形ABC的边长之和小于球面上的任意其他三角形的边长之和。

证明:设球面上的任意其他三角形为DEF,其内角分别为α'、β'、γ'。

最完整高等几何习题解答(最全版)

最完整高等几何习题解答(最全版)

高等几何习题解答习题一1.0设A ,B 为二定点,xy 为定直线。

于xy 上任取P ,Q ,又AP 与BQ 交于L ,AQ 与BP 交于M ,求证:LM 通过AB 上一定点。

解:把直线xy 射影为无穷远直线,则点P ,Q ,2P ,2Q 变为无穷远点1P ∞,1Q ∞,2P ∞,2Q ∞,所以1A L B M ''''∥,22A L B M ''''∥,11A M B L ''''∥,22A M B L ''''∥,得两个平行四边形。

11L B M ''''中,11L M '',A B ''是对角线,交于1S ,且1S 是A B ''的中点。

22L B M ''''中,22L M '',A B ''是对角线,交于点1S ,且1S 是A B ''的中点,∴1S '≡2S '=S ',从而,LM通过AB 上一定点S 。

1.1 写出下列各直线的绝对坐标:(1)123320x x -= (2)23230x x -= (3)30x =答:(1)(3,-;(2)(0,2,3)-;(3)(0,0,1) 1.2 写出下列个点的方程(3,5,1)a =- (0,1,0)b = 1,0)c =-答:123:350a ξξξ-+= 2:0b ξ= 120c ξ-=1.3 求下列三点中每两点连线的方程和坐标:(1,4,1)x =,(2,0,1)y =,(1,1,2)z =- 答:),8,1,4(=⨯y x 084321=++x x x ),2,3,1(--=⨯z y 023321=--x x x ),5,1,9(--=⨯x z 059321=--x x x1.4 求下列三直线中每两条的交点的方程和坐标:),4,1,0(=ξ),3,1,2(=η)0,1,1(-=ζ 答:),2,8,1(-=⨯ηξ028321=+-ξξξ ),1,1,1(-=⨯ξη0321=-+ξξξ),1,4,4(-=⨯ξζ044321=-+ξξξ1.5 如果直线,ξ,η,ζϕ的方程分别是:,031=-x x ,032=-x x ,02321=-+x x x,0321=++x x x 求直线)()(ϕζηξ⨯⨯⨯的方程和坐标。

高等几何试卷及答案

高等几何试卷及答案

《高等几何》考试试题A 卷(120分钟)一、填空题(2分⨯12=24分)1平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: (5,-1,0)3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -24、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0) 6、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -19、一点列到自身的两射影变换a):21→,32→,43→; b):10→,32→,01→ 其中为对合的就是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件就是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1 二、求二阶曲线的方程,它就是由下列两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233,'x xx x λλ==。

将它们代入射影对应式并化简得,2122313320x x x x x x x +-+=此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10分)证明:三点形ABC 与三点形C B A '''内接于二次曲线(C),设 AB I C B ''=D AB I C A ''=E B A ''I BC=D ' B A ''I AC=E ',则),,,(B A B A C '''∧),,,(B A B A C ''所以,),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B 即),E ,D ,(B A ∧)D ,,,E (''''A B这两个点列对应点的连线AC,B C '',A C '',BC 连同这两个点列的底AB,B A ''属于同一条二级曲线(C '),亦即三点形ABC 与三点形C B A '''的边外切一条二次曲线。

高等几何试题及答案

高等几何试题及答案

专业

二、 选择题(每小题 2 分,共 10 分)
1.下列哪个图形是仿射不变图形?( A.圆 C.矩形 2.
u1 2 u1u 2 8 u 2 0
2 2
) B.直角三角形 D.平行四边形

表示(
)
A.以-1/4 为方向的无穷远点和以 1/2 为方向的无穷远点
第1页
B. 以-4 为方向的无穷远点和以 2 为方向的无穷远点 C. 以 4 为方向的无穷远点和以-2 为方向的无穷远点 D. 以 1/4 为方向的无穷远点和以-1/2 为方向的无穷远点 3.两个不共底且不成透视的射影点列至少可以由几次透视对应组成?( A.一次 C.三次 B.两次 D.四次 ): B. 梯形 D.椭圆 )
第3页
六、计算题(42 分)
1. (6 分)平面上经过 A(-3,2)和 B(6,1)两点的直线被直线 x+3y-6=0 截于 P 点, 求单比(ABP)
2. (6 分)已知仿射平面上直线 l 的非齐次坐标方程为 x-2y+1=0,求 (1)l 的齐次坐标方程; (2)l 上无穷远点的坐标; (3)l 上无穷远点的方程。
0, 0
(2 分)
6 a 2 b 3c d 0
,6a+3b+2c+d=0
得到: a : b : c : d
3 : 5 : 5 : 7 0
故射影变换方程为: 3 ' 5 5 ' 7 二重元素满足: 3 2 10
7 0
(4 分) (2 分)
4.下面的名称或定理分别不属于仿射几何学有( A. 三角形的垂心 C.在平面内无三线共点的四条直线有六个交点 5.二次曲线按射影分类总共可分为( A.4 类 C.6 类 ) B.5 类 D.8 类

高校《高等几何》期末考试试卷含答案

高校《高等几何》期末考试试卷含答案

某高校高等几何期末考试试卷120分钟一、填空题2分⨯12=24分1平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: 5,-1,03、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -24、过点A1,i - ,2的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 1,2,0 1,3,0 6、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -1 9、一点列到自身的两射影变换a :21→,32→,43→; b :10→,32→,01→ 其中为对合的是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1 二、求二阶曲线的方程,它是由下列两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=;解:射影对应式为'2'10λλλλ-++=;由两线束的方程有:1233,'x xx x λλ==;将它们代入射影对应式并化简得, 此即为所求二阶曲线的方程;三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线;10分证明:三点形ABC 和三点形C B A '''内接于二次曲线C,设AB C B ''=D AB C A ''=E B A '' BC=D 'B A '' AC=E ',则),,,(B A B AC '''∧),,,(B A B A C ''所以,),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B 即),E ,D ,(B A ∧)D ,,,E (''''A B这两个点列对应点的连线AC,B C '',A C '',BC 连同这两个点列的底AB,B A ''属于同一条二级曲线C ',亦即三点形ABC 和三点形C B A '''的边外切一条二次曲线; 四、已知四直线1l ,2l ,3l ,4l 的方程顺次为12x -2x +3x =0,13x +2x -32x =0,17x -2x =0,15x -3x =0, 求证四直线共点,并求1l 2l ,3l 4l 的值;10分解:因为17213112---=0且15017213---=0 所以1l ,2l ,3l ,4l 共点;四直线与x 轴2x =0的交点顺次为A1,0,-2,B2,0,3,C0,0,1,D1,0,5,非齐次坐标为A-21,0,B 32,0,C0,0,D 51,0, 所以 1l 2l ,3l 4l =AB,CD=)2151)(320()3251)(210(+--+=21 五、求两对对应元素,其参数为121→,0→2,所确定的对合方程;10分解 设所求为a λλ'+b λ+λ'+d=0 ① 将对应参数代入得:21a+1+21b+d=0 ②0+2b+d=0 ③从①②③中消去a,b,d 得120123211λλλλ'+'=0 即λλ'+λ+λ'-2=0为所求六、求直线32163x x x +-=0关于2122212x x x x -++231x x -632x x =0之极点;12分 解:设0p 030201,,x x x 为所求,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----031311111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡030201x x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-613 解线性方程组得即,1,1,3030201-=-==x x x 3,-1,-1为所求极点的坐标七、叙述帕萨卡定理的内容并证明其定理;12分定理:内接于二阶曲线的简单六点形,三对对应边的交点在同一直线上; 证明:设简单六点形654321A A A A A A ,其三对对边的交点分别为L,M,N, L= 21A A 54A A ,M=32A A 65A A ,N=43A A 16A A 以1A ,3A 为中心,分别连接其他四点,则由定理得到()65421A A A A A ∧()65423A A A A A设P A A A A =5421 , Q A A A A =4365则()65421A A A A A ∧()P A A L 54,,,()65423A A A A A ∧()65,,A A Q M所以,()P A A L 54,,∧()65,,A A Q M 由于两个点列底的交点5A →5A ,故有 所以LM,Q A 4,5PA 三点共点,但Q A 4 5PA =N, 即L,M,N 三点共线; 八、用两种方法求双曲线0423222=-+-+y x xy y x 的渐近线方程;12分解:方法一设渐近线的方程为 根据公式得解之,得31,121-==k k ,所以渐近线方程为和化简,得所求为2x-2y-1=0 和2x+6y+5=0 方法二先求出中心,因为131=A ,332=A ,433-=A所以中心为⎪⎭⎫⎝⎛--43,41C 代入公式得渐近线方程分解因式得⎪⎭⎫ ⎝⎛+41x -⎪⎭⎫ ⎝⎛+43y =0⎪⎭⎫ ⎝⎛+41x +⎪⎭⎫ ⎝⎛+433y =0化简,得所求为2x-2y-1=0 和2x+6y+5=0。

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 已知直线l的方程为Ax+By+C=0,直线m的方程为Dx+Ey+F=0,若l与m平行,则以下哪个条件成立?A. A/D = B/E ≠ C/FB. A/D = B/E = C/FC. A/D = B/E ≠ C/FD. A/D ≠ B/E = C/F答案:A2. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β垂直,则以下哪个条件成立?A. AE + BF + CG = 0B. AE + BF + CG ≠ 0C. AE + BF + CG = D + HD. AE + BF + CG = D - H答案:A3. 已知点P(x1, y1, z1)在平面α:Ax+By+Cz+D=0上,则以下哪个条件成立?A. Ax1+By1+Cz1+D=0B. Ax1+By1+Cz1+D≠0C. Ax1+By1+Cz1+D>0D. Ax1+By1+Cz1+D<0答案:A4. 已知直线l的参数方程为x=x0+at,y=y0+bt,z=z0+ct,其中a、b、c为直线的方向向量,若直线l与平面α:Ax+By+Cz+D=0平行,则以下哪个条件成立?A. Aa+Bb+Cc=0B. Aa+Bb+Cc≠0C. Aa+Bb+Cc=DD. Aa+Bb+Cc=-D答案:A二、填空题(每题5分,共20分)5. 已知直线l的方程为Ax+By+Cz+D=0,直线m的方程为Ex+Fy+Gz+H=0,若l与m相交,则它们的交点坐标为__________。

答案:((BF-CE)/(AF-CD), (AG-CF)/(AF-CD), (AE-BF)/(AF-CD))6. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β相交,则它们的交线方程为__________。

答案:(Ax+By+Cz+D)(EF-GH) - (Ex+Fy+Gz+H)(AF-CD) = 07. 已知点P(x1, y1, z1)到平面α:Ax+By+Cz+D=0的距离为d,则d=__________。

高等几何试卷与答案

高等几何试卷与答案

《高等几何》考试试题 A 卷( 120 分钟)题号一二三四五六七八合计分数2410101010121212100得分一、填空题( 2 分12=24 分)1、平行四边形的仿射对应图形为:平行四边形;2、直线 x15x20 上无穷远点坐标为:(5,-1,0)3、已知 (l1l 2 , l 3l 4 ) 3 ,则 (l 4l 3 , l 2 l1 )3(l1l 3 , l 2 l 4 )-24、过点 A(1,i,2)的实直线的齐次方程为: 2 x1 x305、方程 u125u1u26u220 表示的图形坐标(1,2,0)( 1,3,0)6、已知OX轴上的射影变换式为x'2x 1,则原点的对应点-1x337、求点(1, 1,0)关于二阶曲线 3x125x22x327x1 x24x1x35x2 x30 的极线方程x13x26x308、ABCD为平行四边形,过A引AE与对角线BD平行,则A( BC, DE ) = -19、一点列到自身的两射影变换a):1 2 , 2 3 , 3 4 ;b): 0 1 , 2 3 ,1 0 其中为对合的是:b10、求射影变换'210 的自对应元素的参数111、两个线束点列成透视的充要条件是底的交点自对应12、直线 2x1x2x30 上的三点A(1,3,1),B(2,5,1),C (1,2,0)的单比( ABC ) =1二、求二阶曲线的方程,它是由下列两个射影线束所决定的:x1 x3 0 与 x2' x3 0且'2'10。

由两线束的方程有:x1, 'x 2 。

x 3x 3将它们代入射影对应式并化简得,x 1x 2 2x 2 x 3 x 1 x 3 x 32 0此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10 分)证明:三点形 ABC 和三点形 A B C 内接于二次曲线( C ),设AB BC =D AB AC =EAB BC=DABAC= E , 则 C (A,B,A,B)C(A,B,A,B)所 以 ,(A,D,E,B)C (A,B ,A,B)C(A,B ,A ,B)(E ,B ,A ,D )即 (A,D,E,B) (E ,B ,A ,D )这两个点列对应点的连线 AC , C B , C A ,BC 连同这两个点列的底AB ,A B 属于同一条二级曲线 ( C ),亦即三点形 ABC 和三点形 A B C 的边外切一条二次曲线。

高等几何试题(1)

高等几何试题(1)

《高等几何》试题(1)《高等几何》试题(1)1.1. 试确定仿射变换,使y 轴,x 轴的象分别为直线01=++y x ,01=--y x ,且点(,且点(11,1)的象为原点的象为原点.(.(51¢)2.2. 利用仿射变换求椭圆的面积利用仿射变换求椭圆的面积.(.(01¢)3.3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标无穷远直线的齐次线坐标.(.(01¢)4. 叙述笛沙格定理叙述笛沙格定理,,并用代数法证之并用代数法证之.(.(51¢)5. 已知A (1,2,3),B (5,-1,2),C (11,0,7),D (6,1,5),验证它们共线,并求(CD AB ,)的值.(8¢)6. 设1P (1,1,1),2P (1,-1,1),4P (1,0,1)(1,0,1)为共线三点为共线三点为共线三点,,且(4321,P P P P )=2,)=2,求求3P 的坐标的坐标.(.(21¢) 7. 叙述并证明帕普斯叙述并证明帕普斯(Pappus)(Pappus)(Pappus)定理定理定理.(.(01¢)8.一维射影对应使直线l 上三点P (-1),Q (0),R (1)顺次对应直线l ¢上三点P ¢(0),Q ¢(1),R ¢(3),(3),求这个对应的代数表达式求这个对应的代数表达式求这个对应的代数表达式.(.(01¢)9.9.试比较射影几何、仿射几何、欧氏几何的关系试比较射影几何、仿射几何、欧氏几何的关系试比较射影几何、仿射几何、欧氏几何的关系.(.(01¢)《高等几何》试题(2)《高等几何》试题(2)1.1.求仿射变换求仿射变换424,17++=¢+-=¢y x y y x x 的不变点和不变直线的不变点和不变直线. (. (51¢)2. 叙述笛沙格定理叙述笛沙格定理,,并用代数法证之并用代数法证之.(.(51¢)3.3.求证求证a (1,2,-1) ,b (-1,1,2),c (3,0,-5)(3,0,-5)共线共线共线,,并求l 的值的值,,使).3,2,1(=+=i mb la c iii(01¢)4.4.已知直线已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x , 01=x ,且=),(4321l l l l 32-,求2l 的方程的方程.(.(51¢) 5.5.试比较欧氏、罗氏、黎氏几何的关系试比较欧氏、罗氏、黎氏几何的关系试比较欧氏、罗氏、黎氏几何的关系. (. (01¢) 6.6.试证两个点列间的射影对应是透视对应的充要条件是它们底试证两个点列间的射影对应是透视对应的充要条件是它们底试证两个点列间的射影对应是透视对应的充要条件是它们底的交点自对应的交点自对应. (. (01¢)7.7.求两对对应元素求两对对应元素求两对对应元素,,其参数为121®,0®2,2,所确定对合的参数方所确定对合的参数方所确定对合的参数方程. (01¢)8.8.两个重叠一维基本形两个重叠一维基本形B A B A l l ¢++,成为对合的充要条件是对应点的参数l 与l ¢满足以下方程: )0(0)(2¹-=+¢++¢b ad d b a l l l l (51¢)《高等几何》试题(3)《高等几何》试题(3)《高等几何》试题(3) 1. 求仿射变换424,17++=¢+-=¢y x y y x x 的不变点和不变直线的不变点和不变直线. (. (51¢) 2. 求椭圆的面积求椭圆的面积.(.(01¢)3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐无穷远直线的齐次线坐标.(01¢)4. 叙述笛沙格定理叙述笛沙格定理,,并用代数法证之并用代数法证之.(.(51¢)5. 已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x , 01=x ,且=),(4321l l l l 32-,求2l 的方程的方程.(.(51¢) 6. 在一维射影变换中,若有一对对应元素符合对合条件,则这个射影变换一定是对合在一维射影变换中,若有一对对应元素符合对合条件,则这个射影变换一定是对合. (. (51¢) 7. 试比较射影几何、仿射几何、欧氏几何的关系试比较射影几何、仿射几何、欧氏几何的关系, , 试比较欧氏、罗氏、黎氏几何的关系试比较欧氏、罗氏、黎氏几何的关系. (. (02¢)[2005[2005——2006第二学期期末考试试题第二学期期末考试试题] ]《高等几何》试题(《高等几何》试题(A A ) 一、一、 填空题(每题3分共15分)分)1、 是仿射不变量,是仿射不变量, 是射影不变量是射影不变量2、 直线30x y +=上的无穷远点坐标为上的无穷远点坐标为3、 过点(1,i,0)的实直线方程为)的实直线方程为4、 二重元素参数为2与3的对合方程为的对合方程为5、 二次曲线22611240x y y -+-=过点(1,2)P 的切线方程的切线方程 二、二、 判断题(每题2分共10分)分) 1、两全等三角形经仿射对应后得两全等三角形两全等三角形经仿射对应后得两全等三角形 ( ) 2、射影对应保持交比不变,射影对应保持交比不变,也保持单比不变也保持单比不变也保持单比不变 ( ) 3、一个角的内外角平分线调和分离角的两边一个角的内外角平分线调和分离角的两边( ) 4、欧氏几何是射影几何的子几何,欧氏几何是射影几何的子几何,所以对应内容是射影几何对应内容的子集所以对应内容是射影几何对应内容的子集所以对应内容是射影几何对应内容的子集 ( ) 5、共线点的极线必共点,共点线的极点必共线共点线的极点必共线 ( )三、(7分)求一仿射变换,它使直线210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2)四、(8分)求证:点(1,2,1),(1,1,2),(3,0,5)A B C --三点共线,并求,t s 使,(1,2,3)i i ic ta sb i =+= 五、(10分)设一直线上的点的射影变换是/324x x x +=+证明变换有两个自对应点,且这两自对应点与任一对对应点的交比为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、若共点四直线a,b,c,d的交比为(ab,cd)=-1,则交比(ad,bc)=______。
4、平面上4个变换群,射影群,仿射群,相似群,正交群的大小关系为:

5、二次曲线的点坐标方程为 ,则其线坐标方程为就是。
二、选择题(每小题2分,共10分)
1、下列哪个图形就是仿射不变图形?( )
A、圆B、直角三角形
5、 (6分)求由两个射影线束 , , 所构成的二阶曲线的方程。
6、 (8分) 试求二次曲线Γ: +2x1x3-4x2x3=0的中心与渐近线。
┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉
一、 填空题(每小题4分,共20分)
1、1(4分)
2、如果两个三线形对应边的交点在一条直线上,则对应顶点的连线交于一点。(4分)
3、 (8分)在直线上取笛氏坐标为 2,0,3的三点作为射影坐标系的P*,P0,E,(i)求此直线上任一点P的笛氏坐标x与射影坐标λ的关系;(ii)问有没有一点,它的两种坐标相等?
4、 (8分)求点列上的射影变换,它将参数为1,2,3的点分别变为参数为1,3,2的点,并求出此射影变换的自对应元素的参数。
┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉
C、矩形D、平行四边形
2、 表示( )
A、以-1/4为方向的无穷远点与以1/2为方向的无穷远点
B、 以-4为方向的无穷远点与以2为方向的无穷远点
C、 以4为方向的无穷远点与以-2为方向的无穷远点
D、 以1/4为方向的无穷远点与以-1/2为方向的无穷远点
3、两个不共底且不成透视的射影点列至少可以由几次透视对应组成?( )
系专业班学号姓名
┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉
试卷类型:A
高等几何
使用专业年级考试方式:开卷( )闭卷(√)共6页
题号






合计
得分
一、填空题(每小题4分,共20分)
1、设 (1), (-1), ( )为共线三点,则 。
2、写出德萨格定理的对偶命题:
A、一次B、两次
C、三次D、四次
4、下面的名称或定理分别不属于仿射几何学有( ):
A、 三角形的垂心 B、 梯形
C、在平面内无三线共点的四条直线有六个交点 D、椭圆
5、二次曲线按射影分类总共可分为( )
A、4类B、5类
C、6类D、8类
三、判断题(每小题2分,共10分)
1、仿射对应不一定保持二直线的平行性。( )
2、两直线能把射影平面分成两个区域。( )
3、当正负号任意选取时,齐次坐标 表示两个相异的点。( )
4、 在一维射影变换中,若已知一对对应元素(非自对应元素)符合对合条件,则此
射影变换一定就是对合。( )
5、配极变换就是一种非奇线性对应。( )
┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉
∴当x=0及x= 时两种坐标相等。(4分)
3.(8分)
设射影变换的方程为: (2分)
由题意知:a+ ,
,6a+3b+2c+d=0
得到:
故射影变换方程为: (4分)
二重元素满足: 得 =7/3或 =1 (2分)
(6分)
解:由题意:
(2分)
由上式得: (2分)
故所求方程即为 (2分)
6、(8分)
解:二次曲线的齐次方程为:x12+3x1x2-4x22+2x1x3-10x2x3=0,
┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉
1.(6分)
(1) (2分)
(2)(1,1/2,0) (2分)
(3) (2分)
2.(8分)
解:笛氏坐标023x
射影坐标:P*P0Eλ
(i)由定义λ=(P*P0,EP)=(2 0,3x)=
(4分)
(ii)若有一点它的两种坐标相等,即x=λ则有 ,即3x2-7x=0,
∴二次曲线为常态的,
设中心
则中心为 (4分)
求渐近线方程:a11X2+2a12XY+a22Y2=0,X=x-ξ,Y=y-η。
从X2+3XY-4Y2=0→(X+4Y)(X-Y)=0、
X+4Y=(x- )+4(y+ )=0→5x+20y+18=0,(2分)
X-Y=(x- )-(y+ )=0→5x-5y-8=0。(2分)
3、2(4分)
4、射影群包含仿射群,仿射群包含相似群,相似群包含正交群(4分)
5、 (4分)
二、选择题(每小题2分,共10分)
1、(D),2、(C),3、(B),4、(A),5、(B)
三、判断题(每小题2分,共10分)
1、(×),2、(√),3、(×),4、(√),5、(√)
四、作图题(8分)
五、

六、计算题(42分)
1、 (6分)平面上经过A(-3,2)与B(6,1)两点的直线被直线x+3y-6=0截于P点,求单比(ABP)
2、 (6分)已知仿射平面上直线l的非齐次坐标方程为x-2y+1=0,求
(1)l的齐次坐标方穷远点的方程。
┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉
由德萨格定理的逆定理知,(2分)
对应边的交点BT与DQ的交点G,TS与QP的交点M以及BS与DP的交点H三点共线,即TS与QP的交点M在直线GH上。(2分)
六、计算题(42分)
1.(6分)
解:设P点的坐标为(x0,yo)
(分割比),(2分)
且P在直线x+3y-6=0上,
解得λ=1,(2分)
即P就是AB中点,且(ABP)=-1(2分)
四、作图题(8分)
已知线束中三直线a,b,c,求作直线d,使(ab,cd)=-1。(画图,写出作法过程与根据)
五、证明题(10分)
如图,设FGH就是完全四点形ABCD对边三点形,过F的两直线TQ与SP分别交AB,BC,CD,DA于T,S,Q,P、试利用德萨格定理(或逆定理)证明:TS与QP的交点M在直线GH上。
1


4

作法过程:
1、设a,b,c交于点A,在c上任取一点C, (2分)
2、过C点作两直线分别与a交于B、E,与b交于F,D,(2分)
3、BD与EF交于G,4、AG即为所求的d。(2分)
根据:完全四点形的调与共轭性(2分)
六、证明题(10分)
证明:在三点形BTS与三点形DQP中(4分)
对应顶点的连线BD,TQ,SP三线共点,(2分)
相关文档
最新文档