图论部分复习题

合集下载

离散数学图论部分经典试题及答案

离散数学图论部分经典试题及答案

离散数学图论部分综合练习一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) .A .{(a , d )}是割边B .{(a , d )}是边割集C .{(d , e )}是边割集D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集ο ο ο ο οcab edο f图一图二C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图三7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ).图四A.(a)是强连通的B.(b)是强连通的C.(c)是强连通的D.(d)是强连通的应该填写:D8.设完全图Kn 有n个结点(n≥2),m条边,当()时,Kn中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m 为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2 B.v+e-2 C.e-v-2 D.e+v +210.无向图G存在欧拉通路,当且仅当( ).A.G中所有结点的度数全为偶数B.G中至多有两个奇数度结点C.G连通且所有结点的度数全为偶数D.G连通且至多有两个奇数度结点11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.1m n-+B.m n-C.1m n++D.1n m-+ 12.无向简单图G是棵树,当且仅当( ).A.G连通且边数比结点数少1 B.G连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n ≥2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 .9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.ο οο ο οca b e dο f 图四2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图? 2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵; (2)求出每个结点的度数; (4)画出图G 的补图的图形.3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试v 1v 2v 3v 4v 5v 6v 1v 2v 3v 5 d bae f ghn图六οοο ο οv 5v 1 v 2 v 4v 6 ο v 3图八(1)给出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形.4.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b,d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.5.用Dijkstra算法求右图中A点到其它各点的最短路径。

图论复习题

图论复习题
w(G V ) w(G) , 则称 V 为图G 的一个顶点割集。含有k 个顶点的顶点 割集称为k-顶点割集。 注:(1)割点是1-顶点割集。 (2)完全图没有顶点割集。
连通度: κ (G) = min{| V|| V是 G 的顶点割集} 。 完全图的连通度定义为κ (Kν) =ν − 1 。空图的连通度 定义为0。



v
2
1
证:(a)若 G 不连通,可分为两个顶点数分别为
v1,v2的互不连通子图 G1,G2。
易v知i 1,(i 1,2),v1 v2 v 于是

(G )


v1 2



v2 2


v1(v1 2
1)

v2 (v2 2

1)


(v
1)(v1 2
•确定下列给定图类的点连通度和边连通度.
(Pl ) (Pl ) 1 (Kn ) (Kn ) n 1
(Cn ) (Cn ) 2 (Kl,n ) (Kl,n ) l
• 由定义我们可以确定对于图的任一点和任意一条边, 有下列性质成立
定义为0。
注:(1)对平凡图或不连通图G, (G) 0 。 (2)若图G 是含有割边的连通图,则 (G) 1 。 (3)若 (G) k ,则称G 为k-边连通的。
(4)所有非平凡连通图都是1-边连通的。
(5)使得 E (G) 的边割集 E称为G 的最小边割
集。
(G) 1 (G x) (G) 1 (G xy) (G)
定理3.1 .
证明:先证 (G) (G) 。 若G 不连通,则 (G) (G) 0 。 若G 是完全图,则 (G) (G) 1 。

图论期末考试整理复习资料

图论期末考试整理复习资料

目录第一章图的基本概念 (1)二路和连通性 (3)第二章树 (3)第三章图的连通度 (4)第四章欧拉图与哈密尔顿图 (5)一,欧拉图 (5)二.哈密尔顿图 (6)第五章匹配与因子分解 (9)一.匹配 (9)二.偶图的覆盖于匹配 (10)三.因子分解 (11)第六章平面图 (14)二.对偶图 (16)三.平面图的判定 (17)四.平面性算法 (20)第七章图的着色 (24)一.边着色 (24)二.顶点着色 (25)第九章有向图 (30)二有向树 (30)第一章图的基本概念1.点集与边集均为有限集合的图称为有限图。

2.只有一个顶点而无边的图称为平凡图。

3.边集为空的图称为空图。

4.既没有环也没有重边的图称为简单图。

5.其他所有的图都称为复合图。

6.具有二分类(X, Y)的偶图(或二部图):是指该图的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。

7.完全偶图:是指具有二分类(X, Y)的简单偶图,其中X的每个顶点与Y 的每个顶点相连,若|X|=m,|Y|=n,则这样的偶图记为Km,n8. 定理1 若n 阶图G 是自补的(即),则n = 0, 1(mod 4)9. 图G 的顶点的最小度。

10. 图G 的顶点的最大度。

11. k-正则图: 每个点的度均为 k 的简单图。

例如,完全图和完全偶图Kn,n 均是正则图。

12. 推论1 任意图中,奇点的个数为偶数。

13.14. 频序列:定理4 一个简单图G 的n 个点的度数不能互不相同。

15. 定理5 一个n 阶图G 相和它的补图有相同的频序列。

16.17.18. 对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1)19. 定义: 联图 在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G220. 积图:积图 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u =(u1,u2)和v = (v1,v2),当(u1 = v1和 u2 adj v2) 或 (u2 = v2 和 u1 adj v1) 时就把 u 和 v 连接起来所得到的图G 称为G1和G2积图。

图论复习题

图论复习题

一、选择题1设图G= <V, E >, v V,则下列结论成立的是(C ). A . deg(v )=2 E B . deg(v )二 EC.deg(v) 2 E [PPT 23]D.deg(v) Ev Vv V定理1 图G=(V, E )中,所有点的次之和为边数的两倍 2. 设无向图G 的邻接矩阵为0 10 0 1 0 10 10则G 的边数为(B ). A . 6B. 53、设完全图K n 有n 个结点(n 2) , m 条边,当(C )时,K n中存在 欧拉回路.解释:K n 每个结点的度都为n — 1所以若存在欧拉回路则n —1必为偶数。

n 必 为奇数。

4. 欧拉回路是(B )A.路径B.简单回路[PPT 40]C.既是基本回路也是简单回路D.既非基本回路也非简单回路 5 .哈密尔顿回路是(C ) A.路径 B.简单回路 C.既是基本回路也是简单回路 D.既非基本回路也非简单回路A. m 为奇数 B . n 为偶数 C. n 为奇数 D . m 为偶数0 1 1 01 0 1 0[PPT 40] :哈密尔顿回路要求走遍所有的点,即是基本回路的点不重复,也可以是简单回路的边不重复。

6. 设G是简单有向图,可达矩阵P(G)刻划下列关系中的是(C )A、点与边B、边与点C、点与点D、边与边7. 下列哪一种图不一定是树(C)。

A.无简单回路的连通图B. 有n个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图8. 在有n 个结点的连通图中,其边数(B)A. 最多有n-1 条B. 至少有n-1 条C. 最多有n 条D. 至少有n9. 下列图为树的是(C)。

A、G1{a,b,c,d},{a,a ,a,b ,c,d B、G2{a,b,c,d},{a,b ,b,d, c,d C、G3{a,b,c,d}, {a,b ,a,d, c,a D、G4{a,b,c,d},{a,b ,a,c ,d,d } } } }10、面的图7-22 是(C)。

图论复习题

图论复习题

图论复习题(二)图论复习题一、选择题1.设图G =<V , E >,v ∈V ,则下列结论成立的是 ( C ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v Vv 2)deg(=∑∈ [PPT 23] D .Ev Vv =∑∈)deg(定理1 图G=(V ,E )中,所有点的次之和为边数的两倍 2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( B ).A .6B .5C .4D .33、 设完全图K n 有n 个结点(n ≥2),m 条边,当( C )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数解释:K n 每个结点的度都为n -1,所以若存在欧拉回路则n -1必为偶数。

n 必为奇数。

4.欧拉回路是( B )A. 路径B. 简单回路[PPT 40]C. 既是基本回路也是简单回路D.既非基本回路也非简单回路5.哈密尔顿回路是( C )A. 路径B. 简单回路C. 既是基本回路也是简单回路D.既非基本回路也非简单回路[PPT 40]:哈密尔顿回路要求走遍所有的点,即是基本回路的点不重复,也可以是简单回路的边不重复。

6.设G 是简单有向图,可达矩阵P(G)刻划下列关系中的是( C ) A 、点与边 B 、边与点 C 、点与点 D 、边与边7.下列哪一种图不一定是树(C )。

A.无简单回路的连通图B. 有n 个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图8.在有n 个结点的连通图中,其边数(B )A.最多有n-1条B.至少有n-1条C.最多有n 条D.至少有n 条9.下列图为树的是(C )。

A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a GB 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a GC 、>><><><=<},,,,,{},,,,{3a c d a b a d c b a GD 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 10、下面的图7-22是(C )。

电大离散数学图论部分期末复习辅导Word版

电大离散数学图论部分期末复习辅导Word版

离散数学图论部分期末复习辅导一、单项选择题 1.设图G =<V , E >,v V ,则下列结论成立的是 ( ) .A .deg(v )=2EB .deg(v )=EC .deg()2||v Vv E ∈=∑ D .deg()||v Vv E ∈=∑解 根据握手定理(图中所有结点的度数之和等于边数的两倍)知,答案C 成立。

答 C2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110, 则G 的边数为( ).A .6B .5C .4D .3解 由邻接矩阵的定义知,无向图的邻接矩阵是对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有102=5条边。

答 B3.已知无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110101110001000111010,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边解 由邻接矩阵的定义知,矩阵是5阶方阵,所以图G 有5个结点,矩阵元素有14个1,14÷2=7,图G 有7条边。

答 D4.如图一所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d, e)}是边割集定义3.2.9 设无向图G =<V ,E >为连通图,若有边集E 1ÌE ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图仍是连通图,则称E 1是G 的一个边割集.若边割集为单元集{e },则称边e 为割边(或桥).解 割边首先是一条边,因为答案A 中的是边集,不可能是割边,因此答案A 是错误的.删除答案B 或C 中的边后,得到的图是还是连通图,因此答案B 、C 也是错误的.在图一中,删去(d , e )边,图就不连通了,所以答案D 正确. 答 D注:如果该题只给出图的结点和边,没有图示,大家也应该会做.如:若图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ) , (a , e ) , (b , c ) , (b , e ) , (c , e ) , (e , d )},则该图中的割边是什么?5.图G 如图二所示,以下说法正确的是 ( ). A .a 是割点 B .{b, c}是点割集 C .{b , d }是点割集 D .{c }是点割集定义3.2.7 设无向图G =<V ,E >为连通图,若有点集V 1ÌV ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图仍是连通图,则称V 1是G 的一个点割集.若点割集为单元集{v },则称结点v 为割点.οοο ο a bc d图一 οe ο οο a b c d图二ο解 在图二中,删去结点a 或删去结点c 或删去结点b 和d 图还是连通的,所以答案A 、C 、D 是错误的.在图二中删除结点b 和c ,得到的子图是不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以答案B 是正确的. 答 B6.图G 如图三所示,以下说法正确的是 ( ) . A .{(a, d )}是割边 B .{(a, d )}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b , d )}是边割集解 割边首先是一条边,{(a, d )}是边集,不可能是割边.在图三中,删除答案B 或D 中的边后,得到的图是还是连通图.因此答案A 、B 、D 是错误的.在图三中,删去(a,d )边和(b, d )边,图就不连通了,而只是删除(a, d )边或(b, d )边,图还是连通的,所以答案C 正确.7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的复习:定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;若在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;若图G 的底图,即在图G 中略去边的方向,得到的无向图是连通的,则称图G 是弱连ο ο ο a bcd图三ο通的.显然,强连通的一定是单向连通和弱连通的,单向连通的一定是弱连通,但其逆均不真.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.单侧连通图判别法:若有向图G中存在一条经过每个结点至少一次的路,则G是单侧连通的。

图论测试题及答案

图论测试题及答案

图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。

答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。

答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。

答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。

解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。

7. 描述图论中的图着色问题,并说明其在实际生活中的应用。

答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。

在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。

结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。

图论复习题

图论复习题

图论及网络总复习题一、选择题1、设G是由5个顶点构成的完全图,则从G中删去()边可以得到树。

A.6 B.5 C.8 D.42、下面哪几种图不一定是树()。

A.无回路的连通图B.有n个结点,n-1条边的连通图C.对每对结点间都有通路的图D.连通但删去任意一条边则不连通的图。

3、5阶无向完全图的边数为()。

A.5 B.10 C.15 D.204、把平面分成x个区域,每两个区域都相邻,问x最大为()A.6 B.4 C.5 D.35、设图G有n个结点,m条边,且G中每个结点的度数不是k,就是k+1,则G中度数为k的节点数是()A.n/2 B.n(n+1) C.nk-2m D.n(k+1)-2m 6、图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的()。

A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件7、设G=<V,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是()。

A.强连通图B.单向连通图C.弱连通图D.不连通图8、无向图G中的边e是G的割边(桥)的充分必要条件是()。

A.e是重边B.e不是重边C.e不包含在G的任一简单回路中D.e不包含在G的某一简单回路中9、在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条10.设无向简单图的顶点个数为n,则该图最多有()条边。

A.n-1 B.n(n-1)/2 C. n(n+1)/2 D.n211.n个结点的完全有向图含有边的数目()。

A.n*n B.n(n+1) C.n/2 D.n*(n-l)12.在一个无向图中,所有顶点的度数之和等于所有边数()倍。

A.1/2 B.2 C.1 D.413.连通图G是一棵树,当且仅当G中()A.有些边不是割边B.所有边都是割边C.无割边集D.每条边都不是割边14.4个顶点的完全图G,其生成树个数是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图论部分
一、选择题:
1.欧拉回路是(B )
A. 路径
B. 简单回路
C. 既是基本回路也是简单回路
D.既非基本回路也非简单回路 2.哈密尔顿回路是(C )
A. 路径
B. 简单回路
C. 既是基本回路也是简单回路
D.既非基本回路也非简单回路 3.设G 是简单有向图,可达矩阵P(G)刻划下列关系中的是(C ) A 、点与边 B 、边与点 C 、点与点 D 、边与边
4.下列哪一种图不一定是树(C )。

A.无简单回路的连通图
B. 有n 个顶点n-1条边的连通图
C. 每对顶点间都有通路的图
D. 连通但删去一条边便不连通的图 5.下列哪个不是两个图同构的必要条件
A. 结点数目相等
B. 边数相等
C. 度数相同的结点数目相同
D. 两个图都是平面图 6.在有n 个结点的连通图中,其边数(B )
A. 最多有n-1条
B. 至少有n-1条
C. 最多有n 条
D. 至少有n 条 7.下列图为树的是(C )。

A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a G B 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a G C 、
>><><><=<},,,,,{},,,,{3a c d a b a d c b a G
D 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 二、填充题:
1、n 阶无向完全图K n 的边数是(
2
)
1(-n n ),每个结点的度数是(n-1)。

2、n 个结点的有向完全图边数是(n(n-1)),每个结点的度数是(2n-2)。

3、设有向图G = < V ,E >,},,,{4321v v v v V =的邻接矩阵⎪⎪⎪⎪⎪⎭


⎛=00
010*******
1010A , 则1v 的入度)(deg 1v -
= 3 ,4v 的出度)(deg 4v +
=1 ,从2v 到4v 的长度为2的路有 1 条。

4、一棵无向树的顶点数为n ,则其边数为n-1 ,其结点度数之和是2n-2。

5、一个无向图有生成树的充分必要条件是(它是连通图)。

6、设T=〈V,E 〉是一棵树,若|V|>1,则T 中至少存在(2)片树叶。

7、任何连通无向图G 至少有(1)棵生成树,当且仅当G 是(树),G 的生成树只有一棵。

8、设T 是一棵树,则T 是一个连通且(无简单回路)的图。

9、设无向图G 有18条边且每个顶点的度数都是3,则图G 有(12)个顶点。

10、任一有向图中,度数为奇数的结点有(偶数)个。

11、一棵树有2个2度顶点,1 个3度顶点,3个4度顶点,则其1度顶点为(9)。

三、问答题
1、设无向图G=<V,E>,|E|=12。

已知有6个3度顶点,其他顶点的度数均小于3。

问G 中至少有多少个顶点?
解:设G 中度数小于3的顶点有k 个,由欧拉定理24=
∑∈V
v v )deg(知,度数小于3 的顶点度
数之和为6。

故当其余的顶点度数都为2时,G 的顶点最少。

即G 中至少有9个顶点。

2、判断下列图是否为欧拉图?说明理由,存在是否哈密尔顿回路。

解:一个无向图D 是欧拉图⇔ D 是连通的,且所有顶点的度等于偶数。

所以是欧拉图,但无哈密尔顿回路。

∙ ∙ ∙
∙ ∙
四、计算题
1、有向图,D V E =<>,其中结点集1234{,,,}V v v v v =,
有向边集121314214243{,,,,,,,,,,,}E v v v v v v v v v v v v =<><><><><><> (1)求D 的邻接矩阵A ;(2)求D 的可达性矩阵P ; (3)说明1v 到3v 长度为4的路径有几条? (4)说明1v 到其它各顶点长度为3的路径有几条?
解:(1)01111
00000000
11
0A ⎡⎤⎢⎥⎢
⎥=⎢⎥⎢⎥⎣⎦
(2)23443553333200002331R A A A A ⎡⎤⎢⎥⎢
⎥=+++=⎢⎥⎢⎥⎣⎦,1111111100001111P ⎡⎤⎢⎥
⎢⎥=⎢⎥⎢⎥⎣⎦
(3)1v 到3v 长度为4的路径有2条,(4)1v 到其它各顶点长度为3的路径有3条.
2、设有如下有向图G=<V,E>, (1)求G 的邻接矩阵;(2)G 中v 1到v 4的长度为4 的通路有多少条?(3)G 中经过v 1的长度为3 的回路有多少条?(4)G 中长度不超过4 的通路有多少条?其中有多少条通路?
v 3
解:(1)A=⎥⎥⎥⎥⎦⎤⎢⎢⎢
⎢⎣⎡01
00
10000101
0111,A 2
=⎥⎥⎥⎥⎦⎤⎢⎢⎢
⎢⎣⎡10
00
010********
2
,A 3
=⎥⎥⎥⎥⎦⎤⎢⎢⎢
⎢⎣⎡01
00
10001312242
3
,A 4
=⎥⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡1000
010********
5
(2)G 中v 1到v 4的长度为4 的通路有4条; (3)G 中经过v 1的长度为3 的回路有3条;
(4)G 中长度不超过4 的通路有72条,其中有19条回路。

五、证明题
1、设图G=<V,E>,|V|=n,|E|=m。

k度顶点有n k个,且每个顶点或是k度顶点或是k+1度顶点。

证明:n k= (k+1)n -2m。

证明:由已知可知,G中k+1度顶点为n-n k个。

再由欧拉定理可知
2m=∑
∈V
v
v)
deg(=kn k+(k+1)(n-n k)=(k+1)n-n k,故n k=(k+1)n -2m。

2、设G=<V,E>是n个顶点的无向图(n>2),若对任意u,v∈V,有d(u)+d(v)> n-2,则G是连通图。

证明:用反证法证明。

若G 不连通,则它可分成两个独立的子图G
1和G
2
,其中
|V(G
1)|+|V(G
2
)|=n ,且G
1
中的任一个顶点至多只和G
1
中的顶点邻接,而
G 2中的任一顶点至多只和G
2
中的顶点邻接。

任取u∈V(G
1
),v∈V(G2),则
d(u)≤|V(G1)|-1, d(v)≤|V(G2)|-1。

故d(u)+d(v) ≤(|V(G1)|-1)+(|V(G2)|-1)≤|V(G1)|+|V(G2)|-2 =n-2,这与已知矛盾。

故G是连通图。

相关文档
最新文档