上海东海大桥工程总体设计
东海大桥III标工程箱梁及墩身施工方案

一、概述经设计图纸变更,东海大桥Ⅲ标共有70米预制箱梁308片,墩柱共156座。
根据业主预制场地协调会议精神,60米、70米箱梁自预制场储运到栈桥浮吊起吊为止,均采用滑移方式,并共用一个出海栈桥。
墩身施工采用预制与现浇相结合的施工方法,预制场地设于沈家湾预制基地二区内,并设置专用墩身出运码头。
墩身现浇采用水上砼工厂施工。
经反复研讨、比较,特制定如下施工方案。
二、场地总体布置1、场地规划原则东海大桥Ⅲ标由于预制构件类型多、数量大、构件重量大,且与II标共用沈家湾预制基地场地及码头。
为了提高预制构件的质量及设备利用率,有利于施工管理,确保工程施工质量,根据业主场地协调会议精神,在规划沈家湾预制场地时遵循以下原则:(1)组织专业化生产。
将整个预制场分为若干个预制区域,分别预制不同类型的构件;(2)预制场地内Ⅱ、Ⅲ标使用面积每家一半,运梁纵移滑道布置在中央;(3)60m、70m箱梁合用一个出海码头栈桥,以降低工程成本;(4)各预制区域的混凝土供应集中拌和,采用混凝土输送泵和布料机输送入模;(5)重量大的构件布置于硬地基场地预制,重量较轻构件及辅助设施布置于回填地基上,以减小地基加固成本。
2、施工场地总体布置沈家湾预制基地,经开山炸石已按计划要求基本形成三块平地,分一、二、三区。
一区长596m,宽282m,面积约16.8万平方米,其中开山形成的硬地基约9.6万平方米,需要进行地基处理的面积约7.2万平方米。
二区是经开山土石方回填形成,面积约10万平方米。
三区占地面积约2.9万平方米,经开山和回填形成。
60米、70米箱梁预制布置于一区,70米箱梁预制场地位于西侧,60米箱梁位于东侧,占地面积分别为8.4万平方米。
两预制场地中轴线上布置箱梁纵移滑道,海边纵移滑道端头设置箱梁出海栈桥码头一座。
墩柱预制场地布置于沈家湾预制基地二区回填区内, Ⅱ标位于场地西侧, Ⅲ标位于场地东侧,场地分界线即预制墩柱构件出运中线与回填区护岸线垂直,护岸海边建造墩柱节段出海码头一座。
东海大桥工程概述PPT课件

主要设计参数
桥面宽度
双向六车道,宽度 25米
桥墩数量
海上桥墩约100个, 陆上桥墩约20个
桥梁长度
约50公里,其中海 上段约32公里
设计时速
最高时速100公里/ 小时
设计荷载
城A级荷载,可承受 50米长、360吨重 的跨海大桥
创新与特色设计
01
02
03
04
新型材料
采用高强度钢和新型防腐涂层 ,提高桥梁耐久性
东海大桥工程概述 ppt课件
目录
• 工程背景 • 工程设计 • 工程施工 • 工程效益 • 未来展望
01
工程背景
东海大桥的地理位置
01
东海大桥位于中国上海市浦东新 区,连接上海南汇区和东海上的 洋山深水港区。
02
该桥跨越东海,是连接上海与浙 江的重要交通枢纽,也是中国第 一座真正意义上的跨海大桥。
施工机械
根据施工需要,选择合适 的施工机械和设备,如大 型起重机、混凝土搅拌站 等。
施工过程中的困难与挑战
海洋环境影响
施工过程中需应对海洋环 境的影响,如风浪、潮汐 等,确保施工安全和质量。
地质条件复杂
工程所在地的地质条件复 杂,需要采取相应的措施 应对。
施工组织与协调
工程涉及多个施工单位和 部门,需要加强组织与协 调,确保施工顺利进行。
施工质量控制与安全管理
质量管理体系
建立完善的质量管理体系,确保 施工质量符合设计要求和相关标
准。
质量控制措施
采取一系列质量控制措施,如材料 检验、施工过程监控等,确保施工 质量。
安全生产管理
建立安全生产管理体系,加强施工 现场安全管理,预防和减少安全事 故的发生。
卢浦大桥和东海大桥

(4)承台、墩柱与主梁
高性能混凝土+钢筋保护层。浪溅区墩柱外表面采用防水涂料。
(5)斜拉索:
拉索钢丝为镀锌钢丝,单根拉索外裹热挤高密度聚乙烯护套,采取密封措施,防止积水。
(6)其它
支座采用三重防腐方案:“耐候钢(有09CuPCrNiA、15CrCuMn、ZG20Mn三种)+金属喷涂+重防腐涂装”的防护体系。
应用于卢浦大桥的计算结果:由本研究按第二类稳定计算的最小安全系数为2.3。
此外,考虑到存在制造误差和焊接残余应力,因此必须用局部稳定试验确认其安全度,箱拱缩尺模型(1:4)试验表明:大桥是安全可靠的,能满足正常运营的的要求。
2、抗风研究。
(1)提出卢浦大桥桥位地形模型的风环境风洞试验和卢浦大桥桥位风速采用多个气象站风速统计方法。
六、结语
本设计弥补了现行规范没有涵盖跨海桥梁设计的内容,指导了外海桥梁的设计与施工,有利于确保在外海恶劣环境条件下建设类似工程的安全性,减小施工、运营风险和经济损失。
本工程提高了我国超大跨海桥梁的建设水平。对我国正在规划建设的一大批超大跨海桥梁工程(如:杭州湾跨海大桥、青岛湾跨海大桥、港珠澳跨海大桥等)建设起到了示范与推动作用。
2、用斜拉桥施工方法,安装主拱。
3、引进悬索桥的猫道法安装超长、超重水平索的安装与张拉,16根水平索预制平行钢丝索,长761m,重110t,索径为18cm。
4、结合卢浦大桥结构特点,施工单位负责研制设计拥有自主知识产权的架桥设备。
(1)主拱吊机。
(2)拱上桥面吊机。
5、成功实现钢结构现场焊接质量控制。
上海卢浦大桥与东海大桥
林元培
(上海市政工程设计研究院)
二十一世纪初,上海建成了两座国际水平大桥:上海卢浦大桥及东海大桥。
上海东海大桥总体设计

6、总体设计 (1)交通量预测 由港区的集装箱陆路集疏运量的预测情况分析,至 2020 年洋山深水港区陆路集装箱集
图3
60m、70m 跨箱梁基本参数
表1
跨径
60m
70m
项目
梁高(m)
3.5
4.0
断面典型尺寸(cm) D 顶=25
D 顶=25
D 底=25~40 δ腹=40~75
D 底=25~40 δ腹=40~70
一孔吊重(t)
1600
2000
施工简介:
在海岛上开辟的预制场台座上简支预制 60m、70m 整孔箱梁,然后通过横移、纵移至
工设备抗风浪能力,全年平均有效施工作业天数在 180 天以下。 (4)建设工期很紧 东海大桥计划在 2005 年底与小洋山港区一期同时建成,工程建设期二年半。
5、总体设计思路 (1)在借鉴国内外特大型桥梁工程,特别是国外跨海大桥的建桥实践及成功经验的基
础上,结合本工程特点,通过认真分析和深入研究,全面贯彻“适用、先进、经济、安全、 耐用、美观”和可实施性的技术方针,充分吸取国内外桥梁设计和建设的新理念、新材料、 新工艺和先进经验。
本区位于北亚热带南缘,东亚季风盛行区,受季风影响冬冷夏热,四季分明,降水充 沛,气候变化复杂。
(1) 气温:多年平均气温 15.8。C;历年最高气温 37.5。C;历年最低气温-7.9。C。 (2) 降水:降水日数 134 天/年。 (3) 风况:实测最大风速 35.0m/s(风向 NNE);风力≥7 级大风日数 65.8 天/年; 风力≥8 级大风日数 30 天/年;风力≥9 级大风日数约为 3 天/年。 (4) 雾况:平均有雾日 30~50 天/年;最多 60 天/年;最少 20 天/年。 3.3、水文特征: 本海区的潮汐主要受东海前进潮波控制,潮汐类型属非正规半日浅海潮型。潮流运动基 本形态为每天二涨二落,具有明显的往复流特性。NNE 向(包含 N、NE 向)水域开敞,为该 海区的强浪向。 3.4、工程地质 海上段基岩埋藏较深,基岩面标高由北向南逐渐抬高,标高为-230 米~-160.0 米,第 四系堆积层厚度为 160~220 米。颗珠山岛~小洋山段区域受周围蒋公柱岛、金鸡山、镬脐 岛等影响,水动力条件复杂,残留厚度受基底起伏控制,在口门两侧和颗珠山岙湾残留厚度 相对较薄,中部残留厚度较大。
东海大桥工程箱梁及墩身施工方案

一、概述 (1)二、场地总体布置 (2)1、场地规划原则 (2)2、施工场地总体布置 (3)3、箱梁预制场地及出海码头 (4)4、墩身节段预制场地 (6)5、墩身节段出运码头及材料码头、砂石料码头 (6)6、砼工厂布置 (7)7、水、电路及施工道路布置 (8)三、箱梁预制及运输方案 (9)1、箱梁预制 (9)2、箱梁预制场内运输 (11)3、箱梁架设 (14)四、墩身施工 (15)1、墩身预制施工 (15)2、预制墩身节段安装施工 (18)3、墩身现浇施工 (19)五、主要施工机械计划表 (21)六、施工进度计划表 (22)七、附图 (23)一、概述经设计图纸变更,东海大桥Ⅲ标共有70米预制箱梁308片,墩柱共156座。
根据业主预制场地协调会议精神,60米、70米箱梁自预制场储运到栈桥浮吊起吊为止,均采用滑移方式,并共用一个出海栈桥。
墩身施工采用预制与现浇相结合的施工方法,预制场地设于沈家湾预制基地二区内,并设置专用墩身出运码头。
墩身现浇采用水上砼工厂施工。
经反复研讨、比较,特制定如下施工方案。
二、场地总体布置1、场地规划原则东海大桥Ⅲ标由于预制构件类型多、数量大、构件重量大,且与II标共用沈家湾预制基地场地及码头。
为了提高预制构件的质量及设备利用率,有利于施工管理,确保工程施工质量,根据业主场地协调会议精神,在规划沈家湾预制场地时遵循以下原则:(1)组织专业化生产。
将整个预制场分为若干个预制区域,分别预制不同类型的构件;(2)预制场地内Ⅱ、Ⅲ标使用面积每家一半,运梁纵移滑道布置在中央;(3)60m、70m箱梁合用一个出海码头栈桥,以降低工程成本;(4)各预制区域的混凝土供应集中拌和,采用混凝土输送泵和布料机输送入模;(5)重量大的构件布置于硬地基场地预制,重量较轻构件及辅助设施布置于回填地基上,以减小地基加固成本。
2、施工场地总体布置沈家湾预制基地,经开山炸石已按计划要求基本形成三块平地,分一、二、三区。
东海大桥陆上段施工方案

四主要工程项目的施工方案、施工方法(一)东海大桥陆上段施工方案东海大桥(陆上段)工程范围K0-6.500—K2+257.500,桥面标高在12m-17m 之间,分为上下行二座独立桥梁,全部桥梁结构总长2264m。
布置为2x28+(5x30)x5+4x28+4x29+4x30+(5x30)x3+(6x30)x2+(5x30)x2m。
1. 便道施工陆上段桥梁两侧修建便道,便道起始旧大堤,顶面宽8m,左侧便道至新大堤,右侧便道跨越新大堤与海上施工便桥连接。
每墩侧设墩侧横向便道连接两侧便道,便道顶面宽6m。
便道基层为2层吹填沙编织袋,就地取沙。
上设一层土工布,面层采用40cm砂砾料。
本工程段内砂砾料20326m3,吹沙40653m3,吹沙袋21760个,土工布50816m2。
2. 承台施工方案基础采用Φ600PHC管桩(管桩施工不在本投标范围内)。
本工程段承台246个(含P-1--P0墩4个承台),其中标准孔承台尺寸7.2X4.8m92个,制动墩承台尺寸为7.2X6.0m31个,变宽段承台 6.2X4.8m62个,6.2X6.0m11个,5.2X3.7m6个,5.2X4.8m6个,5.2X6.0m3个,4.8X3.7m27个,4.8X4.2m6个,11.2X4.8m2个。
承台顶标高均为3.5m,底标高1.5m,承台厚2m。
考虑首联浇筑箱梁的工期要求,共设41套钢围堰及承台模板,模板采用组合钢模板。
钢围堰采用钢桩挡板围堰。
承台施工从2002年11月开始,2004年1月结束。
单个承台平均施工周期为30天。
承台采用C25混凝土现浇施工,混凝土集中拌和、混凝土罐车运输、混凝土泵车或吊车配吊斗浇注。
围堰内边长按基础边长加2m。
基坑开挖土方16121m3。
施工步骤:1)基坑放样,定出墩中心点及纵横轴线,确定开挖轮廓线。
2)为挡土、止水和防流沙在基坑周边设置钢围堰。
钢围堰由宽边H型钢HK200A和加劲钢板组成。
钢围堰施工采用吊机配振动锤打入宽边H型钢HK200A至承台底3米处,再插打加劲钢板3米至承台底约50cm。
东海大桥施工组织设计

第一章总则1.1工程等级、编制依据及说明本工程涉及大口径钻孔灌注桩、主墩承台与塔座大体积砼浇注、主墩索塔施工、迭合梁施工与吊装及边辅墩施工。
本施工组织设计根据有关设计图纸、施工规范、公司贯标文件编制。
因到目前为止仅到了钻孔灌注桩和承台的设计图纸,故本组织设计仅为总体施工组织设计,待以后相应图纸到位后,再编制主墩承台与塔座大体积砼浇注、主墩索塔施工、迭合梁施工与吊装及边辅墩施工等分项工程施工方案。
施工方案编制的依据和规范:1、设计图纸和“洋山深水港(一期工程)东海大桥工程(Ⅴ标)”招标文件及补遗文件(文字及图纸)。
2、我集团3年来对深水港工程的课题研究资料。
3、我集团在相应海域长期施工积累的海况资料。
4、我集团在类似桥梁施工中积累的经验。
6、与我集团合作的曾参与世界上大型跨海大桥施工企业提供的施工经验。
7、设计和施工规范。
JTJ 071-98 《公路工程质量检验评定标准》JTJ041-2000 《公路桥涵施工技术规范》JTJ058-2000 《公路工程集料试验规程》JTJ053-94 《公路工程水泥混凝土试验规程》JTJ054-94 《公路工程石料试验规程》JTJ248-96 《港口工程灌注桩设计与施工规程》JTJ268-96 《水运工程混凝土施工规范》JGJ55-2000 《普通混凝土配合比设计规程》JGJ107-96 《钢筋机械连接通用技术规程》GB50205-2001 《钢结构工程施工质量验收规范》8、指挥部有关技术要求。
1.2分项工程施工方案:a、主墩钢平台措施桩及钢平台搭设施工方案b、钻孔灌注桩施工方案c、索塔承台(包括钢套箱)施工方案d、下塔柱施工方案e、下横梁施工方案f、中塔柱施工方案g、上塔柱施工方案h、迭合梁制作施工方案i、迭合梁吊装施工方案j、辅助墩施工方案k、桥面系施工方案第二章工程概况2.1工程内容洋山深水港区(一期工程)东海大桥工程,北起于南汇嘴,与待建的沪芦高速公路相连,南经崎岖列岛西北侧的小乌龟山、大乌龟山、颗珠山到达大桥终点小城子山进入洋山港区.。
东海大桥施工组织设计文字

表1 施工组织设计文字说明一工程概况(一)工程简介本工程为洋山深水港(一期工程)东海大桥工程Ⅰ标,起讫桩号为K0-006.5~K3+552,全长3558.6米,其中:K0-006.5~K2+257.5处于陆地,其结构形式为:基础采用φ60cmPHC管桩,下部结构采用矩形承台,现浇板式墩身,墩高7~12米。
上部结构采用分离式等高度预应力砼连续箱梁,梁高1.6米,标准桥宽31.5米。
单幅箱梁顶宽为15.05米,底宽8.25米。
跨径组合为:2×28+【5×30】×5+4×28+4×29+4×30+【5×30】×3+【6×30】×2+【5×30】×2米。
K2+257.5~K3+552为跨海段,K2+257.5~K2+952为浅海区,大桥基础设计为φ1.6米钻孔桩,铃形承台,砼矩形空心墩,墩高约10米,K2+952~K3+552为深海区,基础设计为φ120cmPHC管桩,铃形承台,砼矩形空心墩,墩高约10米,大桥上部结构为分离式等高度预应力砼连续箱梁,梁高3米,桥宽31.5米,单幅箱梁顶宽为15.05米,底宽7.25米,为单室结构,跨径组合为44.5+25×50(共分为三联)米,本标段工程范围包括:桩号K0-006.5~K3+552段承台、墩柱、上部结构,桩号K2+257.5~K2+952段φ1.6米钻孔灌注桩。
(二)桥梁设计标准1.设计荷载:汽-超20级,挂车-120;2.设计行车速度:V=80Km/h;3.道路等级标准:按六车道高速公路标准控制;4.设计基准期:100年;5.地震烈度:7级;6.风:按100年一遇风速控制。
(三)主要工程数量1.φ1.6米钻孔桩:120根;2.砼总方量: 148793立方米;3.钢筋: 18993吨;4.预应力钢绞线: 3674吨;5.钢材: 2606吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
射渖道析与陌浃第4期2004年7月
图1东海大桥走向
(3)风况:实测最大风速35.0m/s(风向东海大桥计划在2005年底与小洋山港区一NNE);风力≥7级大风日数65.8d/y;风力≥8级期同时建成,工程建设期二年半。
大风日数30d/y;风力≥9级大风日数约为3d/y。
(r1)雾况:平均有雾日30~50d/y;最多60d/a;最少20d/a。
3.3水文特征
该海区的潮汐主要受东海前进潮波控制,潮汐类型属非正规半日浅海潮型。
潮流运动基本形态为每天二涨二落,具有明显的往复流特性。
NNE向(包含N、NE向)水域开敞,为该海区的强浪向。
3.4工程地质
海上段基岩埋藏较深,基岩面标高由北向南逐渐抬高,标高为一230m~一160.0m,第四系堆积层厚度为160~220m。
颗珠山岛~小洋山段区域受周围蒋公柱岛、金鸡山、镬脐岛等影响,水动力条件复杂,残留厚度受基底起伏控制,在口门两侧和颗珠山岙湾残留厚度相对较薄,中部残留厚度较大。
4主要特点
4.1工程规模浩大
东海大桥全长3lkm,其中陆上桥梁2.3km,海上桥梁26.9km,海堤、开山路1.8km。
4.2自然条件较差
海域水面开阔。
百年一遇H1%波浪高度达6m,最大流速2m/s,设计基本风速为42m/s。
寒潮、台风影响频繁。
海洋强烈的腐蚀环境对结构耐久性影响很大。
4.3施工条件复杂
桥址位于外海,大风、波浪、潮流、寒潮等恶劣自然条件对施工的影响很大,按目前施工设备抗风流能力,全年平均有效施工工作业天数在180d以下。
4.4建设工期很紧
~2—5总体设计思路
(1)在借鉴国内外特大型桥梁工程,特别是国外跨海大桥的建桥实践及成功经验的基础上,结合该工程特点,通过认真分析和深入研究,全面贯彻“适用、先进、经济、安全耐用、美观”和可实施性的技术方针,充分吸取国内外桥梁设计和建设的新理念、新材料、新工艺和先进经验。
(2)非通航孑L桥规模很大,海上作业受风浪、潮汐、材料运输供应、施工作业场地等因素影响较大,故结构设计方案与施工方案要紧密结合,达到安全、快速、经济的目标。
若采用现场浇筑混凝土方法施工,将需要很多的施工船舶和作业平台及混凝土的供应,这样现场的施工组织非常困难,且施工工期、质量、安全难以保证。
因此非通航孔桥桥墩、主梁等结构采用大型构件工厂化预制,现场快速安装的施工方案。
桩基以钢管桩为主。
(3)非通航孔桥结构型式根据不同区段的条件分别确定,在同一区段结构型式统一,有利于模数化、标准化、工厂化制作。
(4)通航孔桥的方案设计应满足通航要求,并选用结构安全可靠、经济、美观的桥型。
通航孔桥的工程量及规模比非通航孑L桥总量小得多,也需充分考虑海上施工的特点。
(5)充分重视景观设计,力求使大桥整体和谐与周围环境协调、整体感强、造型美观。
同时充分重视对水环境和自然景观的保护,力求将其影响降低到最低限度。
(6)充分考虑结构防腐,提高结构耐久性,为大桥安全使用100年提供良好的基础。
(7)做好大桥其它关键技术的专题研究(如:桥梁抗风、抗震,防船撞系统,综合管线过桥,大桥
环境与健康监测,大桥管理系统、监控系统等),为
上海东海大桥工程总体设计
作者:林元培, 章曾焕, 卢永成, 丁建康, 张剑英
作者单位:上海市政工程设计研究院,上海,200092
刊名:
城市道桥与防洪
英文刊名:URBAN ROADS BRIDGES & FLOOD CONTROL
年,卷(期):2004(4)
被引用次数:1次
1.王新洲.邱卫宁.廖远琴.邹进贵.花向红东海大桥GPS天线阵列变形监测方案设计[期刊论文]-测绘工程 2006(4)本文链接:/Periodical_csdqyfh200404001.aspx。