外源基因的表达

合集下载

外源基因原核系统克隆表达的基本流程

外源基因原核系统克隆表达的基本流程

外源基因原核系统克隆表达的基本流程
外源基因原核系统克隆表达的基本流程如下:
1. 设计引物:根据外源基因的序列,设计引物,其中至少包括一个启动子和一个终止子。

2. 基因克隆:使用PCR或其他克隆技术,将外源基因与载体DNA连接起来,形成重组质粒。

3. 转化:将重组质粒转化到适当的宿主细胞中,如大肠杆菌。

4. 筛选:通过选择性培养基或其他筛选方法,筛选出带有重组质粒的转化菌落。

5. 培养:将筛选出的转化菌落进行扩增培养,在适当的培养条件下培养细菌。

6. 表达:在培养过程中,外源基因会被宿主细胞转录和翻译,产生目标蛋白质。

7. 提取:收集细菌培养物,利用细胞破裂或其他细胞提取方法,提取目标蛋白质。

8. 纯化:通过各种纯化技术,如柱层析、电泳等,纯化目标蛋白质。

9. 鉴定:利用各种方法,如SDS-PAGE、Western blot等,对
目标蛋白质进行鉴定和定量分析。

10. 应用:利用纯化的目标蛋白质进行后续的研究或应用,如
功能鉴定、结构分析、抗原制备等。

这是一个基本的流程,根据不同的实验目的和具体情况,可能还会涉及到一些其他的步骤和操作。

外源基因的导入和表达研究

外源基因的导入和表达研究

外源基因的导入和表达研究随着生物技术的不断进步,人类利用基因工程技术已经可以人为地导入外源基因(即来自不同物种的基因)到特定的生物体中,并在其内部进行表达。

外源基因的导入和表达研究不仅在医学领域有重要的应用价值,而且可以用于植物和动物的育种、菌类的生产等多个领域,具有非常广泛的意义。

一、外源基因的导入方式外源基因的导入通常有三种方式:基因转染、基因克隆和基因突变。

其中基因转染是最常见的一种方法,其通过化学手段或物理手段将外源质粒导入到细胞内,使细胞内的染色体带有外源DNA序列,让生物体在遗传上发生变化。

基因克隆指的是利用重组DNA技术将外源基因插入到载体中,形成重组质粒,再将其导入到宿主细胞。

而基因突变指的是利用基因工程技术将目标基因的部分序列或全部序列进行基因剪切或点突变,从而在细胞内引入特定的改变。

二、外源基因的表达方式一旦外源基因成功地导入到宿主细胞后,就需要利用相应的机制使其被正确表达。

一般而言,外源基因的表达方式主要有两种:转录和翻译。

转录是指将某个基因的DNA序列转换成相应的mRNA序列,为后续的翻译打下基础。

而翻译则是将翻译RNA (tRNA)和核糖体结合,将mRNA的密码子转化成氨基酸序列,最终形成蛋白质。

在这个过程中,外源基因所编码的蛋白质需要能够正确地折叠和组装。

三、外源基因的应用外源基因的应用非常广泛。

在医学领域,外源基因的导入和表达技术已经成为了基因治疗的基础。

通过将正常的基因序列导入到受损或异常的细胞中,可以纠正基因缺陷,并且达到治疗某些遗传病的目的。

同时,外源基因导入技术也可以用于生产重组蛋白,如人类重组胰岛素、重组干扰素、重组免疫球蛋白等,这些蛋白对于多种疾病的治疗都有重要的作用。

在植物和动物育种领域,利用外源基因导入和表达技术也可以获得一些长期以来难以获得的农作物,如对抗虫害、抗病性更强的水稻、高营养价值的谷物等。

此外,外源基因导入技术还可以用于菌类的生产和制药领域。

外源基因的表达和传递技术及其在基因治疗中的应用

外源基因的表达和传递技术及其在基因治疗中的应用

外源基因的表达和传递技术及其在基因治疗中的应用近年来,随着生物技术的迅猛发展,外源基因表达和传递技术在基因治疗中的应用越来越受到关注。

这项技术可以将基因通过载体进入人体细胞内,并表达出来,从而治疗某些疾病。

本文将介绍外源基因表达和传递技术的种类及其在基因治疗中的应用。

外源基因表达技术外源基因表达技术是将外源DNA转化为蛋白质的过程。

它常用于研究蛋白质功能,并在基因治疗中用于表达治疗蛋白。

下面我们将介绍外源基因表达技术中常用的几种方法。

1.原核细胞表达系统这种系统是将外源基因导入到大肠杆菌中,通过大肠杆菌的机制表达外源基因。

这种方法通常用于表达小分子蛋白,或需要大量表达蛋白的情况,但其缺点是表达蛋白没有折叠后修饰,可能不太适用于一些需要精确功能的蛋白。

2.哺乳动物细胞表达系统这种系统则是将外源基因导入到哺乳动物细胞中,通过哺乳动物细胞的机制表达外源基因。

与原核细胞表达系统不同,哺乳动物细胞表达的外源蛋白经过了正确的折叠、修饰,所以其适用于需要正确功能的蛋白。

3.植物表达系统这种系统使用植物作为表达外源基因的载体,可以通过转化植物某些细胞而来达到目的。

这种技术的优点是生产成本低、表达量大、易于提取,但也有一些缺点,例如大规模生产时会遭受微生物攻击以及可能导致对其他植物产生有害环境影响等。

4.细菌表达系统这种系统同原核细胞表达系统类似,将外源基因导入到细菌中表达,适用于表达小分子蛋白、需要大量表达蛋白的情况。

外源基因传递技术外源基因传递技术通常指的是通过载体将基因导入到细胞中,这项技术的应用广泛,例如基因治疗和基因工程等。

下面我们将介绍几种外源基因传递技术。

1.质粒传递技术这种技术是将基因通过质粒载体导入到细胞中。

质粒是一种环形DNA,可以自主复制,并带有细胞可以利用的selection marker。

这种技术适用于一些比较简单的操作,例如在细胞中表达蛋白。

2.病毒转染这种技术是利用病毒向细胞传递外源DNA,使其表达外源蛋白。

外源基因的导入和表达机制

外源基因的导入和表达机制

外源基因的导入和表达机制随着生物技术的飞速发展,外源基因的导入和表达成为了基因工程领域中的重要课题。

其涉及到基因治疗、转基因作物、药物生产等许多领域。

在导入和表达外源基因的过程中,要考虑到基因的适应性、表达的稳定性、特异性以及对宿主生物的影响等多个方面。

本文将探讨外源基因的导入和表达机制,包括基本原理、工具和技术以及存在的问题和挑战。

基本原理导入和表达外源基因的基本原理是将外源DNA序列引入到宿主细胞中,使其被转录和翻译成蛋白质。

具体而言,一般有两种方式:直接转染和向宿主基因组中嵌入外源基因,后者也称为基因整合。

直接转染是将外源DNA序列直接引入到细胞外,在细胞膜相关的受体介导下,外源DNA序列被进入到细胞质中。

直接转染的DNA所携带的信息将指导它在宿主细胞内的表达。

基因整合是将外源DNA序列整合到宿主细胞染色体上,使其成为宿主细胞的一部分。

基本原理是将外源DNA构建为一个适合于整合的载体,然后具体通过发生基因重组或嵌入基因导入宿主细胞的染色体中。

被整合的外源脱氧核糖核酸(DNA)序列将被遵循宿主细胞一样转录并翻译成蛋白质。

工具和技术导入和表达外源基因要解决的核心问题就是如何将外源DNA 送入宿主细胞。

为此,研究者现有许多的工具和技术可供选择。

电穿孔是将宿主细胞暴露在高电场的冲击下,使细胞膜通透性增强,外源DNA得以进入的技术。

这种技术既可以使用简单的电刺激来进行,也可以通过利用特殊设备专门进行。

这种技术在大多数细胞类型中都是有效的。

群粒化法是利用氟化物和离子溶液百炼生化学反应,在其中产生群粒化团块,通过进一步化学反应打开细胞膜,使外源DNA进入细胞内部。

这种技术适用于一些难以被电穿孔的细胞类型。

病毒载体是将外源DNA序列植入病毒中,通过感染宿主细胞扩增表达,使表达的目标基因在细胞内获得较高的表达水平。

存在的问题和挑战虽然外源基因的导入和表达在许多方面得到了极大的改进,但仍然存在着一些问题和挑战。

外源基因的表达

外源基因的表达

•Ⅱ型启动子
Ⅱ型启动子所属基因绝大多数编码蛋白质。
转录起始位点
TATA框(Hogness框):富含AT的保守序列区,它 启动子 与DNA双链的解链有关,并决定转录起始点的选择。 基本区 其中心点位于转录起始点上游-20~-30bp的位置。 CAAT框:位于转录起始位点上游-75bp处,与RNA 聚合酶的结合有关。 GC框:位于转录起始位点上游-100~-300bp处, 与转录因子的结合有关。
s factor:
6.2.1.4 启动子的分离
随机克隆法 聚合酶保护法 过滤膜结合法 PCR扩增法
6.2.2 增强子
增强子(enhancer):是能够增强启动子转录活性的DNA 顺式作用序列,又称强化子。 增强子的特性:
双向性。
重复序列。 增强子行使功能与所处的位置无关。
特异性。
增强子不仅与同源基因相连时有调控功能,与异 源基因相连时也有功能。
序列特异性
*启动子的特征 方向性 位置特性 种属特异性
6.2.1.1 原核生物的启动子
•转录起始位点:大多数细菌启动子转录起始区的序列为 CAT,转录从第二个碱基开始,该碱基为嘌呤碱基 (A/G)。 •Pribnow框: -10bp处的TATA区,又称-10序列区。 •Sextama框: -35bp处的TTGACA区,又称-35区。 •间隔区:内部无明显的保守性,其序列的碱基组成对启 动子的功能不十分重要,但其长度却是影响启动子功能的 重要因素。
6.1.3 外源基因mRNA的有效翻译
外源基因mRNA有效翻译必须考虑的基本原则:
AUG(ATG)是首选的起始密码子。
SD序列为与核糖体16S rRNA互补结合的位点,该序 列至少含有AGGAGG序列中的4个碱基。

外源基因的表达

外源基因的表达
*
小节
外源基因的转录系统
蛋白质的翻译系统
基因表达载体
复制子 选择标记
*
4.3.1 重组异源蛋白在大肠杆菌中不稳定的原因
4.3 宿主菌
1
大肠杆菌缺乏复杂的翻译后加工和蛋白质折叠系统
2
大肠杆菌不具备类似真核细胞的亚细胞结构和表达产物稳定因子。
3
大量的异源重组蛋白在大肠杆菌细胞中形成高浓度的微环境,导致蛋白质分子之间的作用增强。
*
终止子
2.4 衰减子 转录终止的位置 分为本征终止子和依赖终止信号的终止子两类。 调节转录的起始和终止. Trp操纵子
1
2
第三节 外源基因表达系统
3.1 定义 外源基因表达系统:泛指目的基因与表达载体重组后,导入合适的受体细胞,并能在其中有效表达,产生目的基因产物(目的蛋白)。
*
3.2 种类
*
起始密码子是翻译的起始位点,通常为AUG(ATG),编码甲硫氨酸(MET),是首选的起始密码子。 GUG、UUG:有极少数生物利用。
翻译起始密码子
③翻译终止密码子
翻译终止密码子:能使核糖体从mRNA模板上脱落下来,终止蛋白质的翻译过程。 在大肠杆菌中,新合成的多肽链的释放由RF1和RF2两个释放因子所调控。 RF1识别终止密码UAA和UAG, RF2识别终止密码UAA和UGA 由于UAA同时为两个释放因子所识别,一般被选作翻译的终止密码。 通常将几个终止密码串连在一起,以保证翻译的有效终止。
启动子和终止子:因宿主的不同而有差别,往往在不同的宿主中表达的效率也不一样,特别是原核生物和真核生物宿主间完全不同,相互间不能通用。
1
2
*
①启动子
外源目的基因转录的起始是基因表达的关键步骤。

外源基因的原核表达

外源基因的原核表达
大肠杆菌表达系统是基因表达技术 中发展最早,目前应用最为广泛的 经典表达系统。属革兰氏阴性细菌。 其特点是:
遗传背景清楚
目的基因表达水平高
培养时间短
16.07.2024
精选课件
6
大肠杆菌表达系统的主要不足
• 1、缺少真核生物的蛋白质翻译后修饰 和加工过程。
• 2、表达的蛋白质多以包含体形式存在, 需经复性才能恢复构象与活性
1、不溶性蛋白
2.可溶性蛋白
16.07.2024
精选课件
30
大肠杆菌载体的表达方式
非融合表达载体 融合表达载体 带纯化标签表达载体 分泌型表达载体 表面展示表达载体 带分子伴侣表达载体
16.07.2024
精选课件
31
1.非融合表达载体:应用此种载体表 达的蛋白质与天然状态下存在的蛋白 质在结构、功能和免疫原性等方面基 本或完全一致。目前上市的细胞因子 类产品多采用此类表达载体。 2.融合表达载体:分子量较小的蛋白 质常用此类载体进行表达。将外源蛋 白基因与受体菌自身蛋白基因重组在 一起,但不改变两个基因阅读框。
精选课件
43
常见的大肠杆菌基因表达受体菌株
菌株
基因型
启动子
BL 21
hsd S gal
T 7噬菌体
HMS174 M5279 RB791
recA1 hsdR rif lacZ trpA rpsL W3110 lacIq L8
T 7噬菌体 λ 噬菌体PL
lac,tac
16.07.2024
精选课件
44
大肠杆菌高效表达目的基因策略
• 3.宿主本身杂蛋白质多,纯化步骤复杂。
16.07.2024
精选课件
7

简述外源基因原核系统克隆表达的基本流程

简述外源基因原核系统克隆表达的基本流程

简述外源基因原核系统克隆表达的基本流程外源基因在原核系统中的克隆表达是通过一系列步骤来实现的。

以下是基本的流程:1. 选择质粒载体(Plasmid Vector):-选择一个合适的质粒,通常是圆形DNA 分子,具有自主复制的能力。

质粒通常包含选择标记(例如抗生素抗性基因)和表达调控元件(例如启动子、终止子等)。

2. 准备目标基因:-获取外源基因,这可以是从其他生物中克隆得到的DNA 片段。

这个基因应该编码所需的蛋白质或RNA。

3. 限制性内切酶切割:-使用限制性内切酶切割质粒载体和目标基因。

选择适当的酶,以确保两者切口相互兼容。

4. 连接(Ligation):-将切割后的质粒和目标基因连接在一起,形成重组质粒。

这一步通常涉及DNA 连接酶。

5. 转化(Transformation):-将重组质粒导入宿主细菌中。

这可以通过热激冲击、电穿孔或其他方法实现。

质粒包含抗生素抗性基因,使得只有带有重组质粒的细菌能够在含有抗生素的培养基中生长。

6. 筛选(Screening):-鉴定带有正确重组质粒的细菌。

这可以通过PCR、酶切鉴定等技术来进行。

7. 培养:-将筛选出的正常克隆株培养起来,以增大其数量。

8. 表达:-利用宿主细菌的生物机制,使得外源基因在细菌中表达。

这通常涉及到适当的启动子和终止子,以及其他调控元件。

9. 纯化:-如有必要,对表达的蛋白质进行纯化。

这可以通过各种方法,如层析、电泳等来实现。

整个流程的成功依赖于实验室技术的熟练操作和对基因工程原理的深刻理解。

这些步骤的每一步都需要谨慎操作,以确保最终得到具有期望表达产物的克隆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RNA聚合酶: 核心酶(α2ββ′)+σ亚基=全酶( α2ββ′ σ)
s factor:
7.2.2 增强子
增强子(enhancer):是能够增强启动子转录活 性的DNA顺式作用序列,又称强化子。
7.2.3 终止子(terminator )
本征终止子:不需要其他蛋白辅助因子便可在特 殊的RNA结构区内实现终止作用。 依赖终止信号的终止子:要依赖专一的蛋白质辅 助因子。
7.2.1.1 原核生物的启动子
•转录起始位点:大多数细菌启动子转录起始区的序 列为CAT,转录从第二个碱基开始,该碱基为嘌呤碱 基(A/G)。 •Pribnow框: -10bp处的TATA区,又称-10序列区。 •Sextama框: -35bp处的TTGACA区,又称-35区。 •间隔区:内部无明显的保守性,其序列的碱基组成 对启动子的功能不十分重要,但其长度却是影响启动 子功能的重要因素。
基因表达在原核生物与真核生物中的差别 在原核生物中,基因表达是以操纵子的形式进行 的。当操纵子的调节基因与RNA聚合酶作用时,结构 基因则开始转录成相应的mRNA,与此同时, mRNA立 即与核糖体结合转译出相应的多肽或蛋白质,转录完 毕时转译也完成。 在真核生物基因表达系统中,转录是在核内进行 的,先生成hnRNA,再加工去掉内含子,外显子相连 接,并修饰5′和3′末端后才形成mRNA。而mRNA只能 在细胞质中的核糖体上转译成多肽或蛋白质,再经过 加工、糖化、形成高级结构。
The prokaryotic promoter
5’ -35 -10 16-19 bp 3’
TTGACA T82T84G78A65C54A45
TATAAT 5-9 bp
start site
T80A95T45A60A50T96 Transcriptional
The sequence of DNA needed for RNA polymerase to bind to the template and accomplish the initiation reaction.
7.2.1.1 真核生物的启动子
Ⅰ型:rRNA基因启动子
Ⅱ型:mRNA基因启动子
Ⅲ型:tRNA基因启动子
•Ⅱ型启动子
Ⅱ型启动子所属基因绝大多数编码蛋白质。
转录起始位点
TATA框(Hogness框):富含AT的保守序列区,它与 DNA双链的解链有关,并决定转录起始点的选择。其 中心点位于转录起始点上游-20~-30bp的位置。 CAAT框:位于转录起始位点上游-75bp处,与RNA聚 合酶的结合有关。 GC框:位于转录起始位点上游-100~-300bp处, 与转录因子的结合有关。 启动子 基本区
在翻译起始区周围序列不易形成明显的二级结构。
7.1.4 表达蛋白在细胞中的稳定性
避免外源基因表达蛋白降解的对策: 构建融合蛋白表达系统
构建分泌蛋白表达系统
构建包涵体表达系统 选择蛋白水解酶基因缺陷型的受体系统
7.2 基因表达的调控元件
7.2.1 启动子
启动子(promoter):是一段能被宿主RNA聚合酶特异性 识别和结合并指导目的基因转录的DNA序列,它位于基因 的上游。RNA聚合酶正是通过与它的结合而启动基因的转 录。原核基因启动子具有-10和-35序列等结构元件,而 真核基因启动子则具有TATA盒及上游元件等特征结构。 序列特异性 启动子的特征 方向性 位置特性 种属特异性
ρ因子是一个相对分子量为2.0×105的六聚体蛋白质分 子,它能水解各种核苷三磷酸,实际上是一种NTP酶。由 于它催化NTP的水解, ρ因子能促使新生的RNA链从三元 转录复合物中解离出来,从而终止转录。
①本征终止子
两大特征 发夹结构(茎环结构):延缓RNA聚合酶的运动, 不终止RNA的合成,但为转录终止创造条件。
寡聚U组成的尾部:转录的终止信号。
②依赖型终止子
终止位点上游50~90bp区域,是ρ因子的识别位点。 ρ 因子依赖型终止子也能形成茎环结构,但茎环的GC含量较 低,因此RNA聚合酶在此移动的速度减慢,但停留时间较 短,并且茎环结构的下游没有寡聚U结构,RNA聚合酶只能 在ρ因子的协助下才能有效终止转录。
另一方面,又要存在正常的转录终止序列以防 止产生不必要的转录产物,使mRNA的长度限制在一 定的范围内,从而增加外源基因表达的稳定性。
7.1.3 外源基因mRNA的有效翻译
外源基因mRNA有效翻译必须考虑的基本原则 AUG(ATG)是首选的起始密码子。 SD序列为与核糖体16S rRNA互补结合的位点,该 序列至少含有AGGAGG序列中的4个碱基。 SD序列与翻译起始密码子之间的距离为3~9个碱 基。
7.1 基因表达的机制
7.1.1 外源基因的起ቤተ መጻሕፍቲ ባይዱ转录
外源基因的起始转录是基因表达的关键步骤。转录 起始的速率是基因表达的限速步骤。选择可调控的 启动子和相关的调控序列,是构建一个表达系统首 先要考虑的问题。
7.1.2 mRNA的延伸与稳定
外源基因起始转录后,保持mRNA的有效延伸、 终止及稳定存在是外源基因有效表达的关键。 一方面,要防止因转录物内的衰减和非特异性 终止而诱发的mRNA转录提前终止的现象;
辅助区
7.2.1.3 启动子与转录启动
大肠杆菌RNA聚合酶的亚基成分
亚基 α β β ′ σ
70
基因 rpoA rpoB rpoC rpoD
氨基酸含量 329 1342 1407 613
数量 2 1 1 1
分子量(kD) 37 151 155 70
主要功能 与调节序列结合 形成磷酸二酯键 与 DNA 模板结合 识别一般启动子,并 启动合成
第七讲 外源基因的表达
基因重组的主要目的是要使目的基因在某一细 胞中能得到高效表达,即产生人们所需要的高产 目的的基因产物,如蛋白质、多肽类生物药物。 基因表达(gene expression)是指结构基因在 调控序列的作用下转录成mRNA,经加工后在核糖 体的协助下翻译出蛋白质,再在受体细胞中经修 饰而显示出相应的功能。从基因到有功能的产物 这整个转录、翻译及所有的加工过程就是基因表 达的过程,它是在一系列酶和调控序列的共同作 用下完成的。
相关文档
最新文档