关于主理想整环上有限生成模的自同态环的一个结构定理
抽象代数名词解释

1,抽象1-1映上的映射(30 )当映射 f 是单射又是满射,称之为双射或 f 是1-1 映上的。
2,二元运算(50)设S上个非空集合,把S×S到S的映射称之为S上的二元运算,简称为S上运算。
3,二元多项式(329)设R是个有1的交换表达式f(x,y)=a0.0+a1.0x+a0.1y+a2.0x2 +a0.2y2+a1.1xy+…+a n.0x n+a n-1. 1x n-1y+…+a0.n y n, a ij∈R,称为R上关于x,y的二元多项式。
4,子环(222)设(R,+,·)上个环,S是R的一个非空子集,如果+和·也是S的运算,且(S,+,·)也是个环,则说(S,+,·)是(R,+,·)的一个子环。
5,子域(334)设(F,+,·)是个域,F上的子集S称为(F,+,·)的子域。
如果(1)(S,+,·)是(F,+,·)的子环,(2)(S,+,·)本身是个域。
6,子集合(3)设A,B都是集合,说集合A是集合B的子集合。
7,子集族(6)设J是一共非空集合(可以有无限多个元素),每个j ∈J对应集合S的一个字集A j,则通常说{A j︱A j⊆S,j ∈J}是S的一个以J标号的字集族,J称为指标集。
8,子集生成的子群(80)设G是个群,S为其一非空字集合,℘为G的所有包含S的子群的族,则称子群℘∈HH为S在G中生成的子群,记为〈S〉。
9,子集生成的理想(236)设R是个环,T⊆R,ΦΦT非空,作R的理想族B={I是R的理想,T ⊆I}得到的理想BII∈称之为R的由子集T生(T)。
10.子群(75)设(G,·)是个群,如果G的子集H对于·也构成群,则说(H,·)是(G,·)的子群。
10.么元(59)单位元,恒等元,中性元设·是集合A上的一个运算,如果元素e∈A对任何a∈A都有a*e=e*a=a,则说e是A对于运算·的一个单位元或恒等元,或么元、中性元。
伪内射模及其同调维数

定 理 5 设 是半 单环 当且 仅 当每个 伪 内射模 是 内射模 。 证明 : 若 是半 单环 , 任意左 一模 是 内射 模 , 则 且任 意左 一 是伪 内射 模 , 模 囚此 每个 伪 内射 模 是 内射
模。
反之 , 设 是伪 内射模 , 则 是 内射模 , 有每个 短 正合 列可 裂 0一 子 模 , 么 是 半单 模 , 以环 是半 单环 。 那 所
4 2
长
春
大
学
学
报
第2 1卷
下 面 , 论左 内射 整体 维数 与左 伪 内射整 体维 数 之间 的关 系 。 讨
定理 2 对 于环 R, i 尺 i R) l D( ) D( 。 p
证明: 设 为左 尺一模 , pd 则 i
pd M , 以 li ) D( 。 iR 所 pD( i R)
d 。事实 上 , iR 若 dM , 则存 在一 个 内射分 解 :一 一 一 E一 … 0
一 ~ , 一E— 由于内射模是伪 内射模 , 因而上述分解也是伪内射分解 , 从而
关 于 半单 环 和左 遗 传环 的左 伪 内射整 体维 数 , 有下 述性 质 : 定理 3 设 尺是 环 , R是 半单 环 当且仅 当 tD( 则 p 尺): 。 i 0 证 明 : R是半单 环甘 每一 个 左 R一模 是 伪 内射 模 舒 对 任 意 左 R一模 , 据 定 理 1知 pdM = 环 根 i
第2 卷 1第 6期 Nhomakorabea长
春
大
学
学
报
Vo . N . I2l o6
2 1 年 6月 01
J OURNAL 0 F CHANGC HUN UNI RST VE 1 Y
主理想环定理

主理想环定理
主理想环定理(Prime Ideal Principle)是一个数论定理,主要
用于证明算术基本定理的推广结果。
定理陈述:设$R$是一个唯一分解环,$N$是其中的非零非可
逆元的集合,如果满足以下两个条件:
1. 每个非零非可逆元在$R$中都有唯一的素因子组成;
2. 对于任意的$r\in R$,如果$r\in N$,则$r$的每个素因子都在$N$中;
那么$R$中的每个非零非可逆元都可以唯一地表示为素因子的
乘积。
主理想环定理的证明思路是通过构造一个方程组来证明。
具体而言,对于任意的$r\in R$,可令$r=p_1p_2\cdots p_k$,其中$p_1,p_2,\cdots,p_k$是$r$的素因子。
则有方程组:
$\begin{cases}
x\equiv a_1 \pmod{p_1}\\
x\equiv a_2 \pmod{p_2}\\
\cdots\\
x\equiv a_k\pmod{p_k}
\end{cases}$
其中$a_1,a_2,\cdots,a_k$是任意给定的数。
根据中国剩余定理,这个方程组必定有解,且解$x$即为$r$的一个可能的唯一分解。
通过对方程组的不同选择,可以得到$r$的所有可能的唯一分
解。
那么根据条件2,$r$的每个素因子都在$N$中,由于$N$中的元素都不能唯一分解,所以$r$也不能唯一分解。
因此,$R$中每个非零非可逆元都可以唯一地表示为素因子的乘积。
数学专业术语

数学
量
假设
定理
逆否命题
猜想
验证
充要条件
论证
恒等式
公式
小于
不等方程
常数
复合
完全的
肯定的
离散的
周期
族
子集
并
直积集
差集
n元组
值域
逆映射
恒同映射
映入
同构
对称性
超穷基数
幺拟群
连通代数群
代数群的有理表示
左函数平移
代数群的李代数
典范态射
半单元
抽象根系
幂幺根
抛物子群
代数群的外尔群
布吕阿分解
谢瓦莱群
算术子群
拓扑群的直积
左一致结构
局部紧群
零化子的互反性
紧阿贝尔群
紧群的群环
局部单连通
泛覆叠群
可数无穷的
数理逻辑
形式语言
合式的
矢列式
论题
命题演算
联结词
逻辑加法
否定词
析取范式
真值
重言式
谓词变元
个体变元
非标准量词
前束词
闭公式
全域
一阶理论
相容性
可定义性
斯科伦壳
初等等价的
初等子模型
进退构造
原子理论
对象的余积
终对象
自由对象
对偶函子
忠实函子
常数函子
自然等价
泛性质
表示函子
推出
第5章 主理想整环与欧氏环(2015)

作业
第三版 5-4第201页 1,2
5.3-5.4
、理想的定义 、理想的构造 一、主理想整环 二、 欧氏环
一、主理想整环
——(第五章第三节)
定义 设K是一个有单位元的整环,如果K的每个 理想都是Байду номын сангаас理想,则称K是一个主理想整环.
例 (1) 整数环是主理想整环. (2) 域F上的多项式环F[x]是主理想整环. (P166 习题3(1)) (3) 整数环Z上的多项式环Z[x]不是主理想整环. (因为 <2,x>不是主理想 ) 故Zn不是主理想整环. (4)当n为合数时,环Zn有零因子, 定理 Gauss整环Z[i]={a+bi|a,b∈Z}是主理想整环.
二、 欧氏环
——(第五章第四节)
定义 设K是一个有单位元的整环.如果 (1)有一个从K-{0}到非负整数集的映射 存在, 使 (2)对于K中任意元素a及b≠0, 存在元素q, r∈K,
a bq r , r 0, 或 ( r ) (b), 则称K关于 作成一个欧氏环.
例 整数环Z是一个欧氏环. 例 域F上的多项式环F[x]是一个欧氏环. 定理 欧氏环必是主理想整环.
第四讲:主理想整环上的模及其分解

數學傳播32卷1期,pp.25-47線性代數五講一一第四講主理想整環上的模及其分解龔昇·張德健4.1.環上的模的基本概念A.在第二講及第三講中,我們討論了向量空間及其上線性變換,在這一講及下一講中將從模的觀點來重新認識之,這是本書的主要部份,在這一講中,將介紹模的定義和基本性質,尤其是在主理想整環上的模及其分解。
若V體F上的一個向量空間,T∈L(V)。
對F[x]中任一多項式p(x),對任意 v∈V,可定義p(x) v=p(T)( v),這就是我們要討論作用在V上的線性算子。
顯然對任意r(x),s(x)∈F[x], u, v∈V有r(x)( u+ v)=r(x) u+r(x) v,(r(x)+s(x)) u=r(x) u+s(x) u,(r(x)s(x)) u=r(x)(s(x) u),1 u= u,等等。
但是F[x]不是體而是環,所以F[x]中元素對V作純量乘積,V不能成為一個向量空間。
於是引入了比向量空間更為一般的概念:模。
定義4.1.1:若R是有單位元的交換環,其元素稱為純量(scalar)。
一個R−模(R−module),或R上的一個模(a module over R)是一個非空集合M,有運算加法,記作+,對( u, v)∈M×M,有 u+ v∈M;另一個是R與M的運算是純量乘積,用毗連來表示,對(r, v)∈R×M,有r v∈M,而且有1.M對加法而言是Abel群;2.對所有r,s∈R, u, v∈M有2526數學傳播32卷1期民97年3月a.(分配律):r( u+ v)=r u+r v,(r+s) u=r u+s v;b.(結合律):(r s) u=r(s u),c.1 u= u.顯然當R為體,則模為向量空間,即體上的模就是向量空間。
當R=Z(整數環),則Z−模就是Abel群,故模也是Abel群的概念之擴充。
特別重要的是在第一講開始就說到的R=F[x],若F是體,則由定理1.2.1,F[x]是主理想整環,於是可以定義F[x]−模,這是我們今後要主要討論的對象。
素理想环

正式定义[编辑]∙环R的理想P是素理想,当且仅当它是一个真理想(也就是说,P≠R),且对于R的任何两个理想A和B使得AB⊆P,都有A⊆P或B⊆P。
交换环的素理想[编辑]素理想对交换环有一个较简单的描述:如果R是一个交换环,那么R的理想P是素理想,如果它具有以下两个性质:∙只要a,b是R的两个元素,使得它们的乘积ab位于P内,那么要么a位于P内,要么b位于P内。
∙P不等于整个环R。
这推广了素数的以下性质:如果p是一个素数,且p能整除两个整数的乘积ab,那么p要么能整除a,要么能整除b。
因此,我们可以说:正整数n是素数,当且仅当理想n Z是Z的素理想。
例子[编辑]∙如果R表示复系数二元多项式环C[X, Y],那么由多项式Y2−X3−X− 1生成的理想是素理想(参见椭圆曲线)。
∙在整系数多项式环Z[X]中,由2和X生成的理想是素理想。
它由所有系数项为偶数的多项式组成。
∙在任何环R中,极大理想是一个理想M,它是R的所有真理想的集合中的极大元,也就是说,M包含在R的正好两个理想内,即M本身和整个环R。
每一个极大理想实际上是素理想;在主理想整环中,每一个非零的素理想都是极大的,但这一般不成立。
∙如果M是光滑流形,R是M上的光滑函数环,而x是M中的一个点,那么所有满足f(x) = 0的光滑函数f形成了R内的一个素理想(甚至是极大理想)。
性质[编辑]∙交换环R中的理想I是素理想,当且仅当商环R/I是整环。
∙环R的理想I是素理想,当且仅当R \ I在乘法运算下封闭。
∙每一个非零的交换环都含有至少一个素理想(实际上它含有至少一个极大理想),这是克鲁尔定理的一个直接结果。
∙一个交换环是整环,当且仅当{0}是一个素理想。
∙一个交换环是域,当且仅当{0}是唯一的素理想,或等价地,当且仅当{0}是一个极大理想。
∙一个素理想在环同态下的原像是素理想。
∙两个素理想的和不一定是素理想。
例如,考虑环,它的素理想为P = (x2 + y2 - 1)和Q = (x)(分别由x2 + y2 - 1和x生成)。
【word】带有限性条件Abel群的自同态环和自同构群

带有限性条件Abel群的自同态环和自同构群数学年刊2011,32A(6):665—678带有限性条件Abel群的自同态环和自同构群冰廖军杨艳刘合国.提要给出了带极大或极小条件的Abel群A的自同构群以及自同态环的相伴Lie环是可解或幂零的充要条件.同时也给出了群A=Q0Q0…0Q的自同构群是可解或幂零的充要条件,以及群A的自同态环的相伴Lie环是可解或幂零的充要条件.关键词自同构群,自同态环,可解,幂零MR(2000)主题分类20K30,20F16,20F18中图法分类O152.2文献标志码A文章编号1000—8314(2011)06—0665—141引言本文采用文f121的术语和符号,一般情况下计算群的自同构群和研究群的自同构群的性质是很困难的,即使对Abel群也是如此.从结合环R出发,自然地可以构造一个Lie环L,方法如下:定义L的加群为_R的加法群(R,+)以及Lie积为[X,Y]=xy—yx,通常记为_R(~,称为的相伴Lie环.Abel群的自同态环EndA是结合环,则可以构造Lie环End(一.因此我们可以研究Abel群的自同态环的相伴Lie 环的可解,幂零性质对群结构的影响.同样地,也可以通过研究Abel群的白同构群AutA的可解,幂零性质来分析群A的结构.本文将对几类带有有限性条件的Abel 群进行讨论,并给出了它们的自同态环的相伴Lie环是可解,幂零以及自同构群是可解,幂零的充要条件.在多数情况下它们具有相似性.其实这也并不偶然,正是由于这些Abel群是由它的自同态环或者自同构群所确定.第2节首先给出了有限AbelP一群的自同构群AutA可解的充要条件,接着利用自同构群的稳定自同构的一个结论(见引理2.3),分别给出了带极大和极小条件的Abel群的自同构群是可解,幂零的充要条件.在定理2.6一定理2.10中,分别给出了有限AbelP一群,带极大条件的Abel群和带极小条件的Abelp-群的自同态环的相伴Lie环是可解,幂零的充要条件.当P≠3时,有限Abelp-群的自同构群AutA可解当且仅当群A的自同态环的相伴Lie环End(一)可解.对于带极大,极小条件的Abel群的自同构群AutA的可解性和群的自同态环的相伴Lie环End(一)的可解性,定理2.2一定理2.3和定理2.8一定理2.9分别相对应,在它们的幂零性的论述中,定理2.4和定理2.10相对应.设A=Q0Q.0…④Q,其中Q={丌pmI?Tti,m∈Z},这里7rk为某pi∈k 些素数的集合.第3节对群A讨论了类似的问题:定理3.1和定理3.2分别给出了A的本文2011年2月25日收到,2011年6月18日收到修改稿.北京大学数学科学学院,北京100871.E—mail:*************.ca0湖北大学数学系,武汉430062.E—mail:******************0通讯作者.湖北大学数学系,武汉430062.E—mail:**************.cn国家自然科学基金(No.10971054)资助的项目.数学年刊32卷A辑自同构群AutA是可解,幂零的充要条件,定理3.4给出了群A的自同态环的相伴Lie环EndA(一)是可解,幂零的充要条件.此时AutA是可解(幂零)的当且仅当EndA㈠是可解(幂零)的.定理3.3表明,A的自同构群AutA可解和B1是一致的.除去P=2的情况,比较定理2.4,定理2.10,定理3.2和定理3.4可以知道,对于我们所讨论的Abel群A,的自同构群AutA和自同态环的相伴Lie环EndA(一)是幂零的当且仅当它们是交换的.而且此时它们都具有相对简单的结构:AutA和EndA【一)是幂零(交换)的,如果A是满足极大条件的Abel群,当且仅当A是循环的;如果是满足极小条件的Abel群,当且仅当A是循环的或者是拟循环群的直和;如果A=Q0Q0…0Q当且仅当每一个Q是全不变的.2带极大或极小条件的Abel群设有限Abelp-群有分解A=(zpn)h0(n.)0…0(nr),其中r,ft是正整数,0<nl<n2<…<n.记群A的自同态环EndA=,群A的自同构群为AutA.下列的事实,见文【3-6】.(a)群A的自同态环=EndA可以表示成r×r矩阵环(岛),其中岛=Hom((nt)”,(n));(b)环有Jaeobson根=(),其中=pCi~;当i≠J时,J=(C)AutA的极大正规子群是△=1+.引理2.1【】除了n=2,IFI=2,3外,GL(F)是不可解的.以下总约定P为素数,z为整数环,Zp为进整数环,n=Z/(pZ)为模P剩余类环或P阶循环群.引理2.2(i)群GL2(Z)以及GL2(Zp)不可解;(ii)当素数P>2时,上的上三角可逆矩阵群()不是幂零的;(iii)当素数P>3时,Aut(m0n)不是幂零的.证记[,Y]=[z,Y,Y,…,],其中Y出现n次.环的满同态:Z一诱导群的满同态GL2(Z)一GL2(),同态像GL2()在P>3时是不可解的,因而GL~(Z)不可解.类似地,GL2(Zp)不可解.GL2(Z2)&,是可解的,而中一5-是平凡的,因此不是幂零的.考虑上的上三角可逆矩阵群(zp),由于[(G0o)]=(.1),当P>2时,取a:2,则[(((.1)组因此()不是幂零的.不妨设m≠佗(否则GL2(n)不可解),Aut(m0n)在Q1(m0n)上的限制同构于(),因此Aut(m0n)不是幂零的.6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群667定理2.1设是有限Abelp-群,且A=(n)”0(n).0…0(n),其中r是正整数,n1<n2<…<礼,ft都是正整数.则(1)当P>3时,AutA可解当且仅当f1:f2=…=0=1;(2)当P=2或3时,Aut可解当且仅当li≤2(1≤i≤r)证(1)当P>3,ll=12=…=f=1时,由文【8]中推论2.9知AutA△(一1),这里△=(AutA)是AutA的极大正规子群,因此是幂零群,则是可解群,(zp一1)是Abel群,即AutA是可解子群△=Op(AutA)被Abel群的扩张,因而是可解的.反之,假设存在某个li>1,则GL2(zpn.)≤AutA,但是GL2(nt)的商群GL2()是不可解的,矛盾.所以?1=f2=…=0=1.(2)当P=2或3时,ct≤2(1≤i≤r),由文[8】中定理1.1和命题2.2知rAutA△×lJGLt(),t=1这里△=(AutA),它是幂零的因而是可解的.由引理 2.1,当2t≤2时,GLl(zp)是可解群,则兀GLt()是可解的.则AutA是可解子群△=Op(AutA)被可解群0=lr兀GLf,()的扩张,因而是可解的.反之,假设存在某个fi>2,则GL3(nt)≤AutA,但是GL3(nt)的商群GL3()是不可解的,矛盾.所以li≤2.事实上,对于有界Abelp-群也有同样的结论,定理2.1的证明也同样适用.另一方面,有限Abel群可以分解为有限Abelp-群的直和,每个分支都是全不变的,则是特征子群,所以有限Abel群的自同构群可以分解为有限Abelp-群自同构群的直积.因此对有限Abel群总可以约化到定理2.1的情形,类似地对有界Abel群也一样.为便于叙述,我们首先给出下面的引理,它是本文计算某些自同构群的基础.引理2.3设是Abel群,B是的特征子群,且A=B0,则AutA=Horn(C,B)(AutB×Aut).证的所有稳定B的自同构构成AutA的一个子群,记为Aut(A)B,即Aut()B={∈AutAIB”=B).由于是A的特征子群,所以AutA=Aut(A)B.由文f9]中定理2.1知Aut(A)8=Der,B)Pair(C,B).由于A是Abel群B与C的直和,即A=B0C,因此平凡地作用在Abel 群B上,则导子就是它们之间的同态,即Der(C,B)=Hom(C,),668数学年刊32卷A辑并且由直接验算Pair(C,B)满足的条件,可知Pair(C,B)=AutB×AutC,因此AutA=Hom(C,B)(AutB×Aut),AutB×AutC在Hom(C,B)上的作用为(,(,))一&.定理2.2设是满足极大条件的Abel群,则AutA可解的充要条件是的挠子群的白同构群是可解的且ro(A)≤1.证若AutA可解,由引理2.2,GL2(Z)不可解,知ro(A)≤1,并且A的挠子群的自同构群是AutA的子群,因此是可解的,必要性已证.下证充分性.注意到的挠子群是A的特征子群,设为,如果TO(A):0,则A是有限群,此时归为定理2.1的情形.不妨设TO(A)=1,则A=T0Z,由引理2.3,可得AutA=Hom(Z,T))日(AutTXAutz),其中Hom(Z,T)T,AutZ=Z2.由假设,有AutT可解,因此AutA可解.类似地,对于满足极小条件的Abel群有下面的定理.定理2.3设4是满足极小条件的Abelp-群,则AutA可解的充要条件是A的既约子群R的自同构群是可解的且的极大可除子群D的秩r(D)≤1.证设A是满足极小条件的Abelp-群,的极大可除子群为D,既约子群为R,则‘A=D0R且D是A的特征子群.由引理2.3,可得AutA=Hom(R,D)>日(AutD×AutR),而Horn(R,D)是Abel群,因此AutA可解的充要条件是AutD,AutR是可解的,引理2.2说明GL2(Zp)不可解,其中z是P一进整数环.因此的极大可除子群D的秩r(D)≤1.若r(D)=1,即D=z..,熟知当P>2时,AutZp..~10zp.当P=2 时,AutZ2..Z20z2,其中z是进整数环.反之,4的既约子群R的自同构群是可解的且的极大可除子群D的秩r(D)≤1时,AutA可解.注意到满足极小条件的Abel群的自同构群是其P一子群自同构群的直积,因此满足极小条件的Abel群的自同构群是可解的充要条件是其所有子群的自同构群都是可解的.于是,结合定理2.1和定理2.3我们可以得到满足极小条件的Abel 群的自同构群是可解的充要条件.由引理2.2和引理2.3可以得到下面的定理.定理2.4(i)有限Abel2’-群A的白同构群AutA幂零的充要条件是rp(A)≤1,当且仅当是循环群;(ii)满足极大条件的Abel群且其挠子群是2一群的自同构群AutA 幂零的充要条件是有限且(A)≤1或A=Z,即为循环群;(iii)满足极小条件的Abel2/_群的自同构群AutA幂零的充要条件是A有限且rv(A)≤l或A=0...6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群669证(i)不妨设是有限AbelP一群,由引理2.2,当P>2时,T2()不是幂零的,因此不含形如m0的子群,即是循环群,rp(A)≤1.反之显然.(ii)假设Z=n0Z,则AutAn(AutnX),计算[(1,(1,1)),(0,(1,))]l其中Oz是z的二阶自同构,注意到它的作用方式把它写成矩阵形式[((呈)]=(.12)这里(一2)≠0是因为是2一群,因此AutA不是幂零的,所以或者有限或者自由循环,当有限时,由(i)知也是循环的.(iii)此时的证明方法同(为了处理P=2的情形,我们需要下面定理,见文『1O].稳定性定理设群G忠实地作用在群上,G稳定的如下长度为2的正规群列1≤W<记Z:=41(W)是的中f1.,它自然地作成一个一模,则G≤Der(v/z),其中Der(Z)是到z的所有导子作成的Abel群.定理2.5(i)设是有限Abel2-群,且A=(Z2n)0(Z2n2).0…0(Z2)L,这里nl<?22<…<几,l是正整数,则AutA幂零的充要条件是l=1.(ii)设是自由Abel群与Abel2-群的直和,则A的自同构群AutA幂零当且仅当A=2r2n0Z2nz0?-?0Z2n0Z,这里礼1<礼2<…<72r.(iii)满足极小条件的Abel2-群A的自同构群AutA幂零当且仅当A=Z2n①Z2nz0…0n0..,这里札1<佗2<-??<竹r.证(i)设是有限Abel2-群,且A=(Z2n)h0(Z2n.)120?-?0(Z2n),这里几1<?22<…<n,ll是正整数.当所有的i,1=1时,群4的自同构群AutA是一个2一群,因此是幂零的.反之假设存在某个ft>1,则GL2(n)≤AutA 且它的一个商群是GL(),由引理2.2是非幂零的,矛盾.(ii)设是自由Abel群与Abel2一群的直和,且自由子群是自由循环群z若Abel2一子群B=Z2n0Z2n①…0Z2(其中?21<礼2<…<礼),它是特征子群,由引理2.3,可得AutA=Hom(Z,B)×(AutB×Autz),其中Horn(Z,B)B,AutB是一个2一群,AutZZ2,则AutA是一个2一群,因此是幂零的.670数学年刊32卷A辑当A=Z2n0Z2n.0…0n0z时,证明其自同构群是幂零的另一个方法是:设C=2”A={2”aIa∈),其中n>n,则C2Z,它是的特征子群,A/Cz2n10Z2n20…0Z2n0zn.考虑G=AutA在0≤C<A上的自然作用.记ca(c)={∈GIc.=c,c∈), Cc(A/C):{∈Gl(a+)=a+C,a+C∈A/C},贝0c/ca(c)≤AutC,C/Ca(A/C)≤Aut(A/C),且c/ca(c)rhCa(A/C)≤c/cc(c)XG/Ca(A/C),又cc(c)nCc(A/C)稳定,0<C<A,故根据稳定性定理知cc(c)nCG(A/C)≤Der(A/C,),A/C是有限的,而C是自由循环群,因此Der(A/C,C):Hom(A/C,C)=0.AutA/C是一个2一群,AutC,则G≤AutC×Aut(A/C)是幂零群.反之若AutA是幂零群,则AutA的子群AutB是幂零的,当且仅当B=Z2n0Z2”0…0…由于GL2(Z)不是幂零的,因此自由子群是自由循环群z,因此A=z2n0Z2n20…0n0Z,其中nl<n2<…<nr.(iii)由(ii)以及引理2.2知条件是必要的,下证充分性.设A=Z2n0Z2n20…0n0..,这里仡1<n2<…<nr,设B:Q2n(A)={0∈Al2ha=0),其中n>n,则Bz2n10z2n20…0n0n,它是A的特征子群.考虑G=AutA在0≤B<A上的自然作用.记Ca(B)=fQ∈G1b.=b,b∈B),Cc(A/B)={∈Gl(a+B)”=a+B,a+B∈A/B},则C/Ca(B)≤AutB,C/CG(A/B)≤Aut(A/B),且C/CG(B)nCc(A/B)≤C/Cc(B)×C/Cc(A/B).又Cc(B)nCc(A/B)稳定,0<B<A,故根据稳定性定理知Cc(B)nCc(A/B)≤Der(A/B,B),A/BZ2o.是可除的,而B有限,因此Der(A/B,B)=Hom(A/B,B)=0.AutA/B(o.)=Z20Z2是Abel群,由(i)知AutB是一个2一群,则C≤AutBXAut(A/B)是幂零群.下面讨论带极大,极小条件的Abel群的自同态环构成的Lie环是可解,幂零的条件,为此需要下面的引理.引理2.4(m)(一)可解,坞()(一)不可解.证直接计算可得[(),()]=(c—brz+-cyd一.6cr一一d).6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群671设L=M2(Z2)(一,则由上面的计算知则则)lm)为了计算,在上式中令d=一a,r=一x,有[),G)]=(2.b…z-cyn名一),{(m).令b=2b1,c:2c1,Y=2yl,=2zl,有),()]一blz…l-cly哪yza-bmlx/,)c∈m)归纳地,知M2(Z2m)(一)可解.记K=M3(Z2)(_.,则K=(e),其中表示(J)位置为1,其它位置全为0的矩由于当i≠J时,,eij1=eij,[eij,eft]=eli—ejj,有K=(eij,eii—eli≠歹).又因n>2,存在k满足k≠i,k≠J,i≠J,则eij=【eik,ekj],eii一jJ=【eij,e所以K=K≠0,因此不可解,即M3(Z2)(一)不可解引理2.5当P>2时,()(一)不可解;相伴Lie环(z)(一)和(zp)(一)不可解.证取L=(el2,e21>,由于(e12,e21】=ell—e22,【611一e22,el2】=2e12,【ell—e22,e21】=一2e21, 则el1一e22,e12,e21∈L,归纳地,对任意的正整数此()(一)不可解.m,有el1一e22,e12,e21∈(,则()≠0,L不可解,因()(一)是(z)(一)和Mn(Zp)(一)在自然同态z一以及zp一下诱导的Lie环同态像,因此(z)(一)和(zp)(一)不可解.定理2.6设P是奇素数,记A=(n)ll④(n.)④…0(),这里扎1<n2<…<n,如是正整数,则End(一)可解的充要条件是如=1672数学年刊32卷A辑证如果End(一)可解,由引理2.5知1=1,否则存在一个子环()(一)不可解,矛盾.另一方面,如果li=1,则A=n10zpn20 0EndA{(aij)laijEHorn(,’))且i<J,Pln巧.记L=End(_.,Cij=∑(aikakj—bikakj),如果cij∈L,则PlCij,i≤J.归纳地, Cij∈(,对任意的i,J,有PI.,且当i<J时,P.l,继续重复上述过程,直到Cij=0,因此可解.也可以用另外一种方法来证明可解:EndA在【21(A)上的限制就是n一诱导的环同态,即对每一位置模P,同态像是上的一个三角矩阵,同态的核是每个位置元素都能被P整除的数,即0Mod(p).由环的同态得到Lie环的一个同态,结合可解Lie环在扩张下封闭的性质得到Lie环L=End(一)是可解的.定理2.7设A=(Z2n)/10(Z2)120…0(Z2),这里n1<Tt2<…<n,f是正整数,则End(一)可解的充要条件是ft≤2证设fi≤2,自然同态z2n.一z2诱导的环同态,End(一)的同态像是一个下对角矩阵,并且对角线上是1阶或2阶可解块,因此同态像可解,同时核满足2Ia同上述定理相同的证明方式,知其可解,得到End(一)可解.反之,由引理2.4,如果End(一)可解,则li≤2.定理2.8设A是满足极大条件的Abel群,则End(一)可解的充要条件是EndA可解且_r0(A)≤1.证设A=0A0Z,0A是A的全不变子群,).(~EndAEndZEndA【H.m(z)J(,z/),又(0EndAp)~0EndA和z(一)都是可解的,按分块矩阵计算知EndA(一)是可解的.反之,End是End(一)的子环显然可解,且()(一)不可解,因此ro()≤1.类似的方法可以得到下面极小条件下的定理.定理2.9设是满足极小条件的Abel群,则End(一)可解的充要条件是EndA可解.End可解当且仅当End磷可解且rank(Dp)≤1,其中Rp和Dp分别是A的既约子群和极大可除子群.的引理2.6(z)(一)不是幂零的,若=n0m,n<m,则EndA(一)不是幂零证注意到对任意的正整数n,[el2,?tc22]=el2≠0由引理2.5和引理2.6,立即可得下面的定理6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群673定理2.10(i)有限Abel群的自同态环的相伴Lie环幂零的充要条件是rp(A)≤1;(ii)满足极大条件的Abel群A的自同态环的相伴Lie环幂零的充要条件是有限且口(A)≤1或A=z;(iii)满足极小条件的Abel群的自同态环的相伴Lie环幂零的充要条件是有限且rp(A)≤1或A=0..;P(iv)满足极大或极小条件的Abel群4的自同态环的相伴Lie环幂零的充要条件是的自同态环的相伴Lie环是Abel的.3完全分解的无挠Abel群下面考虑这样一类Abel群,首先介绍符号和一些简单的结论:记丌为某些素数的集合,设Q={兀.mIm,m∈Z}.对群Q有下列简单事Pl∈7r实:(a)Q的元具有无限丌一高,有限丌一高,即任意的P∈7r,P高为0(3,否则为有限.(b)Q的任意一个自同态可以由1的像完全决定.事实上,m=(m?1)妒=m?1;由(pp)=1,知p?(p)=1,因此(p)妒=p1妒,所以(兀m)妒=兀m?1;pp(c)如果71”17I”2,则Horn(Q,Q.)=0,否贝0Horn(Q,Q.)Q.事实上,如果丌17r2,存在P∈丌1一丌2,Q中的任意元具有无限71”1一高,特别地,1具有无限高,若∈Hom(QQ.),则1∈Q.也具有无限p一高,则1=0,因此Horn(Q丌l1Q)=0.如果71”171-2,任意的∈Hom(Q丌¨Q.),由1的像1完全决定,而1∈Q.,因此Horn(Q,Q.)Q..特别地,EndQ=Horn(Q,Q)Q.(d)AutQQ={l=士11p.,Pi∈7r,仃∈z)z2①ZI.特别地,AutQpQ=r,oZ2④Z.这是因为EndQ=Horn(Q,Q)Q,因此AutQQ.若兀m∈Q,则存在p:.兀他∈Q,使1=兀m兀n=兀m佗,贝0mn=1,m=土1.pppp设A:Q0Q.0…0Q此时称是”完全分解”的,首先我们讨论秩为2即=Q0Q.的情形.A=Q0Q的自同态环和自同构群具有下面的矩阵表达形式:EndA竺{I兰三}I∈Itom(p,Q),{,J=1,2},AutA』【【2()可逆,∈H.m(Q,Q)下面按集合71”1和71”2的包含关系分别讨论群A=Q0Q.的白同构群以及自同构群的可解幂零性.(i)当71”171”2,71”271”1时,记71”1=71”2=7r.End[g>(,AutGL2(674数学年刊32卷A辑由于GL2(Z)≤GL2(Q),而GL2(Z)是不可解群,因此GL2(Q)也不可解.GL2(Q)的中5-为CGL2(Q)=)aEQA),铡).易知O.charA,而A=Q0O由引理2.3,知AutAHom(O,O)>日(AutOXAutO)O.(Q.×Q)是可解的,但不是幂零的,事实上,Aut(!)f.∈AutQ.,c∈AutQ~,bEHom(Q,Q:>.若(!)∈~AutA,则()=)=I1c+)=(舌,6=..取是嵌入同态,则.限制在Q等于c,记为..所以()a01),即(~AutA=()I.).若1)∈(~2AutA,则对任意的)∈AutA,有[(6)j(舌tA又(=(.一)一[(),(吾)]=(n0一一ac一-16.)(0一一X--一1)(a..b)(苦Y) =(.1).由于(01)∈<Aut,其中=一a-1bc+X--1yz+a-ix一(6一y)zc=0,对任意的∈Q.,∈Q,Y∈Q成立.若Y=0,即一a-1bc+a-ix_1bzc=0,则b=0,且2C--lyz—a-1-1yzc=0,则a】=c.因此()=()∈(AutA,AutA=(AutA≤AutA,AutA不是幂零群.6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群675当I71-2J<..时,AutA=Q.(AutQ×AutQ.)是有限生成的可解群,但不是多循环的,由于Q.不是有限生成的.而超可解是多循环的,因此它不是超可解的.(iii)当71”171”2,7r27r1时,E..%OZI#ll~.,此时AutA是Abel群.因此若AutA是超可解或多循环的,则AutA是幂零的且是Abel的.当且仅当7rl丌2,7r27r1.一般地,有下面定理.定理3.1设A=Q0Q.0…0Q其中Q:{nm}mi,m∈Z},这里.1rk为某些素数的集合,则AutA可解当且仅当对任意的i≠J,71”i≠7rj.证当7’=2时,由前面的叙述(i)一(iii)知AutA可解当且仅当71”1≠71”2.先证充分性.假设对某个i≠J,7I”i=,当k≠i,时,设A1={∈AutAl使在Q上的限制为1,即lQ:1Q),则1是AutA的子群,且A1GL2(Q.),而GL2(Q)是不可解的,从而1是不可解的,于是AutA不可解,与已知矛盾.再证必要性.如果对任意的i≠J,亿≠,那么存在一个元,不妨记为丌,满足对任意的i≠r,有丌,否则,必有某两个集合相等,与已知矛盾.这样的丌称为集合{『1≤i≤r)的极大元.显然QcharA,则.r一1,,r一1,AutAHorn(0QQ)>日(Aut0Q×AutQ~r)jt=1i=1,r一1,r一1其中Horn(0QQ)0Horn(QQ)与AutQ都是Abel的,对r进行归,i=1=1 r一1纳,知Aut0Q是可解的,因此AutA是可解的.=1定理3.2设A;Q0Q.0…0Q其中Q:{npmIIYt,,m∈Z},这,pt∈丌’里丌为某些素数的集合,则AutA幂零当且仅当对任意的i≠J,死.证当r=2时,由前面的叙述知道AutA幂零当且仅当丌1/1”2,丌2丌1.先证充分性.如果对某个i≠J,7ri7r{,当k≠i,J时,设A1={∈AutAI使在Q上的限制为1,即lQ=1Q),则A1是AutA的子群,当死:时,A1GL~(Q);当时,AutAQ)日(AutQ×AutQ),而aL2(Q)和Q丌j(AutQ×AutQ丌j)都不是幂零群,因此A1不是幂零的,与AutA幂零矛盾.再证必要性.如果对任意的i≠J,7ri,则Horn(QQ)=0.676?数学年刊32卷A辑因此EndAA,AutA(Q)×(Q)×-??×(Q)日≥(z2.z’z’),=1AutA是Abel的,因而是幂零的.推论3.1设A=Q0Q0…0Q其中Q:{兀pmI?gti,m∈Z},这Pl∈.a-k. 里丌为某些素数的集合.则下列条件等价:fa)AutA是多循环的;(b)AutA是超可解的;fC]CAutA是幂零的;(d)AutA是Abel的.注意到群G称为是B的,如果G有一个正规列G=G1>G2>>Gn=1,即G司G,且Gi/Gi+1≤Q或Gi/Gi+l≤Q/z.定理3.3设A=Q0Q0…0Q其中Q={兀pmImt,仇∈z},这Pi∈7rk0里7r为某些素数的集合,则AutA是B1的当且仅当AutA是可解的. 证充分性显然,因为由定义B是可解的.下证必要性.当r=2时,AutAQ>日(AutQ×AutQ.)或AutA=r-oAutQl×AutQ2.若AutAQ:(AutQ×AutQ.),贝40<Q2<QZ2<Q.(Z20Z2)<Q.(Z20Z20Z)<Q>日(Z20Z20Z)<<Q.(Z20Z20Z/】+l.I)=AutA是AutA=Q.(AutQ×AutQ.)的一个正规列,其商因子分别为QZ2,Z2,Z,-? z,而QZ是Q的子群,是O,/Z的子群,因此AutA是B1的.如果AutA=e-,4AutQ1×AutQ2Zg.0Zl10Z20Zl,则AutA是Abel群,且可以分解为和z的直和,因此也是B1的.所以当r=2时,AutA是可解的则是B1的.当r≥3时,由定理3.1,存在一个极大元丌,使QcharA,则AutAHorn((~QQ)×(Al1t0QAutQ).记s=ml7r,1≤i<r)l,有r一1r一1Horn(Q,Q)Horn(Q,Q)Q,6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群677可以得到,r一1,AutAQ(Aut≥Q×AutQ).因Q,AutQ是B1的,由归纳假设Aut0Q是B1的,易知AutA是B1的. 定理3.4设A=Q0Q.0…0Q其中Q={兀pmlmi,m∈Z},这里丌k为某些素数的集合,则(a)EndA(一)可解的充要条件是7i”i≠对任意的i≠J;(b)EndA(一)幂零的充要条件是71”i对任意的i≠J,此时它是Abel的,其中End(一)是由自同态环EndA的加法群以及Lie积Y]=xy—yx构成的相伴Lie环.证先讨论r:2的情形:(i)当71”1=71”2时,EndA=(Q),由于(z)(一)≤(Q)(一)是不可解的,所以M2(Q)(一)不可解;(ii)当丌丌.,7r2丌时,End(Q~l.Q.)(%g),此时它构造的Lie环是可解的不是幂零的,因为[e12,n~22】:e12;(iii)当7r1丌z,7r271”1时,End(Q.Q.)(%.),此时的Lie环是幂零的,并且是交换的.一般地,如果71”i≠对任意的i≠J,则存在一个极大元丌,即7r,设A=B0Q,那么Q是全不变的,Ena(EBH.m),由于EndB(一)是可解的,因此EndA(一)可解.反之,显然有≠霄j对任意的i≠J.这就证明了第一部分.71”i对任意的i≠J,此时EndA0EndQAi是Abel的,因此是幂零的.反之由r=2情形易得对任意的i≠J,7ri参考文献[1]RobinsonDJS.Acourseinthetheoryofgroups[M].2nded.NewY ork:Spri nger—V erlag,1995.【2]KhukhroEI.p-AutomorphismsoffiniteP—groups[M】.Cambridge:Ca mbridgeUniver—sityPress,1998.[31Avifi6MA,SchultzP.Theuppercentralseriesofap-groupactingonaboun dedAbelianP—Group[EB/OL].arXiv:math.GR/0606605.『41Avifi6MA,SchultzP.TheendomorphismringofaboundedAbelianp-gro up[M]//678数学年刊32卷A辑AbelianGroups,RingsandModules,ContemporaryMathematics.V ol273,P rovidence,RI:AmerMathSoc,2001:75—84.[5】FuchsL.InfiniteAbeliangroupsV olI[M].NewY ork:AcademicPress,1970.[6]HausenJ,SchultzP.Themaximalnormalp-subgroupoftheautomorphism groupofanAbelianp-group[J】_ProcAmerMathSoc,1998,216:2525—2533. [7]AlperinJL,BellRB.Groupsandrepresentations[M】.NewY ork:Springe r—V erlag,1995.[8]Avifi6MA.SplittingtheautomorphismgroupofanAbelianp-group 【EB/OL].arXiv:math.GR/0603747.【9]樊恽,黄平安.分裂扩张的稳定自同构群[J].数学年刊,2001,22A(6):791—796.[10】SegalD.Polycyclicgroups[M】.Cambridge:CambridgeUniversityPress,19 83.EndomorphismRingsandAutomorphismGroupsof AbelianGroupswithFinitenessConditionsLIAOJunYANGY an.LIUHeguo. SchoolofMathematicalSciences,PekingUniversity,Beijing100871,China. E—mail:*************.an2DepartmentofMathematics,HubeiUniversity,Wuhan430062,China. E—mail:unicornyy~163.corn3Correspondingauthor.DepartmentofMathematics,HubeiUniversity,Wlu han430062,China.E—mail:ghliu~.ca AbstractLetAbeanAbeliangroupwithmaximumorminimumcondition.Th eauthors givenecessaryandsufficientconditionsfortheautomorphismgroup(resp.Li eringasso—ciatedwiththeendomorphismring)beingsolvable(resp.nilpotent).Moreove r,necessary andsufficientconditionsfortheautomorphismgroup(resp.Lieringassociate dwiththeendomorphismring)beingsolvable(resp.nilpotent)forA=Q7r10Q20…0Q 7rarealsogiven.KeywordsAutomorphismgroup,Endomorphismring,Solvable,Nilpotent 2000MRSubjectClassification20K30,20F16,20F18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于主理想整环上有限生成模的自同态
环的一个结构定理
:
主理想整环上有限生成模的自同态环是一个数学概念,它主要指的是
一个群(用整环上有限生成模表示)可以分解成一组对称集,每一组对称
集都能够在环上满足特定关系。
这些关系也称为自同态。
主理想整环上有限生成模的自同态环是一种结构定理,它是基于理想
环理论的一种拓展。
一个群可以分解成一组对称集,每一组对称集都有一
个共同的生成模,它满足环的自同态关系。
定义:设G为主理想整环上的一群,存在是施洗十字R,R={r1,
r2,…,rn},其中每个ri都是一个不同的生成模。
若G能被分解成n个
独立的子群,即R1,R2,…,Rn,其中每一个Ri都生成于生成模ri,且
满足G的自同态关系,则称G是一个自同态环。
证明:此定理的证明可以分成三步。
(1)先以整环上的一群G为定义,证明G能被分解成n个独立的子群R1,R2,…,Rn,并在环上满足自同态关系。
首先,假设G能够分解成n个独立的子群R1,R2,…,Rn,其中每一个Ri都有一个共同的生成模ri。
每一个Ri都在环上满足自同态关系,即Ri定义为一组结构和性能相同的子群,每一个子群都满足元素的结构和性能的等价关系。
(2)然后,证明在主理想整环上的每一组Ri的全部元素与生成模ri的定义具有一致性。
设Ri的全部元素分别为A1,A2,…,An,生成模ri=<A^n>,其中
A^n=<A1A2…An>,那么元素A1与生成模ri=<A^n>有关,A2与生成模
ri=<A^n>有关,以此类推。
由此可以证明,在主理想整环上的每一组Ri的全部元素与生成模ri的定义具有一致性。
(3)最后,证明Ri在整环上满足自同态关系即满足关系:
A^n=<A1A2…An>=A^n。
设我们有R1,R2,…,Rn两个群,每一组Ri的元素分别为A1,
A2,…,An。
那么满足自同态关系的条件就是:A1A2…An=A1A2…An,即
A^n=A^n,从而满足元素两两之间的等价性。